
Journal of Computer Science 8 (8): 1205-1211, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Luciane Telinski Wiedermann Agner, Graduate School of Electrical Engineering and Computer Science,
 Federal University of Technology Parana (UTFPR), Av. 7 de Setembro, 3165, 80.230-901, Curitiba,

Paraná, Brazil Tel: + 55 41 3310 4759
1205

Model Refinement in the Model Driven Architecture Context

1,2Luciane Telinski Wiedermann Agner,

1,2Inali Wisniewski Soares, 1Paulo Cezar Stadzisz and 1Jean Marcelo Simao
1Graduate School of Electrical Engineering and Computer Science,

Federal University of Technology Parana (UTFPR),
Av. 7 de Setembro, 3165, 80.230-901, Curitiba, Parana, Brazil

2Department of Computer Science,
Faculty of Computer Science, Mid-West State University (UNICENTRO),

Rua Padre Salvador, 875, 85.015-430, Guarapuava, Parana, Brazil

Abstract: Problem statement: Model Driven Architecture (MDA) is a software development
approach based on the design and the transformation of models. In MDA, models are systematically
translated to other models and to a source code. Model transformation plays a key role in MDA.
Several model transformation languages have been launched lately, aiming to facilitate the
translation of input models to output models. The employment of such languages in practical
contexts has succeed, although quite often those languages cannot be directly applied to a particular
type of model transformation, called refinement. Approach: This study provides a general overview
on model refinement and investigates two approaches for model refinement based on Atlas
Transformation Language (ATL) referred to as: Refining mode and module superimposition. ATL is
a widely adopted language for solving model transformation problems in the MDA approach.
Results: This study presents the comparative results obtained from the analysis of the Refining
Mode and the Module Superimposition approaches, emphasizing their application benefits.
Conclusion: The increasing use of MDA for the design of software systems empowered researches
on how developers may benefit from approaches that perform model refinement. The main
advantages achieved with the use of the Module Superimposition technique are maintainability and
reusability improvement, obtained through module composition and rule superimposition. In its turn,
the Refining Mode stands out for its ease of use.

Key words: Model transformation, model refinement, refining mode, module superimposition

INTRODUCTION

 Model Driven Architecture (MDA) promotes the
use of models as the main artifacts through all software
development stages: System specification, project,
implementation and tests (Touzi et al., 2009). MDA
proposal consists in reducing the semantic distance
between the business domain and the implementation
platform domain. In order to achieve that, high-level
abstraction models focus on protecting software system
developers from the complexity of platforms.
 In the MDA approach a model is used for
generating another model and those models may be
either in the same or in different abstraction levels.
More abstract models are more distant from the

particularities of a software platform, while less abstract
models are closer to such specifications. In addition,
implementations can fully or partially derive from their
models through the application of model
transformations (Singh and Sood, 2009). According to
the MDA approach, software design comprises the
following stages (Touzi et al., 2009):

• Specification of a PIM - Platform Independent Model
• Specification of a PM-Platform Model
• Selection of a specific platform for the system
• Transformation of a PIM into a PSM - Platform

Specific Model, based on a PM
• Transformation of the PSM into a software system

code

J. Computer Sci., 8 (8): 1205-1211, 2012

1206

 Platform-independent models represent the system
functionalities and are developed with the aid of a
modeling language, such as Unified Modeling
Language (UML). UML is a general purpose modeling
language applicable across different domains.
Currently, UML is the standard modeling language for
software design and, therefore, plays a key role in
MDA. A platform can be defined as a set of hardware
or software mechanisms that enable the execution of
software applications. In its turn, a platform model
provides a set of technical concepts that represent
components and services of a concrete platform (Dube
and Dixit, 2012).
 The notion of transformation is an essential issue in
the MDA approach. The model transformation scenario
are presented in (Dube and Dixit, 2012).
Transformation between models can be defined as the
translation of a model from a higher abstraction level to
a lower abstraction level, based on a set of clearly
defined rules (Singh and Sood, 2009). The PIM is
transformed into a PSM by means of a model
transformation, being the PSM the combination
between PIM and the details of a specific
implementation platform, by means of the Platform
Model (PM).
 This study focuses on transformations of PIM
models into PSM models (PIM-into-PSM). Within the
scope of this study, transformation is a refinement of
models that incorporates details of a specific platform
to the source model (PIM), being both PIM and PSM
models based on the UML metamodel. In a model
refinement most elements from the source model (PIM)
are copied to the target model (PSM), while other
elements must be changed in order to incorporate
platform-specific aspects. According to Briand et al.
(2009) “model-driven development practices rely on the
stepwise refinement of analysis models into
increasingly detailed design models, all the way down
to implementation”.
 Under this perspective, several languages were
proposed so as to define and execute model-to-model
(M2M) transformations. One of the most prominent
among these languages is called Atlas Transformation
Language (ATL) (Tolosa et al., 2011). ATL is widely
recognized as a solution for the development of model
transformations (Troya and Vallecillo, 2011). Two
techniques used for model refinement in ATL are
explored in this study: Refining Mode and Module
Superimposition. Execution modes, structure,
benefits and technical limitations are thus described.

