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Abstract: Problem statement: Multicore and multithreaded CPUs have become the new approach for 
increase in the performance of the processor based systems. Numerous applications benefit from use 
of multiple cores. Increasing performance of the system by increasing the number of CPUs of the 
multicore processor for a given application warrants detailed experimentation. In this study, the 
results of the experimentation done by dynamic allocation/deallocation of the CPU based on the 
workload conditions for the packet processing for security application are analyzed and presented. 
Approach: This evaluation was conducted on SunfireT1000 server having Sun UltraSPARC T1 
multicore processor. OpenMP tasking feature is used for scheduling the logical CPUs for the 
parallelized application. Dynamic allocation of a CPU to a process is done depending on the workload 
characterization. Results: Execution time for packet processing was analyzed to arrive at an effective 
dynamic allocation methodology that is dependant on the hardware and the workload. 
Conclusion/Recommendations: Based on the analysis, the methodology and the allocation of the 
number of CPUs for the parallelized application are suggested. 
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INTRODUCTION 
 
 With the rapid development of chip 
multiprocessing techniques, multicore architecture has 
become more and more widely used in intensive 
computing applications as well as in computer 
networking systems. The amount of improvement in 
performance by the use of a multicore processor is 
dependent on the software algorithms and their 
implementation. The possible gains are limited by the 
part of the software that can be parallelized to run on 
the multiple cores simultaneously; as proposed by 
Amdahl’s law. Scheduling of parallel activities on the 
multicore processor is very vital to improve the 
performance of the system. The underlying hardware of 
the multicore processor has to be effectively used to 
obtain the optimum performance of the system.  
 Multithreaded processor supports concurrent thread 
execution at the more fine-grained instruction level, 
aiming at better utilizing the resources of processor by 
issuing instructions from multiple threads. Multicore 

processors achieve thread concurrency at a higher level, 
focusing less on utilization per core and aiming at 
scalability via replicating cores (Sodan et al., 2010). A 
multicore processor (or Chip-level Multiprocessor, 
CMP) combines two or more independent cores into a 
single package of an Integrated Circuit (IC). A 
multicore processor implements multiprocessing in a 
single physical package (Lee and Shakaff, 2008). 
 The per chip core counts are increasing 
significantly. For example, Oracle’s SPARC T3 
processor features up to 16 cores and 128 threads on a 
single chip with integrated logic for 1GbE networking 
and cryptographic coprocessor engines 
(http://www.oracle.com/us/products/servers-
storage/servers/sparc-enterprise/t-series/sparc-t3-chip-
ds-173097.pdf). Octeon® II CN6880 of Cavium 
Networks is a 32 core processor with over 85 application 
acceleration engines that provides high-performance, high 
throughput solution for intelligent networking applications 
(http://www.caviumnetworks.com/OCTEON_MIPS64. 
html). Programming of the multithreaded multicore 



J. Computer Sci., 7 (6): 884-891, 2011 
 

885 

processor needs a thorough understanding of the 
hardware and the effective use of the Application 
Program Interface (API) for parallel programming. The 
task partitioning in multicore processors is done based 
on the application requirement and the time taken for 
execution of these tasks. OpenMP API is one of the 
parallel programming models used to exploit the 
available parallelism of multicore processors. 
 In a multicore environment, CPUs or a set of CPUs 
can be assigned to a particular process. Dynamic 
assignment of the CPU to the process based on the 
workload characteristics improves the overall 
performance of the system. Proper performance 
indicators need to be used for simulation, testing and 
realization of multicore implementations. 
Parallelization of a network security application is 
considered for generating the load and analyzing the 
performance of the system. 

