
Journal of Computer Science 8 (9): 1564-1575, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author:Srinivas Acharyulu, P.V., Department of Computer Science and Engineering, GITAM University,
 Visakhapatnam, India

1564

A Methodological Framework for

Software Safety in Safety Critical Computer Systems

1Srinivas Acharyulu, P.V. and 2P. Seetharamaiah
1Department of Computer Science and Engineering,

GITAM University, Visakhapatnam, India
2Department of Computer Science and Systems Engineering,

Andhra University, Visakhapatnam, India

Abstract: Software safety must deal with the principles of safety management, safety engineering and
software engineering for developing safety-critical computer systems, with the target of making the
system safe, risk-free and fail-safe in addition to provide a clarified differentaition for assessing and
evaluating the risk, with the principles of software risk management. Problem statement: Prevailing
software quality models, standards were not subsisting in adequately addressing the software safety
issues for real-time safety-critical embedded systems. At present no standard framework does exist
addressing the safety management and safety engineering priniciples for the development of software
safety in safety-critical computer systems. Approach: In this study we propose a methodological
framework involving safety management practices, safety engineering practices and software
development life cycle phases for the development of software safety. In this framework we make use
of the safety management practices such as planning, defining priniciples, fixing responsibilities,
creteria and targets, risk assessment, design for safety, formulating safety requirements and integrating
skills and techniques to address safety issues early with a vision for assurance and so on. In this
framework we have also analysed integration of applicability of generic industrial heirarchy and
software development heirarchy, with derived cyclical review involving safety professionals
generating a nodal point for software safety. Results: This framework is applied to safety-critical
software based laboratory prototype Railroad Crossing Control System (RCCS) with a limited
complexity. The results have shown that all critical operations were safe and risk free. Conclusion:
The development of software based on the proposed framework for RCCS have shown a clarified and
improved safety-critical operations of the overall system peformance.

Key words: Safety-critical systems, software safety, software quality, Rail Road Crossing Control

System (RCCS)

INTRODUCTION

 Software Safety is considered as most important
and discussed in various software standards, specifying
the needs for well being of the users, applications,
equipment to avoid software failures leading to hazards
by involvement of computer systems in real life.
Specifically in applications of safety-critical systems,
the contributions or attributions of software failures
made significant danger to human life, substantial
economic loss and extensive damage to environment.
As no standard framework does exist which
comprehensively address software safety, there is need
for proper remedy and requirement of software quality
and standards, or for review of the various standards

and models in safety-critical computing systems. A
safety-critical computer system is such a system which
has the potential to cause hazards or allow hazards to
occur. A software is said to be safe if it is quite not
possible or a seldom instance to produce an output that
could cause a catastrophic incident to the system which
it controls. Most of the systems that do not have
adequate safety design aspects caused loss to the
physical property, harm and loss of life (Medikonda
and Panchumarthy, 2009). Software Engineering of
Safety-critical computer systems needs have a
clarified/classified understanding of exact role of
software and its interactions with the system.
 Software engineering of a safety-critical system
requires a clear understanding of the software’s role in and

J. Computer Sci., 8 (9): 1564-1575, 2012

1565

interactions with, the system (Bofinger et al., 2002;
RTCA, 1992; MISTD-882C, 1984; Lutz, 2000; Knight,
2002). These systems require the utmost care in their
specification, design, implementation, operation and
maintenance, as they could lead to injuries or loss of lives
and in-turn result in financial loss (Herman, 2000; Schmid,
2002). This type of system is considered in this study.
 According to Dunn (2003), dependable, seemingly
safe concepts and structures fail while in practice due to
three primary reasons. Their originators or users:

