
Journal of Computer Science 7 (6): 884-891, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Sudhakar Gummadi, Department of Computer Science and Engineering,
 Arulmigu Kalasalingam College of Engineering, Anand Nagar, Krishnankoil 626126,
 Virudhunagar District, Tamil Nadu, India Tel: +91-4563-289129/+91-9842115148
 Fax: +91-4563-289322

884

Dynamic Allocation of CPUs in Multicore Processor for Performance

Improvement in Network Security Applications

Sudhakar Gummadi and Radhakrishnan Shanmugasundaram
Department of Computer Science and Engineering,

Arulmigu Kalasalingam College of Engineering,
Anand Nagar, Krishnankoil-626190,

Tamil Nadu, India

Abstract: Problem statement: Multicore and multithreaded CPUs have become the new approach for
increase in the performance of the processor based systems. Numerous applications benefit from use
of multiple cores. Increasing performance of the system by increasing the number of CPUs of the
multicore processor for a given application warrants detailed experimentation. In this study, the
results of the experimentation done by dynamic allocation/deallocation of the CPU based on the
workload conditions for the packet processing for security application are analyzed and presented.
Approach: This evaluation was conducted on SunfireT1000 server having Sun UltraSPARC T1
multicore processor. OpenMP tasking feature is used for scheduling the logical CPUs for the
parallelized application. Dynamic allocation of a CPU to a process is done depending on the workload
characterization. Results: Execution time for packet processing was analyzed to arrive at an effective
dynamic allocation methodology that is dependant on the hardware and the workload.
Conclusion/Recommendations: Based on the analysis, the methodology and the allocation of the
number of CPUs for the parallelized application are suggested.

Keywords: Logical CPUs, OpenMP, packet processing, performance analysis, dynamic allocation,

parallelized application, parallel programming

INTRODUCTION

 With the rapid development of chip
multiprocessing techniques, multicore architecture has
become more and more widely used in intensive
computing applications as well as in computer
networking systems. The amount of improvement in
performance by the use of a multicore processor is
dependent on the software algorithms and their
implementation. The possible gains are limited by the
part of the software that can be parallelized to run on
the multiple cores simultaneously; as proposed by
Amdahl’s law. Scheduling of parallel activities on the
multicore processor is very vital to improve the
performance of the system. The underlying hardware of
the multicore processor has to be effectively used to
obtain the optimum performance of the system.
 Multithreaded processor supports concurrent thread
execution at the more fine-grained instruction level,
aiming at better utilizing the resources of processor by
issuing instructions from multiple threads. Multicore

processors achieve thread concurrency at a higher level,
focusing less on utilization per core and aiming at
scalability via replicating cores (Sodan et al., 2010). A
multicore processor (or Chip-level Multiprocessor,
CMP) combines two or more independent cores into a
single package of an Integrated Circuit (IC). A
multicore processor implements multiprocessing in a
single physical package (Lee and Shakaff, 2008).
 The per chip core counts are increasing
significantly. For example, Oracle’s SPARC T3
processor features up to 16 cores and 128 threads on a
single chip with integrated logic for 1GbE networking
and cryptographic coprocessor engines
(http://www.oracle.com/us/products/servers-
storage/servers/sparc-enterprise/t-series/sparc-t3-chip-
ds-173097.pdf). Octeon® II CN6880 of Cavium
Networks is a 32 core processor with over 85 application
acceleration engines that provides high-performance, high
throughput solution for intelligent networking applications
(http://www.caviumnetworks.com/OCTEON_MIPS64.
html). Programming of the multithreaded multicore

J. Computer Sci., 7 (6): 884-891, 2011

885

processor needs a thorough understanding of the
hardware and the effective use of the Application
Program Interface (API) for parallel programming. The
task partitioning in multicore processors is done based
on the application requirement and the time taken for
execution of these tasks. OpenMP API is one of the
parallel programming models used to exploit the
available parallelism of multicore processors.
 In a multicore environment, CPUs or a set of CPUs
can be assigned to a particular process. Dynamic
assignment of the CPU to the process based on the
workload characteristics improves the overall
performance of the system. Proper performance
indicators need to be used for simulation, testing and
realization of multicore implementations.
Parallelization of a network security application is
considered for generating the load and analyzing the
performance of the system.

