
Journal of Computer Science 8 (10): 1594-1600, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Keh-Hsun Chen, Department of Computer Science, University of North Carolina, Charlotte,
 NC 28223, USA

1594

Building Opening Books for 9××××9
Go Without Relying on Human Go Expertise

1Keh-Hsun Chen and 2Peigang Zhang

1Department of Computer Science,
University of North Carolina at Charlotte, Charlotte, NC 28223, USA

2Microsoft Coorperation, Boulder, CO 80301, USA

Abstract: Problem statement: Expert level opening knowledge is beneficial to game playing
programs. Unfortunately, expert level opening knowledge is only sparsely available for 9×9 Go. We
set to build expert level opening books for 9×9 Go. Approach: We present two completely different
approaches to build opening books for 9×9 Go without relying on human Go expertise. The first
approach is based on game outcome statistics on opening sequences from 300,000 actual 9×9 Go
games played by computer programs. The second approach uses off-line stage-wise Monte-Caro tree
search. Results: After “solution tree” style trimming, the opening books are compact and can be
used effectively. Testing results show that GoIntellect using the opening books is 4% stronger
than GoIntellect without the opening books in terms of winning rates against Gnugo and other
programs. In addition, using an opening book makes the program 10% faster. Conclusion:
Classical knowledge and search approach does not work well in the game of Go. Recent
development in Monte-Carlo tree search brings a breakthrough and new hope-computer programs
have started challenging human experts in 9×9 Go. A well constructed opening book can further
advance the state of the art in computer Go.

Key words: Computer Go, Monte-Carlo tree search, opening books

INTRODUCTION

 The classical full board search paradigm has
produced programs stronger than human expert players
in a number of games such as Chess, Checkers and
Othello. Yet this classical approach failed miserably in
Go, since good Go knowledge does not translate to
good evaluation function to be used by mini-max style
full board game tree search (Chen, 2003). The playing
strength of programs for 19×19 and 9×9 Go stuck at
intermediate amateur level until the recent development
of Monte-Carlo Tree Search (MCTS) (Coulom, 2007a;
Gelly et al., 2006; Kocsis and Szepesv’ari, 2006),
which bypassed the need of static evaluation functions
and brought a breakthrough in computer Go. Much
additional work has been done on MCTS and its
enhancement in recent years (Chaslot et al., 2007;
Chen et al., 2008; Chen and Zhang, 2008; Coulom,
2007b; Gelly and Silver, 2007).
 Opening books are common in computer game
playing (Buro, 1999; Lincke, 2000). The playing
strength of 9×9 Go programs can be further enhanced

by using expert level opening books. Unfortunately,
there are no publicly available expert opening books for
9×9 Go. Even 9×9 Go game records by professional
experts are scarce, not enough available for building
opening books. We propose two approaches to build
9×9 Go opening books without relying on human Go
expertise. The first approach is based on game outcome
statistics on opening sequences from 300,000 actual
9×9 Go games played by computer programs. Top 9×9
Go programs can now challenge human experts. We
discuss the details of this approach and described how
to use such an opening book in a 9×9 Go program. We
also discuss a second approach of using off-line stage-
wise Monte-Caro tree search. The testing results of
using the constructed opening books are, which shows
GoIntellect using the opening books is 4% stronger than
GoIntellect without the opening books in terms of
winning rates against Gnugo. In addition, using an
opening book makes the program 10% faster.

MATERIALS AND METHODS

 We shall discuss the details of our approach in
this study.