• Having an incomplete understanding of what

makes a system "Safe"
• Fail to consider the larger systems into which the

implemented concept is to be embedded
• Ignore single points of failure that makes the safe

concept unsafe when put into practice

 There are many well known examples of safety-
critical systems' application areas such as automotive,
defense, air traffic, air craft controlling, transportation,
communications, medical diagnostics, nuclear, thermal
and atomic power, instrumentation. Since, the safety is
dependant on the correct and perfect desired
performance of the software, this paper primarily
emphasizes on the software component of safety-
critical computer system, while taking into consideraion
of the safety management and safety engineering issues
specific to particular application system. Since scope of
safety does not confine to software element only, but
also to consider the safety of whole equipment,
software, operators or users and environment, the
constributions of safety management and safety
engineering towards software safety are analyzed. most
of the systems keep their reliability and confidence on
software to achieve their ultimate goals. The goal of
Software Safety in most of the safety-critical computer
systems are real-time control systems and require most
attention and care in their specification, planning,
design, implementation, validation, evaluation and
operational maintenance. A thorough understanding is
very much required to eliminate errors in software,
otherwise it may lead to or allow hazardous condition
that could potentially result in catastrophic accident
pertaining to life, un-sustainable injury and damage to
equipment and/or environment. In this study, it is
considered that such type of safety-critical computer
system for application to make fail-safe. Some of the
examples of hazards induced by software failures are
given for reference as under. The proposed
methodology in this study is basically divided into,
Software Safety Management, Software Safety
Engineering, Software Safety Configuration
Management, Software Design and Development,

Software Safety Efforts Analysis, Software Safety
Testing, Software Implementation, Software
Verification applying the safety practices and software
developmental life cycle issues. The following are some
of the concepts and terms relating to safety found in the
literature on the web relevant to the safety-critical
computer system.

Terminology: For the purpose of this study, the
following are the definitions found available in the
literature. "Software Safety Guidebook", NASA
Technical Standard, 2004.
http://www.hq.nasa.gov/office/codeq/doctree/871913.p
df defines the following (NASASTD-8719.13, 2004).

Fail-Safe: (1) Ability to sustain a failure and retain the
capability to safely terminate or control the operation.
(2) A design feature that ensures that the system
remains safe or will cause the system to revert to a state
which will not cause a mishap.

Failure: The inability of a system or component to
perform its required functions within specified
performance requirements IEEE Standard 610.12-1990.

Error: (1) Mistake in engineering, requirement
specification, or design. (2) Mistake in design,
implementation or operation which could cause a failure.

Hazard: The presence of a potential risk situation
caused by an unsafe act or condition. A condition or
changing set of circumstances that presents a potential
for adverse or harmful consequences; or the inherent
characteristics of any activity, condition or
circumstance which can produce adverse or harmful
consequences.

Mishap: An unplanned event or series of events that
results in death, injury, occupational illness, or damage
to or loss of equipment, property, or damage to the
environment; an accident.

Risk: (1) As it applies to safety, exposure to the chance
of injury or loss. It is a function of the possible
frequency of occurrence of the undesired event, of the
potential severity of resulting consequences and of the
uncertainties associated with the frequency and severity.

(2) A measure of the severity and likelihood of an
accident or mishap (3) The probability that a specific
threat will exploit a particular vulnerability of the system.

Safe (Safe State): (1) The state of a system defined by
having no identified hazards present and no active
system processes which could lead to an identified
hazard (2) A general term denoting an acceptable level
of risk, relative freedom from and low probability of:
personal injury; fatality; loss or damage to vehicles,

J. Computer Sci., 8 (9): 1564-1575, 2012

1566

equipment or facilities; or loss or excessive degradation
of the function of critical equipment.

Safety: Freedom from hazardous conditions:

Safety-Critical : Those software operations that, if not
performed, performed out-of-sequence, or performed
incorrectly could result in improper control functions
(or lack of control functions required for proper system
operation) that could directly or indirectly cause or
allow a hazardous condition to exist

Safety-Critical Computer Software Component
(SCCSC): Those computer software components
(processes, modules, functions, values or computer
program states) whose errors (inadvertent or
unauthorized occurrence, failure to occur when
required, occurrence out of sequence, occurrence in
combination with other functions, or erroneous value)
can result in a potential hazard, or loss of predictability
or control of a system.