Multithreaded multicore processor architecture:
The UltraSPARC T1 is a chip multicores/multi-threads
processor that contains 8 cores and each of the SPARC
cores has 4 hardware threads. A single pipeline
processes instructions from four threads and completes
one instruction in each cycle. All together, the chip
handles 32 hardware threads and is addressed as 32 logical
CPUs (Sun Microsystems, 2006; Leon et al., 2006).
 Each SPARC core has a 16 KB, 4-way associative,
32B line size of Level 1 instruction cache (I Cache), 8
KB, 4-way associative, 16B line size of Data Cache (D
Cache), 64-entry fully associative instruction TLB
(Translation Lookaside Buffer) and 64-entry fully
associative data TLB that are shared by the four
hardware threads. The eight SPARC cores are
connected through a crossbar to an on-chip unified 3
MB, 4-way associative L2 cache (64B lines). The L2
cache connects to 4 on-chip DRAM controllers,
which directly interface to DRAM interface.

Fig. 1: Simplified block diagram of multicore

processor with external shared memory

Figure 1 shows a simplified block diagram of the
multicore processor wherein each core has separate L1
instruction cache and L1 data cache. All the cores share
the common L2 cache with external shared memory.
 Each hardware thread of UltraSPARC T1processor
has a unique set of resources in support of its execution.
The per-thread resources include registers, a portion of
I-fetch datapath, store buffer and miss buffer. Multiple
threads within the same SPARC core share a set of
common resources in support of their execution. The
shared resources include the pipeline registers and data-
path, caches, Translation Lookaside Buffers (TLB) and
execution unit of the SPARC core pipeline.
 Thread switching takes place during every SPARC
core clock cycle. At the time of a thread selection, the
priority is given to the least recently executed yet
available thread. Load instructions will be speculated as
cache hits and the thread executing a load instruction
will be deemed as available and allowed to be
switched-in with a low priority. Because of shared
structures like caches, the performance of a thread is
also affected by other threads running on the same core.
 UltraSPARC T1 processor has one Modular
Arithmetic Unit (MAU) per core that supports modular
multiplication and exponentiation. The hardware thread
that initiated the MAU stalls for the duration of the
operation, but the other three threads on the core can
progress normally. The eight MAUs (one per core)
result in very high throughput on UltraSPARC T1
processor-based systems for encryption operations.

OpenMP: The OpenMP™ Application Program
Interface is a portable, parallel programming model for
shared memory multithreaded architectures (Sun
Microsystems, 2009; Chapman et al., 2009). OpenMP
specification version 3.0 introduces a new feature called
tasking. By using the tasking feature, applications can
be parallelized where units of work are generated
dynamically, as recursive structures or while loops. The
task directive defines the code associated with the task
and its data environment. The task construct can be
placed anywhere in the program and whenever a thread
encounters a task construct, a new task is generated.
 When a thread encounters a task construct, it may
choose to execute the task immediately or defer its
execution until a later time. If task execution is
deferred, then the task is placed in a conceptual pool of
tasks that is associated with the current parallel region.
The threads in the current team will take tasks out of
the pool and execute them until the pool is empty.
 Ayguade et al. (2009) have evaluated the
performance of the runtime prototype with several
applications using OpenMP tasking feature and have
measured the performance in terms of the speedup for
different number of CPUs and have proved that

J. Computer Sci., 7 (6): 884-891, 2011

886

OpenMP task implementation can achieve very
promising speedups when compared to other
established models like OpenMP nested, task queues
and CLIK.

Packet processing and parallelization: Packet
processing functions have to be done in real time. If
packet processing times exceed inter-arrival times,
system instability will result (e.g., due to input buffer
overflows). Consequently, packet processing must
process packets at network line rates. When packet
processing function is implemented in multicore
processor based system, the packet processing rate is
dependant on the number of threads and cores used for
processing and the effective utilization of the hardware
resources by the application programs. Packet
processing workload is characterized by a large number
of simple tasks and massive amounts of input/output
operations. Typical applications include forwarding of
packets, packet classification, packet scheduling, packet
statistics and monitoring and security application
(Weng and Wolf, 2009). Though none of this
processing is particularly complex, the Gigabit data
rates that need to be supported by network systems
generate significant performance demands. The overall
packet processing tasks are split into three different
tasks, namely, receiving, processing and transmitting.
Time critical functions take place in the processing task
and the nature and extent of parallelism for the
processing task and the processor architecture
determines the system performance (Ettikan and
Abdullah, 2003).
 The necessary performance of network system is
achieved through exploiting the inherent parallelism in
network processing. Packets that belong to different
network connections can be processed independently as
a TCP/IP network makes no guarantees on packet
order. Packets belonging to the same connection usually
should be processed in-order for performance reasons,
but this is not mandatory. As a result, almost arbitrary
levels of parallelism can be achieved by replicating
packet processing functionality on multiple cores and
handling packets in parallel. Limits on this parallelism
are imposed by the number of hardware threads and the
number of cores on a single chip.
 The processing demands on the packet processing
system are affected by two factors: first, by
computational characteristics of all tasks in the system;
and second, by network traffic that exercises the
processing system. In order to derive an optimal
allocation of tasks to processing resources at runtime,
both factors need to be quantified and considered in the
mapping process (Wu and Wolf, 2008a).
 Weng and Wolf (2009) presented the analytic
performance model that could be applied for