MATERIALS AND METHODS

Atlas Transformation Language (ATL): ATL is a
model transformation language based on rules

established by the Institut National de Recherche en
Informatique et en Automatique (INRIA) in response to
a request from the Object Management Group (OMG)
to propose a model transformation language that is
compatible with the QVT standard
(Queries/Views/Transformations) (Amstel et al., 2011).
 In the ATL context, the definition of models is
performed according to their metamodels, as presented
in Fig. 1. In this way, transformation rules clearly point
towards how the source metamodel concepts are
mapped in the target metamodel concepts. A
transformation from a source Model (Ma) into a target
Model (Mb) is therefore conducted by a transformation
definition (mma2mmb.atl), based on ATL constructs. In
its turn, the transformation definition is also a model
(Jouault et al., 2008). Then, the source and target
models and the transformation definition must conform
to their metamodels (MMa, MMb and ATL,
respectively). In addition, the metamodels must
conform to a meta-metamodel, in this case the Meta
Object Facility (MOF) (Dube and Dixit, 2012).
 ATL is a hybrid, deeply expressive language that
makes use of declarative and imperative constructs.
Declarative constructs are clear and accurate, thus more
often used for writing transformations. Such constructs
allow expressing associations between the source model
elements and the target model elements by means of an
arrangement of rules. Additionally, imperative
constructs enable the simplified specification of
complex problems (Tolosa et al., 2011).
 An ATL transformation is designed according to
the following elements: header, import, helpers and
transformation rules (Jouault et al., 2008). Helpers and
rules are constructs used for specifying the
transformation functionalities. The term “execution
mode” refers to the act of transforming models. There
are two execution modes for ATL modules: normal
(default) mode and refining mode.
 The header section (mandatory) defines the
transformation module name and specifies the source
and target models. In their turn, such models must be
associated with their respective metamodels. Figure 2
brings an example of a transformation module header
named PIM2PSM.atl. Such header makes use of the
standard execution mode, set through the keyword
“from” and defines the PIM as source model (IN). The
output model, named OUT, refers to the PSM and is
created as a result of the transformation. Both models
conform to the UML2 metamodel.
 The import section consists of ATL libraries
containing a set of general purpose functions, like for
example string manipulation functions. An ATL helper
is a query based on the Object Constraint Language
(OCL), a language used for describing expressions in
UML models OMG, 2010.

J. Computer Sci., 8 (8): 1205-1211, 2012

1207

Fig. 1: ATL model transformation standard (Jouault and Kurtev, 2006)

Fig. 2: Configuration header

Fig. 3: Refining Mode: Configuration header

 Transformation rules are distinguished between
matched rules and called rules. Matched rules comply
with the declarative approach and are automatically
executed. A matched rule specifies a mapping between
a set of elements from the source model and a set of
elements from the target model. Thus, matched rules
are used to implicitly match source elements and
produce target elements. As opposed to matched rules,
a called rule may take parameters and has to be invoked
from an ATL imperative block in order to be executed.
Thus, called rules comply with the imperative approach
and must be explicitly invoked by another rule.
 Also, there is a specific type of matched rule,
namely lazy rule that does not automatically trigger.
Therefore, a lazy rule is triggered by other rules (Troya
and Vallecillo, 2011). The difference between lazy and
called rules is that called rules have a parameter

specification, whereas lazy rules have a matching
specification, like matched rules.
 ATL is part of the Eclipse Modeling Framework
(EMF), a modeling framework for the design of tools
based on structured data models (Amstel et al., 2011).
In addition, ATL accepts several models as input in the
transformation process. ATL transformations are one-
way and access the source and target models in the
read-only and write-only modes, respectively.