Safety-critical computing system: A computing
system containing at least one Safety-Critical Function.

Safety-Critical Computing, Those computer functions
in which an error can result in a potential hazard to the
user, friendly forces, materiel, third parties or the
environment.

Safety-critical software: A Software that (1)
Exercises direct command and control over the
condition or state of hardware components and, if not
performed, performed out-of-sequence, or performed
incorrectly could result in improper control functions
(or lack of control functions required for proper system
operation), which could cause a hazard or allow a
hazardous condition to exist. (2) Monitors the state of
hardware components; and, if not performed, performed
out-of-sequence, or performed incorrectly could
provide data that results in erroneous decisions by
human operators or companion systems that could
cause a hazard or allow a hazardous condition to exist
(3) Exercises direct command and control over the
condition or state of hardware components; and, if
performed inadvertently, out-of-sequence, or if not
performed, could, in conjunction with other human,
hardware, or environmental failure, cause a hazard or
allow a hazardous condition to exist.

Software safety: The application of the disciplines of
system safety engineering techniques throughout the
software life cycle to ensure that the software takes
positive measures to enhance system safety and that
errors that could reduce system safety have been
eliminated or controlled to an acceptable level of risk.

System safety: Application of engineering and
management principles, criteria and techniques to

optimize safety and reduce risks within the constraints
of operational effectiveness, time and cost throughout
all phases of the system life cycle.

Background history of software failures: Computers
are introduced in safety-critical systems, as a result,
software failure found to have contributions to
accidents. The ariane-5 explosion (Leveson and Turner,
1993), Therac-25 Accidents (Leveson and Turner,
1993) are some of the most referred software related
accidents. An unmanned Ariane-5 rocket was launched
by the European Space Agency, had exploded in short
time after its take-off from Kourou, French Guiana in
1996. The rocket was developed after a decade of
exercise and cost of $7 Billion dollars, the board of
which investigated and found that software error caused
failure and the loss was valued at $500 million. Therac
-25, a computerized radiation therapy machine lead to
six known accidents, involving excess massive doses
resulting in deaths and serious injuries. This was the
ever worst series of incidents of radiation accidents in
the medical history (Leveson and Turner, 1993).
 A software design flaw or run-time error within
safety-critical functions of a system introduces the
potential of a hazardous condition that could result in
death, personal injury, loss of the system, or environmental
damage (Leveson and Turner, 1993). Other examples,
cited by (Alberico et al., 1999) are as follows:

• Missile Launch Timing Error Causes Hang-Fire
• Reused Software Causes Flight Controls Shut

Down
• Flight Controls Fail at Supersonic Transition
• Incorrect Missile Firing Due to Invalid Setup

Sequence
• Operator Choice of Weapon Release Over-Ridden

by Software Control

MATERIALS AND METHODS

Overview of safety standards: Table 1 shows
camparative analysis of various standards for purview
and software safety scope.

The structure of CMMI +SAFE: There are two safety
process areas namely, safety management and safety
engineering, associated with goals as shown in the
Table 2. This is intended primarily as a risk
management tool. The measures can be taken to address
those strengths and weaknesses identified, such as
development or improvement.
 The structure of the safety extension is shown in
Table 2 and was developed from the structure of the safety
model presented in Australian Defence Standard, The
Procurement of Computer Based Safety-critical Systems
and the structure of CMMI (+SAFE, V1.2, 2007).