J. Computer Sci., 8 (10): 1594-1600, 2012

1595

Fig. 1: Equivalent opening move sequences

Canonical orientation of a game: We call a sequence
of moves of any length starting from the empty Go
board an opening move sequence. An opening move
sequence (including a whole game) can have equivalent
move sequences in 8 different orientations. For
example, the following 8 opening move sequences are
all equivalent (Fig. 1)
 In building an opening book, we should combine
the outcome statistics of all extension games from each
of the 8 equivalent initial move sequences. We don’t
need to consider color flip here, since Black always
plays first in Go.
 Let B be the set of all 81 points on the 9×9 Go board.
We define 8 transformation functions from B to B:

f0: Identity function mapping every point to itself
f1: Rotate clockwise 90°
f2: Rotate clockwise 180°
f3: Rotate clockwise 270°
f4: Reflection with respect to the vertical center line
f5: f1 followed by f4
f6: f2 followed by f4
f7: f3 followed by f4

 Applying f0-f7 to each move in the move sequence
in the upper left diagram of Fig. 1, we get all the
equivalent variations in Fig. 1.
 These 8 transformations together with composite
function operator form a group in modern algebra. f0 is
the identity element.

Fig. 2: Position types of a 9×9 Go board

They each have an inverse transformation:

f1

−1 = f3
f3

−1 = f1
f i

−1 = fi for i = 0, 2, 4, 5, 6, 7

f1 and f3 are inverse to each other. The other
transformations are inverse to itself. These 8
transformations can generate equivalent move
sequences. Two move sequences <m1, m2, …, mk> and
<m1’, m2’, …, mk’> are said to be equivalent if and only
if there is an i in {0, 1, 2,…, 7} such that fi (mj) = mj’
for j = 1, 2, …, k.
 We classify all 81 9×9 Go board points into 4
types: Center, axis, diagonal and pie. As shown in
Fig. 2, there are:

1 center: c1
4 axes: a1, a2, a3, a4
4 diagonals: d1, d2, d3, d4
8 pies: p1, p2, …, p8

 Let t(m) be the type of move location m. We call
<t(m1), t(m2), …, t(mk)> the location type sequence of
move sequence <m1, m2, …, mk>. For example, let’s
consider a short move sequence <E5, D3, C5>, Fig. 3.
 This short opening move sequence has its
location type sequence <c1, p5, a4>. We call the
sequence of the subscripts, <1, 5, 4> in this example,
its location type index sequence (Table 1). We shall
use this index sequence to identify the canonical
form of a move sequence.

J. Computer Sci., 8 (10): 1594-1600, 2012

1596

Fig. 3: An opening move sequence

Fig. 4: Canonical form of the move sequence in Fig. 3

Table 1: The equivalent move sequences of the move sequence in

Fig. 3 and their type index sequences
 Location type Type index
I Fi(S) sequence sequence
0 E5, D3, C5 c1, p5, a4 154
1 E5, C6, E7 c1, p7, a1 171
2 E5, F7, G5 c1, p1, a2 112
3 E5, G4, E3 c1, p3, a3 133
4 E5, F3, G5 c1, p4, a2 142
5 E5, G6, E7 c1, p2, a1 121
6 E5, D7, C5 c1, p8, a4 184
7 E5, C4, E3 c1, p6, a3 163

 A move sequence can have up to 8 equivalent
move sequences under rotation and reflection (through
a transform function f0-f7 on every element of the
sequence). We call the one with lexically smallest
location type index sequence its canonical form.
Considering the earlier example opening move
sequence S = <E5, D3, C5>, we have one hundred and
twelve is the smallest location type index sequence, so
the canonical form of S is <E5, F7, G5>, Fig. 4, which
can be obtained via function f2 (rotate clockwise 180°).
We call f2 the canonical transformation for the move
sequence <E5, D3, C5>. The canonical transformation

converts a move sequence to the equivalent sequence in
the canonical form.
 The original sequence can be reconstructed via f2

−1
(= f2). In this example, the canonical transformation can
be determined when move 2 is played. A sufficient
condition to determine a unique canonical
transformation for any extension of an opening
sequence is a move at a pie point.
 Only about 1/8 of the actual games are in canonical
form. Before we merge them into a big opening tree, we
should convert them into canonical form, so we can
collect all relevant statistics together for the equivalent
opening move sequences.