understanding tradeoffs in the Network Processor
design space to determine suitable network processor
topologies and multithreading configurations.
 Wu and Wolf (2008b) have proposed the task
duplication process depending on the number of tasks
in the workload and the number of available processing
resources. Each task is mapped to the packet processing
resource based on the task locality and interconnect
usage.
 Lee (2010) used a simulator and showed the
performance gains of a scientific algorithm that was
designed to take the benefits of multithreaded multicore
architecture for real scientific application problems.
 In this study, we present the performance analysis
of packet processing by dynamically assigning the
CPUs of Sun Microsystems UltraSPARC T1 processor.
OpenMP tasking feature is used for parallelizing the
code for execution on the hardware threads referred as
CPUs. We also propose a dynamic CPU allocation
model for improving the execution time for the
parallelized process.

MATERIALS AND METHODS

 The performance evaluation was done on SunFire
T1000 server having Sun Microsystems UltraSPARC
T1 processor. Sun Studio12 Update 1 Integrated
Development Environment (IDE) on Solaris 10
Operating System was used to develop the programs in C
language and to test the programs. OpenMP tasking
feature was used for implementing parallelism within the
process. Libpcap Application Program Interface (API)
was used for reading the packets from the physical
interface or writing the packets to the physical interface.
Furthermore, POSIX.1b Realtime Extension Library
was used for message passing, process scheduling and
timer options. System V message queues were used for
queuing the packets between various stages. Encryption
of payload was done using PKCS#11 Cryptographic
Framework Library.
 Fluke Networks OptiView Series III Integrated
Network Analyzer was used as an external traffic
generator for generating the packets of required size
and at the required rate. We captured the packets from
one physical interface, performed the encryption of the
payload and transmitted the packets using another
physical interface. Figure 2 shows the conceptual
diagram of allocation of processor sets for packet
processing functions. Five processor sets were created
and initially CPUs were assigned to each of these
processor sets. One processor set each was bound to
each of the processes.

J. Computer Sci., 7 (6): 884-891, 2011

887

Fig. 2: Allocation of processor sets for packet processing functions

 As shown in Fig. 2, one CPU was assigned to
processor set PSetR for the receive_packets process that
receives the packets from the physical interface and
queues the packets in the appropriate queues based on
the classification. Another CPU was assigned to
processor set PSetT for transmit_packets process that
dequeues the encrypted packets from the queue and
transmits the packets to the physical interface. For
dequeuing, encryption and enqueuing, three processor
sets PSet1 to PSet3 are bound to three different
independent processes so that any encryption mechanism
and key value could be used for each of these processes.
The encryption/decryption process is on the packets
queued in each of the queues based on the classification.
 For parallelization and execution by multiple CPUs
assigned to a processor set, an explicit task is specified
using the OpenMP task directive.
Allocation/deallocation of the CPU belonging to
different cores with reference to the processes running
on them were done to study the performance of the
parallelized process in terms of the execution time.
Packet sizes for each of the combinations were also
varied for further analysis. The code for dynamic
assignment of CPUs is executed in each of the parallel
processes. CPU_allocation_status word is a semaphore
accessed and updated by all the parallel processes
during dynamic reallocation. PSet_assign function is
used for the assignment/de-assignment of the CPU
to/from a particular processor set. Fork function is used
to create the required independent processes and the
processor sets are bound to each of these processes.

RESULTS AND DISCUSSION

Analysis of performance based on the static
allocation of CPUs to processor sets: The total
execution time taken for a particular processor set for

the parallelized process of dequeuing, DES encryption
and enqueuing for 576 packets with varying number of
CPUs and for three different packet lengths is shown in
Fig. 3. For each of the processor sets PSet1 to PSet3,
static assignment of CPUs was done uniformly among
two cores each for the parallelized process. Packet sizes
of 128 bytes, 512 bytes and 1280 bytes are considered
for varying the load for the processors that are
executing the program in the parallel region. As shown
in the Fig. 3, the execution time for processing of larger
size packets takes more time as encryption is done on
the payload that is larger. As the number of CPUs for a
processor set increase, for 576 packets of a given size,
the execution time taken for a processor set decreases
for the parallelized operation. These values are taken as
reference for comparison of performance for dynamic
allocation.