J. Computer Sci., 8 (9): 1564-1575, 2012

1567

Fig. 1: Mishap causes. System designers identify the application’s attendant hazards to determine how system-component

failures can result in mishaps (Figure adopted from Dunn, 2003)

Table 1 : A comparative analysis of various standards for software safety scope
Standard description Purview Scope for software safety

DO-178B Development of Provide guidelines for software for airborne systems Good for Software Development and System Safety
Safety- Related Software Assessment. No specific software safety tasks are mentioned.
in Airborne Industries
JSSC Joint Software System Gives a software safety process that includes identifying No specific guidance is provided on determining the level
Committee-JSSC Software generic and system safety critical software requirements, of software safety effort required
System Safety handbook performing software safety analysis. Verifies whether
 software is developed according to standards and compliance.
MIL-STD- 882C Intended for System Safety. Provide software hazard Detailed Software Safety process is not given
U.S. Department of Defense risk assessment process
NASA-STD-8719.13A Provide systematic approach to software safety The standard is applicable to safety critical computer systems.
National Aeronautics and
Space Administration (NASA)
+SAFE V1.2 A Safety Offer capability maturity model integrated to software Addresses strengths and weaknesses of software
Extension to CMMI-Dev
1.2 (+SAFE, V1.2, 2007)
CMMI (Bofinger 2002)

Table 2: Structure of safety extension
+SAFE – CMMI SM Category Safety Process Areas Specific Goal
Project Management Safety Management 1. Develop Safety plans
 2. Monitor Safety Incidents
 3. Manage Safety Related Suppliers
Engineering Safety Engineering 1. Identify Hazards, Accidents and Sources of Hazards
 2. Analyze Hazards and Perform risk Assessment
 3. Develop Safety Requirements
 4. Apply Safety Principles and Requirements
 5. Support Safety Acceptance

J. Computer Sci., 8 (9): 1564-1575, 2012

1568

The computer based mishaps and systems:
According to WR Dunn (2003), typically, virtually any
computer system-whether it’s a fly-by-wire aircraft
controller, an industrial robot, a radiation therapy
machine, or an automotive antiskid system-contains
five primary components:

• The Application is physical entity the system

controls/monitors, e.g., plant, process
• The Sensor which converts application’s measured

properties to appropriate computer input signals,
e.g., accelerometer, transducer

• An effecter which converts electrical signal from
computer’s output to a corresponding physical
action that controls function, e.g., motor, valve,
break and pump

• Operator is human or humans who monitor and
activate the computer system in real-time, e.g.,
pilot, plant operator, medical technician

• Computer Hardware and software that use sensors
and effectors to control the application in real-time,
e.g. single board controller, programmable logic
controller, flight computers, systems on a chip.
Any of the above five components may fail and
cause a mishap as shown in Fig. 1. The main focus
in this study is on Computer Software pertaining to
Safety-Critical Software

 Safety management process area is helpful in
correcting the performance against plan. Each of the
Specific Goals include specific practices, such as
determining Regulatory, legal and Standards
requirements, determine safety criteria, establish
organization structure, establish safety plan.
 Safety Engineering Process area deals with the
activities of safety issues at all stages in the engineering
process. The specific goals indicated include specific
practices, like identifying hazards, accidents and their
sources and their possibility. Specific Goal analyze
hazards, is useful in determining possible causes and
consequences, their severity and likelihood, help in
assessment.
 Software is safety-critical if it performs any of the
following (NASASTD-8719.13, 2004):

• Controls hazardous or safety-critical hardware or

software
• Monitors safety-critical hardware or software as

part of a hazard control
• Provides information upon which a safety-related

decision is made
• Performs analysis that impacts automatic or

manual hazardous operations
• Verifies hardware or software hazard controls
• Can prevent safety-critical hardware or software

from functioning properly

Fig. 2: Safety Critical Software shown as Cut-set

Interactions of safety critical computing systems: A
Safety Critical Software is a composite of basically
three areas, namely, Software Engineering, Safety
Engineering and Safety Management, their interaction
are shown in the Fig. 2.
 The diagram shown above shows cut-set among
these areas, the green colored field is the safety critical
software. These interactions are described below:

• Safety Management process area, include the

responsibilities of applying the defined safety
principles, criteria and sets safety targets to achieve
and establish safety planning to meet specified
requirements, their implementation and
assessment, while monitoring the safety incidents.
This is a continuous process throughout and is
intended to address early in the development phase.
The prime goal is to develop safety plans, monitor
safety incidents and coordinating with software
engineering and safety engineering areas for safety
critical computer systems development

• Safety Engineering process area deal with the
safety configuration management, decision
analysis, process quality assurance, safety
requirements development and management,
providing technical solutions, validation and
verification of the processes

• Software Engineering concern about software
design and development in coordination with
safety management and safety engineering, deals
with software architecture, data management and

J. Computer Sci., 8 (9): 1564-1575, 2012

1569

structures, determining the simplicity of
specifications and of verification and validation
tasks. And all those recommended by guidelines,
such as complexity avoidance, safety, modifiable
structure, traceability, predictability of
responsiveness, consistency and completeness,
verifiability and testability and many other in
accordance with software architecture analysis

• Goals common between Safety Management and
Safety Engineering, are all those parameters such
as decision analysis, safety requirements
development and management, providing technical
solution, verification

• The tasks common to Safety Engineering and
Software Engineering are configuration
management, process quality assurance, validation

• Common tasks between Software Engineering and
Safety Management are the activities of training,
project planning, monitoring and control, risk
assessment and analysis, development of risk
mitigating measures, providing alternate systems
and development of safety case

Organization and software team structure: The
Safety, Environment Management Group (EMG) exist
in any industrial organization, but are not integrated. At
the bottom line, executives develop software for
management information system. The software
development mainly considers the development of
software for processing raw data into information.
Unless integration of safety into the organization

structure, development of software for safety critical
systems, would be difficult, assurance become
questionable. The integration phase of safety group,
need to be considered foremost, in order to classify and
focus on the issues of safety with reference to
development of software for safety critical systems. The
following Fig. 3 shows independent domains of an
organization and software development organization in
V model towards development of software for an
organization. But complete information of the other is
lacking on both sides particularly for safety aspects of
software such as organization does not have complete
knowledge of software and software developing team
does not have complete knowledge of the safety and
infrastructure of the other.
 In this context and in order to bring a common of
objective and understanding of the software
requirement with safety for development of safety
critical computing system, with complete knowledge of
both sides, a group to act in between which need to
compile the requirements from both side and act in co-
ordination between them.
 Upon integration a new structure with software
and safety divisions with integration, primarily makes
the documentation of requirements from safety,
environmental, quality, software, configuration,
process feedback, after preliminary hazard analysis,
by verification and validation, with complete
knowledge for designing software development and
improvement phases.

Fig. 3: Organization and software teams in V model towards software safety

J. Computer Sci., 8 (9): 1564-1575, 2012

1570

Fig. 4: Integrated software safety life cycle

Integrating safety and software towards software
safety: The entire software development is oriented
around ISSG, which has documentation as the main
base, comprising the validated software requirements,
configuration requirements, process feedback from
software development group, safety requirements,
standards, recommendations, quality standards from the
organization. The advantage is being the availability of
the complete requirements, which helps in developing
software with safety. The software development with
safety management and safety engineering processes
functions are closely be taken into consideration.
 With the above, the completeness of requirements
criteria gets fulfilled, in the initial stage, as well helps in
improvement of the process, as shown in the Fig. 4,
from firsts trial run of the software test till retirement
and provide the executing data and results for
documentation and subsequent execution.

Generic safety life cycle processes: The generic safety
life cycle process comprise, identification, planning,
critical system identification, risks and hazards analysis
for the subject system, formulate safety requirements
pertaining to particular system or component,
identifying significant risks and hazard, assessments,
impact, evaluation, designing control procedures for
avoidance or mitigation, documentation, standards
compliance, else to review from the appropriate phase

until complied, along with periodical reviews and audits
for assessment or revision. The entire process is
diagrammatically shown in the Fig. 5.
 This generic safety life cycle deals only with the
machinery and system as a whole. But required emphasis
is not focused for the software involvement in operating
the machinery or equipment. The part of safety
instrumentation and system control depends on the
software development with safety concerns for isolation,
avoidance, reduction, use of alternate safety devices,
when abnormal functioning of such system happens, out
of the control, for safety critical computer system.
 In the generic safety life cycle, the detailed
requirements, associated risks and hazards, mitigation
measures are thoroughly documented forms a complete
understanding, guidance for effective
safetymanagement and safety engineering. The entire
process is shown in the Fig. 5.