  
Multithreaded multicore processor architecture: 
The UltraSPARC T1 is a chip multicores/multi-threads 
processor that contains 8 cores and each of the SPARC 
cores has 4 hardware threads. A single pipeline 
processes instructions from four threads and completes 
one instruction in each cycle. All together, the chip 
handles 32 hardware threads and is addressed as 32 logical 
CPUs (Sun Microsystems, 2006; Leon et al., 2006). 
 Each SPARC core has a 16 KB, 4-way associative, 
32B line size of Level 1 instruction cache (I Cache), 8 
KB, 4-way associative, 16B line size of Data Cache (D 
Cache), 64-entry fully associative instruction TLB 
(Translation Lookaside Buffer) and 64-entry fully 
associative data TLB that are shared by the four 
hardware threads. The eight SPARC cores are 
connected through a crossbar to an on-chip unified 3 
MB, 4-way associative L2 cache (64B lines). The L2 
cache connects to 4 on-chip DRAM controllers, 
which     directly     interface    to   DRAM  interface.  
 

 
 
Fig. 1: Simplified block diagram of multicore 

processor with external shared memory 

Figure 1 shows a simplified block diagram of the 
multicore processor wherein each core has separate L1 
instruction cache and L1 data cache. All the cores share 
the common L2 cache with external shared memory. 
 Each hardware thread of UltraSPARC T1processor 
has a unique set of resources in support of its execution. 
The per-thread resources include registers, a portion of 
I-fetch datapath, store buffer and miss buffer. Multiple 
threads within the same SPARC core share a set of 
common resources in support of their execution. The 
shared resources include the pipeline registers and data-
path, caches, Translation Lookaside Buffers (TLB) and 
execution unit of the SPARC core pipeline. 
 Thread switching takes place during every SPARC 
core clock cycle. At the time of a thread selection, the 
priority is given to the least recently executed yet 
available thread. Load instructions will be speculated as 
cache hits and the thread executing a load instruction 
will be deemed as available and allowed to be 
switched-in with a low priority. Because of shared 
structures like caches, the performance of a thread is 
also affected by other threads running on the same core. 
 UltraSPARC T1 processor has one Modular 
Arithmetic Unit (MAU) per core that supports modular 
multiplication and exponentiation. The hardware thread 
that initiated the MAU stalls for the duration of the 
operation, but the other three threads on the core can 
progress normally. The eight MAUs (one per core) 
result in very high throughput on UltraSPARC T1 
processor-based systems for encryption operations. 
  
OpenMP: The OpenMP™ Application Program 
Interface is a portable, parallel programming model for 
shared memory multithreaded architectures (Sun 
Microsystems, 2009; Chapman et al., 2009). OpenMP 
specification version 3.0 introduces a new feature called 
tasking. By using the tasking feature, applications can 
be parallelized where units of work are generated 
dynamically, as recursive structures or while loops. The 
task directive defines the code associated with the task 
and its data environment. The task construct can be 
placed anywhere in the program and whenever a thread 
encounters a task construct, a new task is generated. 
 When a thread encounters a task construct, it may 
choose to execute the task immediately or defer its 
execution until a later time. If task execution is 
deferred, then the task is placed in a conceptual pool of 
tasks that is associated with the current parallel region. 
The threads in the current team will take tasks out of 
the pool and execute them until the pool is empty.  
 Ayguade et al. (2009) have evaluated the 
performance of the runtime prototype with several 
applications using OpenMP tasking feature and have 
measured the performance in terms of the speedup for 
different number of CPUs and have proved that 
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OpenMP task implementation can achieve very 
promising speedups when compared to other 
established models like OpenMP nested, task queues 
and CLIK. 
  