2.2 Merge games into a tree: It would be ideal to use
9×9 games played by human Go experts to build an
opening book. Unfortunately the available professional
9×9 games are rather limited. So we use 9×9 games
played by computer Go programs instead. We have
over 300,000 testing games of GoIntellect against
GnuGo, CrazyStone, Mogo and older versions of
GoIntellect plus thousands additional 9×9 games down
loaded from KGS on the Internet.
 All the games were in sgf format. We wrote a
script to process the games one at a time. For each
game, we first let GoIntellect to step through all moves
in the game to reach the end configuration, then count
the territory score (we use Chinese rule with 7.5 points
komi) and record the win/loss result. Then find its
canonical transformation by applying all transform
functions to moves one at a time until the canonical
orientation is determined (usually after examining no
more than first 3 moves). We apply the canonical
transformation to moves up to the depth limit of
opening book tree; we use 16 as the limit and get an
opening sequence in canonical form.
 A node in the opening tree needs to record the
move location plus the move/player information (we
code every board location into a number and use +
number for Black move,-number for White move), the
number of games passing through the node and the
number of winning games (say from the node move
player’s point of view) passing through the node. We
initialize the tree, in sgf form, by using the first game.
We merge a new opening sequence into the growing
opening tree by tracing its move sequence (in
canonical form) through the tree until it goes off the
tree, then we augment the tree by attaching a branch
from the node for the remaining opening move
sequence in the game.
 The C-like pseudo code for building an opening
book from game records is shown in Fig. 5. We
choose tree rather than graph as underlying data
structure for the opening book for two reasons.

J. Computer Sci., 8 (10): 1594-1600, 2012

1597

Fig. 5: C-like pseudo code for opening book building from game records

First, it is much more efficient to build a tree from
game records than to build a graph. Second, sometimes
the path leading to a node affects the set of legal moves
at the node (ko status).
 Due to the limitation on the memory, we can’t just
build a giant game tree of 300,000 games. We have to
trim game trees before they get too big, then merge
trimmed trees together. We developed a procedure to
merge many opening trees into one big opening tree, so
we can build it a reasonable size piece at a time. Several

opening books can be merged into one via the pseudo
code in Fig. 6.

Trim an opening tree to an opening book: We can
trim move beyond opening depth, if we did not do so
before the game merging. Also we can trim away any
node with fewer than a threshold number of games passing
through, we use 20 as the threshold, so the remaining
nodes are more reliable. At this point, nodes with very low
winning rates, say less than 25%, can be pruned, since
they are likely to be bad moves.

J. Computer Sci., 8 (10): 1594-1600, 2012

1598

Fig. 6: C-like pseudo code for merging opening books

If we are to play, we will never choose it. If the opponent
selects this bad move, we probably can win without using
the opening book. A sorting routine was programmed to
order the children of a node according to winning rates for
the whole tree providing convenience in tree
manipulations.
 Assume we play Black, then at each node black is to
play next, we just need to keep small number of best
successors and trim the rest sub-trees. In that way, we
can get a compact “solution tree” opening book with size
shrunk by 1000 fold. Similarly we can create a “solution
tree” for White. Merging Black “solution tree” and
White “solution tree”, we get an opening book that can
be used by either Black or White. The sgf opening tree
we produced after merging 300,000 games before
trimming was several hundred mega bytes in size. The
final working opening tree is about 60 K bytes
containing about 3000 moves.

Practice: We shall show how to make opening book
moves in 9x9 Go matches. And we introduce an alternate
approach of building an opening book for 9x9 G0.