Software development life cycle: The software
development life cycle comprises, software process
identification, planning, system analysis, feasibility,
system design, software code design and development,
code testing, verification and validation,
implementation and compliance with the requirements,
else refers to appropriate phase for review in the initial
and continuous stages and periodical reviews and audits
whenever required while looping back to any phase.

J. Computer Sci., 8 (9): 1564-1575, 2012

1571

Fig. 5: Generic safety process structure

But configuration of versions released with modified
design and development to suit to the current
requirements is missing, with respect to Commercially
off The Shelf software (COTS) unless they are notified
for revision. The generic software development life
cycle is shown in Fig. 6.
 When software is considered for safety critical
systems, the aspects of safety are untouched, or if,
limited to minimum. Detailed safety analysis of
software in a categorical phase development is
necessary, to classify functions into safety management,
safety engineering and software engineering, design
and analysis, while amplifying the various software
safety issues during the entire development.

Fig. 6: Software development process

Proposed methodological framework for modeling
software safety: A new methodology is proposed as
follows containing modular functional based design and
tasks, each consists of various sub processes as narrated
below in each task and is diagrammatically shown in
the Fig. 7:

• Software safety management
• Software safety engineering
• Software safety configuration management
• Software safety design and development
• Software safety efforts analysisSoftware safety testing
• Software safety implementation
• Software safety verification
• Software safety case design, development and

analysis

J. Computer Sci., 8 (9): 1564-1575, 2012

1572

Fig. 7: Software safety creteria, sub-creteria

Software safety management: The scope covers
planning, hardware may be analogous or digital,
software or computer operator or use of the other
involved technologies, software safety principles,
criteria and target, in overview of the entire system,
fixing the responsibilities, roles of the performing
engineering professionals, their competence, safety
activity schedules including those reviews, evaluation,
installation, maintenance and software retirement.

Software safety engineering: The purview include
hazards analysis, risk assessment, design for safety,
formulating safety requirements, can be categorized
into management principles, technical and practices, in
accordance with Software Safety Management, the
areas of scope of demonstrated safety critical system,
addressing safety issues early, visualizing the
assurance, integrating skills and techniques.

Software safety configuration management: This
phase include configuration plan, establishment and

subsequent management, recording of engineering
changes such as modification and amendments, to
provide assurance such as static and dynamic analysis
results, detailed verification and validation plans.

Software safety design and development: This phase
include those functions, such as software safety
planning comprising of scope, software safety
requirements analysis, architecture analysis, detailed
design, implementation, testing and integration.

Software safety efforts analysis: This phase consisting
of scoping the software safety effort, to determine
system risk index and inherited software risk,
determining the volume & complexity of the software
with hazardous aspects of the system and how to meet
or overcome the various levels. And tailor the effort to
meet requirements by the degree of controls,
complexity and timing criticality.

Software safety testing: The phase is intended to focus
safety testing by identifying the program weaknesses

J. Computer Sci., 8 (9): 1564-1575, 2012

1573

during abnormal or unexpected conditions that may
cause or tend to cause software failures, beyond the
boundary of operational performance limitations so that
these can be removed.

Software safety implementation: Is that, the safety
requirements that passed downstream to coding level
for effective and efficient software controls of safety
hazards to materialize or realized. The errors that are
exclusive for safety-related safety-critical parts of
software code, but other parts of software code which
comply with the safety control, need to be considered
equally. Implementation of the developed software after
incorporating safety features, unit wise segregated
safety-critical test.