Packet processing and parallelization: Packet 
processing functions have to be done in real time. If 
packet processing times exceed inter-arrival times, 
system instability will result (e.g., due to input buffer 
overflows). Consequently, packet processing must 
process packets at network line rates. When packet 
processing function is implemented in multicore 
processor based system, the packet processing rate is 
dependant on the number of threads and cores used for 
processing and the effective utilization of the hardware 
resources by the application programs. Packet 
processing workload is characterized by a large number 
of simple tasks and massive amounts of input/output 
operations. Typical applications include forwarding of 
packets, packet classification, packet scheduling, packet 
statistics and monitoring and security application 
(Weng and Wolf, 2009). Though none of this 
processing is particularly complex, the Gigabit data 
rates that need to be supported by network systems 
generate significant performance demands. The overall 
packet processing tasks are split into three different 
tasks, namely, receiving, processing and transmitting. 
Time critical functions take place in the processing task 
and the nature and extent of parallelism for the 
processing task and the processor architecture 
determines the system performance (Ettikan and 
Abdullah, 2003). 
 The necessary performance of network system is 
achieved through exploiting the inherent parallelism in 
network processing. Packets that belong to different 
network connections can be processed independently as 
a TCP/IP network makes no guarantees on packet 
order. Packets belonging to the same connection usually 
should be processed in-order for performance reasons, 
but this is not mandatory. As a result, almost arbitrary 
levels of parallelism can be achieved by replicating 
packet processing functionality on multiple cores and 
handling packets in parallel. Limits on this parallelism 
are imposed by the number of hardware threads and the 
number of cores on a single chip. 
 The processing demands on the packet processing 
system are affected by two factors: first, by 
computational characteristics of all tasks in the system; 
and second, by network traffic that exercises the 
processing system. In order to derive an optimal 
allocation of tasks to processing resources at runtime, 
both factors need to be quantified and considered in the 
mapping process (Wu and Wolf, 2008a). 
 Weng and Wolf (2009) presented the analytic 
performance model that could be applied for 

understanding tradeoffs in the Network Processor 
design space to determine suitable network processor 
topologies and multithreading configurations. 
 Wu and Wolf (2008b) have proposed the task 
duplication process depending on the number of tasks 
in the workload and the number of available processing 
resources. Each task is mapped to the packet processing 
resource based on the task locality and interconnect 
usage.  
 Lee (2010) used a simulator and showed the 
performance gains of a scientific algorithm that was 
designed to take the benefits of multithreaded multicore 
architecture for real scientific application problems. 
 In this study, we present the performance analysis 
of packet processing by dynamically assigning the 
CPUs of Sun Microsystems UltraSPARC T1 processor. 
OpenMP tasking feature is used for parallelizing the 
code for execution on the hardware threads referred as 
CPUs. We also propose a dynamic CPU allocation 
model for improving the execution time for the 
parallelized process. 
 

MATERIALS AND METHODS 
 
 The performance evaluation was done on SunFire 
T1000 server having Sun Microsystems UltraSPARC 
T1 processor. Sun Studio12 Update 1 Integrated 
Development Environment (IDE) on Solaris 10 
Operating System was used to develop the programs in C 
language and to test the programs. OpenMP tasking 
feature was used for implementing parallelism within the 
process. Libpcap Application Program Interface (API) 
was used for reading the packets from the physical 
interface or writing the packets to the physical interface. 
Furthermore, POSIX.1b Realtime Extension Library 
was used for message passing, process scheduling and 
timer options. System V message queues were used for 
queuing the packets between various stages. Encryption 
of payload was done using PKCS#11 Cryptographic 
Framework Library. 
 Fluke Networks OptiView Series III Integrated 
Network Analyzer was used as an external traffic 
generator for generating the packets of required size 
and at the required rate. We captured the packets from 
one physical interface, performed the encryption of the 
payload and transmitted the packets using another 
physical interface. Figure 2 shows the conceptual 
diagram of allocation of processor sets for packet 
processing functions. Five processor sets were created 
and initially CPUs were assigned to each of these 
processor sets. One processor set each was bound to 
each of the processes.  
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Fig. 2: Allocation of processor sets for packet processing functions 
 
 As shown in Fig. 2, one CPU was assigned to 
processor set PSetR for the receive_packets process that 
receives the packets from the physical interface and 
queues the packets in the appropriate queues based on 
the classification. Another CPU was assigned to 
processor set PSetT for transmit_packets process that 
dequeues the encrypted packets from the queue and 
transmits the packets to the physical interface. For 
dequeuing, encryption and enqueuing, three processor 
sets PSet1 to PSet3 are bound to three different 
independent processes so that any encryption mechanism 
and key value could be used for each of these processes. 
The encryption/decryption process is on the packets 
queued in each of the queues based on the classification. 
 For parallelization and execution by multiple CPUs 
assigned to a processor set, an explicit task is specified 
using the OpenMP task directive. 
Allocation/deallocation of the CPU belonging to 
different cores with reference to the processes running 
on them were done to study the performance of the 
parallelized process in terms of the execution time. 
Packet sizes for each of the combinations were also 
varied for further analysis. The code for dynamic 
assignment of CPUs is executed in each of the parallel 
processes. CPU_allocation_status word is a semaphore 
accessed and updated by all the parallel processes 
during dynamic reallocation. PSet_assign function is 
used for the assignment/de-assignment of the CPU 
to/from a particular processor set. Fork function is used 
to create the required independent processes and the 
processor sets are bound to each of these processes.  
 