Model refinement: This study comprises a PIM-into-
PSM model transformation and refers to an endogenous
refinement of models based on the UML metamodel. In
a model refinement most elements from the source
model (PIM) are copied to the target model (PSM),
while other elements must be changed in order to
incorporate platform-specific aspects. A refinement is a
transformation that adds details pertaining to a
particular target platform to an existing model (Baudry
et al., 2010) Performing refinements means
transforming an abstract model into a detailed design
model, i.e., a top-down evolution.
 According to the reference metamodel used to
express source and target models, transformations are
classified as endogenous or exogenous. In endogenous
transformations both source and target models conform
to the same metamodel, whereas exogenous

J. Computer Sci., 8 (8): 1205-1211, 2012

1208

transformations occur between models expressed by
different metamodels (Sun et al., 2009). Because the
source (PIM) and the target (PSM) models conform to
the same metamodel, the PIM-into-PSM transformation
is endogenous.
 In ATL it is possible to perform a model refinement
by making use of the following approaches: Refining
Mode and the composition technique named Module
Superimposition. These techniques are detailed next.

Refining mode: The Refining Mode is an explicit
support for performing ATL refinements in execution
mode (Troya and Vallecillo, 2011). ATL has two
execution modes, the default execution mode and the
refining mode. The Refining Mode is set by adding the
keyword “refining” to the transformation module
header. Besides, it can be employed only in endogenous
transformations, i.e., when both source and target
models share the same metamodel. In this manner,
elements of the target model are generated by the
transformation regarding the type of the elements
existing in the source model. All properties of the new
elements are, then, started up with the same values
defined in the corresponding properties of the source
elements. Figure 3 presents the header of a refinement
transformation that makes use of the UML2 metamodel
as reference for defining the source and target models.
To do so, the keyword “refining” must replace the
keyword “from” in the transformation header.

 The ATL2010 compiler is responsible for
implementing the in-place strategy, that is, changes are
performed directly in the source model without copying
the elements. In so doing, the transformation rules need
to specify only the changes to be performed in order to
generate the new model, whereas all the other elements
remain unchanged. Figure 4 illustrates a Refining Mode
transformation that produces a model Ma’ from a model
Ma based on the in-place strategy. In addition, this
version of the ATL compiler supports the deletion of
elements, therefore enhancing previous versions
(ATL2006 and ATL2004).

Module superimposition: Module Superimposition is
an internal composition technique in which a
transformation module is superimposed by another
transformation module (Wagelaar et al., 2010). In this
way, multiple transformation definitions are combined
in a single definition. Consequently, definitions must
necessarily use the same model transformation
language, e.g., ATL.
 The module superimposition technique allows a
transformation module to replace certain rules of the
superimposed transformation module. The original rule
is thus replaced by a new rule with the same name and
within the same context. That is to say, the Module
Superimposition technique enables the division of the
transformation into modules, therefore improving
reusability and maintainability of the model
transformations.

Fig. 4: Refining Mode-in-place strategy

J. Computer Sci., 8 (8): 1205-1211, 2012

1209

Fig. 5: Module superimposition technique

 The UML2Copy.atl module proposed by Wagelaar
et al. (2010) copies a UML model based on the UML
metamodel. Thus, the superimposition technique can
make use of this module to solve problems regarding
model refinement in the MDA context. In this case,
transformation rules of the UML2Copy.atl module are
either reused in their original form or, if needed,
replaced by homonymous rules defined in the refining
specific module. The UML2Copy.atl module consists
of approximately 200 rules, including a transformation
rule for each metaclass of the UML metamodel.
 Figure 5 illustrates a model refinement that makes
use of the Module Superimposition technique based on
the UML2Copy.atl module. PIM and PSM models stem
from the same metamodel, in this case the UML
metamodel. The UML2Copy.atl module contains the
copying rules of the PIM elements to the PSM. In its
turn, module PIM2PSM; the PIM2PSM.atl module
contains the refining specific rules that alter the source
model (PIM) based on the details of the adopted
Platform Model (PM). The transformation modules
must comply with the transformation metamodel, being
the latter the definition of a Domain-Specific Language
(DSL), i.e., the ATL.

RESULTS

 This study proposes a comparative analysis
between the refinement approaches presented, i.e.,
Refining Mode and Module Superimposition using the
UML2Copy.atl module. Such analysis assessed the
approaches with regard to the following features:

• In-place execution support: Changes are performed
directly in the source model without copying the
elements to another model

• Apply profiles: Apply the profiles associated with
the source model in the target model

• Apply stereotypes: Apply the stereotypes of the
source model elements to target model elements.