Analysis of performance based on the dynamic
allocation of CPUs to processor sets: Initially, for
experimentation, static assignment of 4 CPUs to two
cores was done uniformly. Based on the queue size, one
CPU was deallocated from the processor set PSet1.
Tests were performed based on the dynamic
deallocation of the CPU based on the queue length.
Execution time taken for allocation/deallocation was
computed to be 1.9 milliseconds that is the overhead for
the allocation/deallocation process. Figure 4 shows the
execution time for the total parallelized process with
one CPU removed from the processor set at different
values of the queue length. The variation in the
execution time is linear with respect to the length of the
packets at which the deallocation of the CPU is done.
 When the queue size increases beyond the capacity
of the queue, the subsequent packets would be dropped.
Alternatively, as the queue is getting full, the source has
to be informed to reduce the rate of packet
transmission. This would delay the transmission rate.

J. Computer Sci., 7 (6): 884-891, 2011

888

Fig. 3: Execution time based on the static allocation of CPUs on cores

Fig. 4: Total execution time based on the deallocation of CPU at different queue lengths

To increase the rate of packet processing, a CPU could
be added to the processor set that is bound to the
process. In our experimentation, CPU is added
dynamically to processor set PSet1 that already has four
CPUs statically assigned. These four CPUs belong to 2
different cores. Five possible options were
experimented in terms of which a CPU is identified for
the dynamic assignment. The execution time for the
parallelized process for all the five options is shown in
Fig. 5.
 It is observed that when the CPU of the free core
is allocated, the execution time is less as compared to
the other options. Table 1 shows the relative
improvement of the execution time of the various
options of CPU identified for dynamic allocation to the
processor set.

CPU allocation model: Based on the study and
experimental results, it is analyzed that the overall
execution time for the parallelized process varies
depending on the CPU allocation to the free cores or
on the cores having CPUs already assigned to the
same or the different processes. Deallocation of the
CPU from the processor set is done for a particular
process when the number of packets in the
corresponding queue is less than the prescribed value.
This releases the CPUs that could be utilized by the
processor sets for the processes that need more CPUs
for faster execution of the packets. Accordingly,
deallocation and allocation model is proposed for
dynamically adding or removing the CPU form a
particular process as mentioned in Fig. 6. This
allocation model is focused on improving the
throughput for packet processing.

J. Computer Sci., 7 (6): 884-891, 2011

889

Fig. 5: Total execution time based on the dynamic allocation of CPU

Fig. 6: Pseudo code for dynamic allocation/deallocation of the CPU to/from the processor set

 When we deallocate, as there would be less
number of CPUs for the parallelized process within
the processor set, the execution time for processing
the remaining packets will increase but as the number
of packets in the queue would be less, this marginal
delay would not be significant.
 This allocation/deallocation model could be
generalized to any multicore processor. The total
number of CPUs available per core is also a parameter
for the assignment. Based on the implementation of the
model proposed, programming is done for dynamic
allocation of an additional CPU when the queue size is
500 packets. Allocation was done dynamically wherein
the CPU of the unutilized core was assigned to the
process that already has 4 CPUs assigned equally on 2
cores. Figure 7 shows the total execution time for
processing 600 packets of different packet lengths, both
with and without dynamic allocation using a particular

processor set bound to a process that dequeues,
encrypts and enqueues packets using a parallelized code
for each of the CPUs of the processor set. Also shown
are the packet processing rates with and without
dynamic allocation.
 Results were also obtained by increasing the size of
the queue and accordingly setting the threshold values
for dynamic allocation as a value that is 100 packets
less than the maximum size of the queue. Figure 8 shows
the overall execution time for the packet processing in
the parallelized process for a particular processor set. The
execution time is less by 13.5% for 600 packets and by
16.3% for 1500 packets with dynamic allocation. The
number of packets processed per second for each of the
conditions is also shown. It is observed that for all the
four queue sizes, the improvement factor of packets
processed per second is uniform.