RESULTS AND DISCUSSION 
 
Analysis of performance based on the static 
allocation of CPUs to processor sets: The total 
execution time taken for a particular processor set for 

the parallelized process of dequeuing, DES encryption 
and enqueuing for 576 packets with varying number of 
CPUs and for three different packet lengths is shown in 
Fig. 3. For each of the processor sets PSet1 to PSet3, 
static assignment of CPUs was done uniformly among 
two cores each for the parallelized process. Packet sizes 
of 128 bytes, 512 bytes and 1280 bytes are considered 
for varying the load for the processors that are 
executing the program in the parallel region. As shown 
in the Fig. 3, the execution time for processing of larger 
size packets takes more time as encryption is done on 
the payload that is larger. As the number of CPUs for a 
processor set increase, for 576 packets of a given size, 
the execution time taken for a processor set decreases 
for the parallelized operation. These values are taken as 
reference for comparison of performance for dynamic 
allocation. 
 
Analysis of performance based on the dynamic 
allocation of CPUs to processor sets: Initially, for 
experimentation, static assignment of 4 CPUs to two 
cores was done uniformly. Based on the queue size, one 
CPU was deallocated from the processor set PSet1. 
Tests were performed based on the dynamic 
deallocation of the CPU based on the queue length. 
Execution time taken for allocation/deallocation was 
computed to be 1.9 milliseconds that is the overhead for 
the allocation/deallocation process. Figure 4 shows the 
execution time for the total parallelized process with 
one CPU removed from the processor set at different 
values of the queue length. The variation in the 
execution time is linear with respect to the length of the 
packets at which the deallocation of the CPU is done. 
 When the queue size increases beyond the capacity 
of the queue, the subsequent packets would be dropped. 
Alternatively, as the queue is getting full, the source has 
to be informed to reduce the rate of packet 
transmission. This would delay the transmission rate. 
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Fig. 3: Execution time based on the static allocation of CPUs on cores 
 

  
Fig. 4: Total execution time based on the deallocation of CPU at different queue lengths 
 
To increase the rate of packet processing, a CPU could 
be added to the processor set that is bound to the 
process. In our experimentation, CPU is added 
dynamically to processor set PSet1 that already has four 
CPUs statically assigned. These four CPUs belong to 2 
different cores. Five possible options were 
experimented in terms of which a CPU is identified for 
the dynamic assignment. The execution time for the 
parallelized process for all the five options is shown in 
Fig. 5.  
 It is observed that when the CPU of the free core 
is allocated, the execution time is less as compared to 
the other options. Table 1 shows the relative 
improvement of the execution time of the various 
options of CPU identified for dynamic allocation to the 
processor set. 

CPU allocation model: Based on the study and 
experimental results, it is analyzed that the overall 
execution time for the parallelized process varies 
depending on the CPU allocation to the free cores or 
on the cores having CPUs already assigned to the 
same or the different processes. Deallocation of the 
CPU from the processor set is done for a particular 
process when the number of packets in the 
corresponding queue is less than the prescribed value. 
This releases the CPUs that could be utilized by the 
processor sets for the processes that need more CPUs 
for faster execution of the packets. Accordingly, 
deallocation and allocation model is proposed for 
dynamically adding or removing the CPU form a 
particular process as mentioned in Fig. 6. This 
allocation model is focused on improving the 
throughput for packet processing.  
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Fig. 5: Total execution time based on the dynamic allocation of CPU 

 

  
Fig. 6: Pseudo code for dynamic allocation/deallocation of the CPU to/from the processor set 