Software safety verification: Software safety
verification phase should provide the correctness
arguments which demonstrate about how the
component level and system level safety requirements
are satisfied. The verification phase is applicable to
required phases to the entire development phases
wherever deemed fit. No single technique is enough for
providing complete assurance, combination of
techniques need to be applied. Moreover, manual
inspections, walk-through and audit may be carried out.

Software safety case design, development and
analysis: A software safety case to be designed and
analyzed consisting of various phases, particular to a
safety-critical system and safety-critical software. The
case is iterative until acceptance is achieved, should go
through hazards analysis, architecture and design
assurances.

Application to rail road crossing control system: A
limited Complex Rail Road Crossing Control System
(RCCS) as shown in Fig. 8, a laboratory prototype, a
Safety Critical Computer System application that
includes operations of opening and closing of the gates
to allow and prevent traffic on the road while a train
passes through the crossing. The operation of the gate is
to close before a train arrives and allow access to pass
through and resume after the departure of the train. This
basic function requires a detection of approaching train,
or manual operation of the crossing gates by a human
operator. The Fig. 8 shows laboratory prototype of Rail
Road Crossing Control System comprising of several
components described as follows. The main
components are train, railway track, sensors, gates,
controller with digital I/O card, signals and muscle wire
operated track change lever. These are briefly
demonstrated as under. The partial block diagram of
RCCS is shown in Fig. 9.

Fig. 8: Laboratory prototype of rail road crossing

control system

Fig. 9: Partial functional block diagram of RCCS

 The Locomotive runs with the electric power,
while on initial switching, the locomotive begins to
move along the track or rail when the metallic
wheels of the train or locomotive receive power. The
train stops at the same position if the power supply to
the rails or track is switched off. When the train
approaches the gate crossing zone, the object train is
identified or sensed by the sensor installed near the
gate crossing area. The captured information by the
sensor will be sent to the controller equipment.
Similarly, the captured information after the
departure of the train or locomotive after completely
passing through another sensor installed on the other
side of the gate.
 The Sensors are used to identify and detect the
location of the locomotive on the rails or track. Total of
nine numbers of sensors are deployed in this. Two pairs
of sensors are located on either side of the crossing gate,
a set of three sensors are positioned (track changing
purpose) at the division of track or rail one before and the
other two on each track after split. Lastly another pair of
sensors are commissioned with reference to the platform

J. Computer Sci., 8 (9): 1564-1575, 2012

1574

to identify the position, the starting point of the train
movement. The captured information from each will be
transmitted to the controller.
 The Controller synchronizes the train activities
with the gate. When the controller receives the signal
from the sensor 1, controller issues command to close the
gates. And open gates command is issued when the
message from sensor 2 is received. An IBM compatible
PC is used as controller for RCCS. The software that
controls the overall operations of the system is stored in
the memory of the controller PC. A user interface is
provided to operate the selections of the controller PC. A
48-line I/O (DIO) add-on card is plugged into an
available slot in the controller PC for monitoring and
controlling the sensors and gate actuators. The DIO card
receives the signals from all the nine sensors, the eight
output signals sent from the DIO card control the power
supply to the train track, power supply to the two gate
assemblies, power supply to the muscle wired mechanism
to change the track lever and the four signal lights.
 The Gates RCCS has two sets of gates on either
side of the track layout. The gate receives signal from
the controller component. When a close signal is
received from the controller the gate is closed and when
an open signal is received, the gate will be opened. The
open and close operations of the gate are carried out
with muscle wired mechanism. Muscle wire is nickel
titanium alloy which contract and expand according to
current flow which achieves motor less motion for gate
movement and track change.
 The Signals for both rail and road are provided to
indicate the train operators about the clearance of the
track whether occupied or not, or any pre-cautionary
measures need to be taken while using the track, such
that to maintain reduced speed. RCCS contains three
signals, erected beside the track. One is at the platform
to indicate halt at the platform, the other two signals
placed just before the convergence of inner and outer
track which lead to platform. A signal head contains
signal faces that include standard color indicators to
stop, proceed with caution or proceed.