J. Computer Sci., 7 (6): 884-891, 2011

890

Fig. 7: Performance of the parallelized process with dynamic allocation for different packet sizes

Fig. 8: Performance of the parallelized process with dynamic allocation of CPU done when the number of packets in

the queue is 100 packets less than the maximum number of packets

Table 1: Relative improvement of execution time with CPUs

dynamically added when the queue length is 576 packets
of 512 bytes each

Details of CPU added to Processor Set Relative
 improvement in
 execution time
1 CPU to a free core 1.080
1 CPU to a core that already has 1 CPU
assigned to the other PSet 1.061
1 CPU to core that already has 2 CPUs
assigned to the other PSet 1.021
1 CPU to core that already has 2 CPUs
 assigned to the same PSet 1.024
2 CPUs to 2 cores that already have 2 CPUs
 of each core assigned to the same PSet 1.028

CONCLUSION

 The dynamic allocation of the CPUs must be done
keeping in view the number of CPUs per core and the
common resources shared by these CPUs for a
particular application. The dynamic allocation of
number of CPUs for a given parallelized code must be
done based on the priority of the queue and the rate of
packet arrival. It was observed that performance
improvement factor for the execution time varies
depending on the status of the core of the corresponding
CPU that is added to the process dynamically.
Similarly, deallocation is done to ensure that a core is

J. Computer Sci., 7 (6): 884-891, 2011

891

free that could be used for allocation of CPUs for any
other priority process. Future work would be done to
address the issues related to dynamically computing the
threshold value for the dynamic allocation or
deallocation.

ACKNOWLEDGMENT

 The researchers acknowledge TIFAC-CORE in
Network Engineering (established under the Mission
REACH program of Department of Science and
Technology, Govt. of India) for providing necessary
facilities for working on this project.

REFERENCES

Ayguade, E., N. Copty, A. Duran, J Hoeflinger and Y.

Lin et al., 2009. The design of OpenMP tasks.
IEEE Trans. Parallel Distribut. Syst., 20: 404-418.
DOI: 10.1109/TPDS.2008.105

Chapman, B., L. Huang, E. Biscondi, E. Stotzer and A.
Shrivastava et al., 2009. Implementing OpenMP on
a high performance embedded multicore MPSoC.
Proceedings of the IEEE International Symposium
on Parallel and Distributed Processing, May 23-29,
IEEE Computer Society, Washington, DC, USA.,
pp: 1-8. DOI: 10.1109/IPDPS.2009.5161107

Ettikan, K. and R. Abdullah, 2003. Survey of Network
Processors (NP). Malaysian J. Comput. Sci., 16:
21-37. http://mjcs.fsktm.um.edu.my/document
.aspx? FileName=266.pdf

Lee, I., 2010. Analyzing performance and power of
multicore architecture using multithreaded iterative
solver. J. Comput. Sci., 6: 406-412. DOI:
10.3844/jcssp.2010.406.412

Lee, W.F. and A.Y.M. Shakaff, 2008. Implementing a
large data bus VLIW microprocessor. Am. J.
Applied Sci., 5: 1528-1534. DOI:
10.3844/ajassp.2008.1528.1534

Leon, A.S., B. Langley and J.L. Shin, 2006. The
UltraSPARC T1 processor: CMT reliability.
Proceedings of the IEEE Custom Integrated
Circuits Conference, Sept. 10-13, IEEE Press,
USA., pp: 555-562. DOI:
10.1109/CICC.2006.320989

Sun Microsystems, 2006. Open SPARC T1
Microarchitecture Specification. Sun
Microsystems, Inc, USA.
http://users.ece.utexas.edu/~mcdermot/vlsi-
2/OpenSPARCT1_Micro_Arch.pdf

Sun Microsystems, 2009. Sun Studio 12 Update 1:
OpenMP API User's Guide. Sun Microsystems,
Inc, USA.
http://download.oracle.com/docs/cd/E19205-
01/820-7883/820-7883.pdf

Sodan, A.C., J.C. Machina, A. Deshmeh, K.
Macnaughton and B. Esbaugh, 2010. Parallelism
via multithreaded and multicore CPUs. Computer,
43: 24-32. DOI: 10.1109/MC.2010.75

Weng, N. and T. Wolf, 2009. Analytic modeling of
network processors for parallel workload mapping.
ACM Trans. Embedded Comput. Syst., 8: 29. DOI:
10.1145/1509288.1509290

Wu, Q. and T. Wolf, 2008a. On runtime management in
multi-core packet processing systems. Proceedings
of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems, Nov. 06-07, ACM, New York, USA., pp:
69-78. DOI: 10.1145/1477942.1477953

Wu, Q. and T. Wolf, 2008b. Dynamic workload
profiling and task allocation in packet processing
systems. Proceedings of the International
Conference on High Performance Switching and
Routing, May 15-17, IEEE Xplore Press, Shanghai,
pp: 123-130. DOI: 10.1109/HSPR.2008.4734432