Use of the opening book: The opening book is a sgf
game tree containing only move sequences in canonical
form. The players may play moves in any orientation.
To use the book, we keep 8 tree-node pointers p0, p1,
p2,…, p7, where pi points to the node of which the move
sequence from the root to it is a move sequence in
canonical form <fi(m1), fi(m2),…, fi(mk)> where <m1,
m2,…, mk> is the actual move sequence of on the board
so far, if such a node exists, otherwise pi is null. The 8
pointers are initialized to point to the root of the
opening book tree, which corresponds to the empty 9×9
board. When an actual move m is played on the board
by either side, for each non-null pi, we advance the
pointer pi to point to the successor node containing the

J. Computer Sci., 8 (10): 1594-1600, 2012

1599

move fi(m) if such successor exists; otherwise pi
becomes null.
 When it is our turn to play and at least one pi is not
null, our book move selection is to consider all
successor nodes of all nodes pointed by a pi and pick
the successor with highest winning rate. We also take
the confidence factor into consideration-the more
games through it the better. If the winning rate is below
a threshold (45% in our implementation), we give up
the book move and go back to MCTS. If the winning
rate is high enough, get the node move m1 of the best
child of the selected node pointed by pi. fi

−1(m1) will be
our book move to play on the board. When all 8 pi’s
become null, the game is out the opening book. We
shall discuss building opening books using stage-wise
off-line MCTS.

Off-line stage-wise Monte-Carlo tree search: We
shall discuss building opening books using off-line
stage-wise MCTS. The basic idea is to run the
program’s MC tree growing engine, i.e., UCT
algorithm, days and nights to build a huge Monte-Carlo
Search Tree (MCST) then take the top part as an
opening book. But this basic idea has a drawback: as
the tree gets bigger and bigger, the UCT algorithm will
play the best move exponentially more often than the
rest moves. It more or less converges to the “principle
variation” path. A book should be able to provide
moves responding to opponent’s suboptimal play. To
remedy this drawback, we use the following stage-wise
strategy to combine many separate MC search trees into
one big opening tree.
 We first did 20 million simulations from the empty
board position trying only moves in canonical
orientation, which took about a half hour. We
identified the top 6 opening moves based on winning
rates. For each of the 6 candidate opening first move,
we played a Black stone on the board at the position,
then start a new MCTS to grow a new MCST. For
each such MCST generated, we identified 3-5 top
responses and grew a new set of MCSTs with first two
moves already placed on the board. We then
developed the next set of MC trees with first three
moves specified. This process could go on many
levels. We only selectively got to no more than 4
levels. We performed 20 million simulations for each
MCST. Then we trimmed and merged them and then
trimmed it again to form an opening book tree. Since
we would like to store and reload MC search trees for
later use. We used a compact text format to store
essential information of a MC Search Tree (MCST).

The following context-free grammar specifies the
syntax of our MCST:

<MCST> ::= {<move> <num wins> <num games>
<MCST-list>}
<MCST-list> ::= <empty> | <MCST> <MCST-list>
<move> ::= <sign> <board point> | <sign><pass> | 0
<num wins> ::= <natural number>
<num games> ::= <natural number>
<sign> ::= + |-| <empty>

 Where “{“ and “}” are literals. A positive number
represents a Black move and a negative number
represent a White move. This format is simpler and
more compact than sgf format and easier to write a
parser for. The authors would like to thank Mr. Dawei
Du for the implementation of the compact text disk
read/write format for MCST.

RESULTS AND DISCUSSION

 We tested the effectiveness of an opening book
constructed from over 300 thousand actual games and
another opening book generated from stage-wise off-
line MCTS against GnuGo 6.0 level 10. The number
of simulations per move for GoIntellect (GI) is set to
1, 2, 4, 8, 16, 32, 64, 128, 256 and 512 K (when it
does not have an opening book move or does not use
an opening book). For each of the two opening books,
for each of the number of simulations per move
setting, GI using the opening book played 100 games
taking Black and another 100 games taking White and
GI without opening book played the same number of
games for comparison of the outcomes. A total of
6000 games played on various PCs. The result is
summarized in Fig. 7.
 The versions of GI using opening book
outperformed the version without opening book by
about 4% on the average in winning rates.
Furthermore, when there is an acceptable opening
book move available, the program consumes very
little time. The time saved can be used by later moves.
GI with opening book typically retrieves 2-6 opening
moves from the opening book a game, saving about
10% of the time.
 GI with the opening book from actual games
performed slightly better than GI with the opening book
from off-line MC simulations. The outcome may
reverse if we use more simulations for a building block
and more layers of building blocks in off-line MC
simulation based opening book. Additional testing
games played against other programs showed similar
playing strength improvements.