RESULTS AND DISCUSSION

Normal operations of RCCS: A primary check is
being done by the controller when the system is
switched on, for finding out any functional
abnormalities for all systems and sub-systems involved,
if not, proceed to execute the software defined for
normal operations, continues to executes, with the
timing schedules, else, alternative procedures are
activated for any abnormal situation arises out of
control due to situations beyond control like lightning,

storm, signal lights begin to blink red light indicating
failure, with implied suggestion to take necessary
precautions. All of the points discussed above are
thoroughly followed to implement, by collecting
information from all concerned.

CONCLUSION

 This study discussed about the various phases
during the development of software for safety critical
systems. Two safety process areas namely, safety
management and safety engineering are applied for the
development of safety critical system, Rail Road
Crossing Control System (RCCS). All phases are
discussed in detail, for forming the basis of software
safety through and safety case development was
suggested. This proposed method of integrating safety
management, safety engineering and software
engineering, their interactions among were discussed
and is applied to laboratory prototype of four road
junction traffic control system, as that includes safety
critical operations and observed meaningful, improved
results and found safer. Further work is in progress to
apply this integrated approach to software based safety
critical systems in other areas of industrial applications
like power generating stations. This can be further
extended to address the issues in the developmental
costs and time in implementation for software safety.
Rigorous work is needed to meet the complete set of
software safety requirements leading to the
standardization of the framework.

REFERENCES

Alberico, D., J. Bozarth and M. Brown, December

1999. JSSC Software system safety handbook: A
technical and managerial team approach.

Bofinger, M., N. Robinson and P. Lindsay, 2002.
Experience with extending CMMISM for safety
related applications. University of Queensland,
Australia.

Dunn, W.R., 2003. Designing safety-critical computer
systems. IEEE Comput. Soc., 36: 40-46. DOI:
10.1109/MC.2003.1244533

Herman, D.S., 2000. Software Safety and Reliability:
Techniques, Approaches and Standards of Key
Industrial Sectors. Wiley-IEEE Computer Society
Press, ISBN-10: 978-0-7695-0299-1, pp: 520.

Knight, J.C., 2002. Safety Critical Systems: Challenges
and directions. Proceedings of the 24th
International Conference on Software Engineering
(ICSE), May 25-25, IEEE Xplore Press,
Orlando, FL, USA, pp: 547-550.

J. Computer Sci., 8 (9): 1564-1575, 2012

1575

Leveson, N.G. and C.S. Turner, 1993. An investigation
of the Therac-25 accidents. IEEE Comput., 26: 18-
41. DOI: 10.1109/MC.1993.274940

Lutz, R.R., 2000. Software Engineering for Safety: A
roadmap. Proceedings of the Conference on The
Future of Software Engineering, Jun. 04-11,
Limerick, Ireland, pp: 213-226. DOI:
10.1145/336512.336556

Medikonda, B.S. and S.R. Panchumarthy, 2009. A
framework for software safety in safety-critical
systems. 34: 1-9. ACM SIGSOFT Software Eng.
Notes, DOI: 10.1145/1507195.1507207

MISTD-882C, 1984. System Safety Program
Requirements.Department of Defense.

NASASTD-8719.13, 2004. NASA software safety
guidebook: NASA technical standard. Department
of Defense.

RTCA, 1992. Software considerations in airborne
systems and equipment certification. ARINC,
Annapolis, Maryland.

+SAFE, V1.2, 2007. A safety extension to CMMI-
DEV, V1.2. Defence materiel Organisation,
Australian. Department of Defence.

Schmid, D.C., 2002. Middleware for real-time and
embedded systems. Comm. ACM-Adaptive
Middleware, 45: 43-48. DOI:
10.1145/508448.508472