• Better execution time: Better performance in the
transformation execution

• Smaller transformation modules: Number of code
lines needed to perform the transformation

• Action blocks support: Support for using
imperative code statements so as to set the features
of the generated target model element

• Lazy rules support: Support for lazy rules, rules
invoked by another rules

• Called rules support: Support for using called rules.
• Complexity: Lower complexity in development

and configuration of model transformation
• Iterative target patterns: Makes it possible to

generate a set of target model elements conforming
to a same type

 Table 1 illustrates the support provided by the
approaches assessed in comparison to the features
analyzed. Refining Mode copies the profiles applied to
the source model, as well as the stereotypes applied to
the source model elements. On the other hand, in the
Superimposition technique the UML2Copy.atl module
does not define rules concerning profiles and
stereotypes. Such rules must be defined, if needed, thus
increasing the complexity of the transformation
development process.

J. Computer Sci., 8 (8): 1205-1211, 2012

1210

Table 1: Support provided by the ATL refinement approaches
ATL refinement approaches/ Refining Module
Features/Support Mode` Superimp.

In-place execution √
Apply profiles √
Apply stereotypes √
Better execution time √
Smaller modules √
Action blocks support √
Lazy rules support √
Called rules support √
Complexity √
Iterative output patterns √

 As depicted by Tisi et al. (2011), the transformation
execution time is shorter in the Refining Mode in
comparison to the Module Superimposition technique. The
Refining Mode presented a better performance, once it
does not require copying model elements of the source
model unchanged part. It is important to point out that
transformation time is a relevant aspect to enable an
eligible performance of Computer-Aided Software
Engineering (CASE) tools, for example. Also, the
Refining Mode allows shorter transformation rules, since
the copy of unchanged properties and references is not
necessary (Tisi et al., 2011).
 Some advanced features available in the ATL
standard mode are not supported by the Refining Mode,
for instance: lazy rules, called rules, iterative output
patterns and action blocks (Eclipse, 2012). An action
block is a sequence of imperative statements that can be
used in both matched and called rules. Imperative
statements in ATL are the usual constructs for
attributing assignments and control flow: conditions
and loops. In the development of more complex
transformations those advanced features play a key role
and the lack of them often hinders the development of
such transformations.
 Besides the advantages regarding better performance
and shorter code size, programming refinement
transformations in the Refining Mode is simpler and
easier, once it dispenses with both the expertise in the
UML2Copy.atl module and the advanced configuration of
the module superimposition. On the contrary, the Refining
Mode has limitations that often hamper the development
of more complex transformations, e.g., transformations
that define imperative constructs. On the other hand,
Module Superimposition can deal with nonstandard
situations, such as defining imperative statements
(Wagelaar et al., 2010).

DISCUSSION

 The results obtained demonstrated that the
Refining Mode is simpler to use and had a better

performance when compared to the Module
Superimposition technique. Refining Mode does not
support advanced features needed for the design of
more complex transformations, e.g., the ones involving
lazy and called rules.
 The employment of the Module Superimposition
technique for UML-based refinements requires the use
of the UML2Copy.atl module. That is to say, it is
necessary that the developer masters the rules defined
in this module so as to superimpose these rules
according to the specific transformation requirements.
Another aspect taken into account was that the stereotypes
annotated in the PIM elements were not copied to the
PSM, once the UML2Copy.atl module does not define any
rule for copying the profile application and the stereotypes
existing in the source model.
 As acknowledged by the authors, the techniques
presented in this study are the most spread and adopted
for ATL model refinement. Other researches explore
the model refining implementation in other model
transformation languages (Kapova and Goldschmidt,
2009; Guerra et al., 2011). Those researches are not
oriented to the ATL language, nevertheless. Tisi et al.
(2011) dealt with model refinement by using rule-based
languages, such as ATL. However, this study assessed
the Refining Mode and Module Superimposition
approaches only with regard to the following aspects:
Execution performance and code final size. Therefore,
this research did not depict all criteria hereby assessed.