J. Computer Sci., 8 (10): 1594-1600, 2012

1600

Fig. 7: Experimental results against GnuGo 6.0 level 10. GI with playing level k performs 2k−1 K simulations per

move

CONCLUSION

 Opening books can help programs play stronger
and faster. When expert knowledge is not readily
available, we can build opening books by combining
actual games and using the outcome statistics to guide
the move selection. The book can be trimmed to a
compact size leaving out nonessential portions of the
tree. Off-line stage-wise MCTS approach is equally
effective. The full board opening book approach is
effective in 9×9 Go. But when the size of the Go board
increases, the outcome statistics on opening sequences
become rather sparse and less reliable. For 19×19 Go,
instead of building opening books for the full board, we
build opening books for corners, called Joseki
dictionaries. We use human expert knowledge in this
case-Joseki dictionary books are abundant.
 In Joseki dictionaries for corners, we also consider
Black and White flip. Each of the 4 corners has 4
different variations of a Joseki from reflection w.r.t. its
main diagonal and color flip. So each Joseki has 16
equivalents, 4 for each corner. The same techniques
described can be used to play standard corner moves
using a Joseki dictionary (a move tree) with 16 Joseki
tree node pointers, 4 for each corner. The experience of
Go Intellect has been that Joseki dictionaries have little
benefit in 19×19 Go matches.

REFERENCES

Buro, M., 1999. Toward opening book learning. ICCA

J., 22: 98-102.
Chaslot, G.M.J.B., M.H.M. Winands, H.J.V.D. Herik,

J.W.H.M. Uiterwijk and B. Bouzy, 2007.
Progressive strategies for monte-carlo tree search.
New Math. Natural Comput., 4: 343-357.

Chen, K. and P. Zhang, 2008. Monte-Carlo go with
knowledge-guided simulations. ICGA J., 31: 67-76.

Chen, K., 2003. Computer go: Increasing interest.
ICGA J.

Chen, K., D. Du and P. Zhang, 2008. A fast indexing
method for monte-carlo go. Comput. Games, No.
5131: 92-101. DOI: 10.1007/978-3-540-87608-3_9

Coulom, R., 2007a. Computing ELO ratings of move
patterns in the game of go. University of Alberta.

Coulom, R., 2007b. Efficient selectivity and backup
operators in Monte-Carlo tree search. Proceedings
of the 5th International Conference on Computers
and Games, (CG’ 07), Springer-Verlag Berlin,
Heidelberg, pp: 72-83.

Gelly, S. and D. Silver, 2007. Combining online and
offline knowledge in UCT. Proceedings of the 24th
International Conference on Machine Learning,
(ML’ 07), ACM Press, USA, pp: 273-280. DOI:
10.1145/1273496.1273531

Gelly, S., Y. Wang, R. Munos and O. Teytaud, 2006.
Modifications of UCT with Patterns in Monte-
Carlo Go. Institute National de Recherche en
Informatique Et En Automatique.

Kocsis, L. and C. Szepesvari, 2006. Bandit based
monte-carlo planning. Computer and Automation
Research Institute.

Lincke, T.R., 2000. Strategies for the Automatic
construction of opening books. Proceedings of the
2nd International Conference on Computers and
Games, (CG’ 00), Springer-Verlag, London, UK.,
pp: 74-86.