CONCLUSION

 The aim of the study was to evaluate the existing
techniques used in ATL model refinement. The main
advantages pointed out by the Refining Mode are: Use
straightforwardness and execution quickness. On the
other hand, this technique has severe restrictions, such
as: incompatibility with action blocks and lazy rules.
These restrictions hamper and quite often hinder the
development of more complex model transformations.
 Composition techniques are considerably new in
the domain of model transformation languages. This
study assessed the composition technique named
Module Superimposition using UML2Copy.atl. The
main advantages obtained with the use of this technique
are: maintainability and usability improvement,
obtained through module composition and rule
superimposition in the same context. Further, this
technique proved to be more flexible and efficient, once
it got rid of the limitations present in the Refining
Mode. However, it is worth pointing out that the
Module Superimposition technique requires the
developer’s mastery with regard to the configuration of
ATL composition techniques and to the UML2Copy.atl

J. Computer Sci., 8 (8): 1205-1211, 2012

1211

module. In addition, the UML2Copy.atl module neither
defines the rules for copying a profile application to a
model, nor specifies the rules that apply the stereotypes
existing in the source model to the target model.
 Therefore, the choice between one of the
techniques presented must be pondered as the case may
be, relying on the features and transformation requisites
intended to be developed.

REFERENCES

Amstel, M.V., S. Bosems, I. Kurtev and L.F. Pires,

2011. Performance in model transformations:
Experiments with ATL and QVT. Theory Pract.
Model Transform., 6707: 198-212. DOI:
10.1007/978-3-642-21732-6_14

Baudry, B., S. Ghosh, F. Fleurey, R. France and Y.L.
Traon et al., 2010. Barriers to systematic model
transformation testing. Mag. Commun. ACM, 53:
139-143. DOI: 10.1145/1743546.1743583

Briand, L.C., Y. Labiche and T. Yue, 2009. Automated
traceability analysis for UML model refinements.
Inform. Software Technol., 51: 512-527. DOI:
10.1016/j.infsof.2008.06.002

Dube, M.R. and S.K. Dixit, 2012. Modeling theories
and model transformation scenario for complex
system development. Int. J. Comput. Appli., 38:
11-18.

Eclipse, 2012. ATL/User Guide-The ATL Language.
The Eclipse Foundation.

Guerra, E., J.D. Lara, D.S. Kolovos, R.F. Paige and
O.M.D. Santos, 2011. Engineering model
transformations with transML. Software Syst.
Model. DOI: 10.1007/s10270-011-0211-2

Jouault, F. and I. Kurtev, 2006. Transforming models
with ATL. Satellite Events MoDELS 2005 Conf.,
3844: 128-138. DOI: 10.1007/11663430_14

Jouault, F., F. Allilaire, J. Bezivin and I. Kurtev, 2008.
ATL: A model transformation tool. Sci. Comput.
Programm., 72: 31-39. DOI:
10.1016/j.scico.2007.08.002

Kapova, L. and T. Goldschmidt, 2009. Automated
feature model-based generation of refinement
transformations. Proceedings of the 35th
Euromicro Conference on Software Engineering
and Advanced Applications, Aug. 27-29, IEEE
Xplore Press, Patras, pp: 141-148. DOI:
10.1109/SEAA.2009.67

Singh, Y. and M. Sood, 2009. Model driven
architecture: A perspective. Proceedings of the
IEEE International Advance Computing
Conference, Mar. 6-7, IEEE Xplore Press, Patiala,
pp: 1644-1652. DOI:
10.1109/IADCC.2009.4809264

Sun, Y., J. White and J. Gray, 2009. Model
transformation by demonstration. Model Driven
Eng. Languages Syst., 5795: 712-726. DOI:
10.1007/978-3-642-04425-0_58

Tisi, M., S. Martinez, F. Jouault and J. Cabot, 2011.
Refining models with rule-based model
transformations. Institut National De Recherche En
Informatique Et En Automatique.

Tolosa, J.B., O. Sanjuan-Martinez, V. Garcia-Diaz,
B.C.P. G-Bustelo and J.M.C. Lovelle, 2011.
Towards the systematic measurement of ATL
transformation models. Software: Pract. Exp., 41:
789-815. DOI: 10.1002/spe.1033

Touzi, J., F. Benaben, H. Pingaud and J.P. Lorre, 2009.
A model-driven approach for collaborative service-
oriented architecture design. Int. J. Produ. Econ.,
121: 5-20. DOI: 10.1016/j.ijpe.2008.09.019

Troya, J. and A. Vallecillo, 2011. A rewriting logic
semantics for ATL. J. Object Technol., 10: 1-29.
DOI: 10.5381/jot.2011.10.1.a5

Wagelaar, D., R.V.D. Straeten and D. Deridder, 2010.
Module superimposition: A composition technique
for rule-based model transformation languages.
Software Syst. Model., 9: 285-309. DOI:
10.1007/s10270-009-0134-3