 
 When we deallocate, as there would be less 
number of CPUs for the parallelized process within 
the processor set, the execution time for processing 
the remaining packets will increase but as the number 
of packets in the queue would be less, this marginal 
delay would not be significant. 
 This allocation/deallocation model could be 
generalized to any multicore processor. The total 
number of CPUs available per core is also a parameter 
for the assignment. Based on the implementation of the 
model proposed, programming is done for dynamic 
allocation of an additional CPU when the queue size is 
500 packets. Allocation was done dynamically wherein 
the CPU of the unutilized core was assigned to the 
process that already has 4 CPUs assigned equally on 2 
cores. Figure 7 shows the total execution time for 
processing 600 packets of different packet lengths, both 
with and without dynamic allocation using a particular 

processor set bound to a process that dequeues, 
encrypts and enqueues packets using a parallelized code 
for each of the CPUs of the processor set. Also shown 
are the packet processing rates with and without 
dynamic allocation. 
 Results were also obtained by increasing the size of 
the queue and accordingly setting the threshold values 
for dynamic allocation as a value that is 100 packets 
less than the maximum size of the queue. Figure 8 shows 
the overall execution time for the packet processing in 
the parallelized process for a particular processor set. The 
execution time is less by 13.5% for 600 packets and by 
16.3% for 1500 packets with dynamic allocation. The 
number of packets processed per second for each of the 
conditions is also shown. It is observed that for all the 
four queue sizes, the improvement factor of packets 
processed per second is uniform. 
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Fig. 7: Performance of the parallelized process with dynamic allocation for different packet sizes 
 
 

  
Fig. 8: Performance of the parallelized process with dynamic allocation of CPU done when the number of packets in 

the queue is 100 packets less than the maximum number of packets 
 
Table 1: Relative improvement of execution time with CPUs 

dynamically added when the queue length is 576 packets 
of 512 bytes each 

Details of CPU added to Processor Set Relative  
 improvement in  
 execution time  
1 CPU to a free core 1.080 
1 CPU to a core that already has 1 CPU  
assigned to the other PSet 1.061 
1 CPU to core that already has 2 CPUs  
assigned to the other PSet 1.021 
1 CPU to core that already has 2 CPUs 
 assigned to the same PSet  1.024 
2 CPUs to 2 cores that already have 2 CPUs 
 of each core assigned to the same PSet  1.028 

CONCLUSION 
 
 The dynamic allocation of the CPUs must be done 
keeping in view the number of CPUs per core and the 
common resources shared by these CPUs for a 
particular application. The dynamic allocation of 
number of CPUs for a given parallelized code must be 
done based on the priority of the queue and the rate of 
packet arrival. It was observed that performance 
improvement factor for the execution time varies 
depending on the status of the core of the corresponding 
CPU that is added to the process dynamically. 
Similarly, deallocation is done to ensure that a core is 
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free that could be used for allocation of CPUs for any 
other priority process. Future work would be done to 
address the issues related to dynamically computing the 
threshold value for the dynamic allocation or 
deallocation. 
 

ACKNOWLEDGMENT 
 
 The researchers acknowledge TIFAC-CORE in 
Network Engineering (established under the Mission 
REACH program of Department of Science and 
Technology, Govt. of India) for providing necessary 
facilities for working on this project. 
 

REFERENCES 
 
Ayguade, E., N. Copty, A. Duran, J Hoeflinger and Y. 

Lin et al., 2009. The design of OpenMP tasks. 
IEEE Trans. Parallel Distribut. Syst., 20: 404-418. 
DOI: 10.1109/TPDS.2008.105 

Chapman, B., L. Huang, E. Biscondi, E. Stotzer and A. 
Shrivastava et al., 2009. Implementing OpenMP on 
a high performance embedded multicore MPSoC. 
Proceedings of the IEEE International Symposium 
on Parallel and Distributed Processing, May 23-29, 
IEEE Computer Society, Washington, DC, USA., 
pp: 1-8. DOI: 10.1109/IPDPS.2009.5161107 

Ettikan, K. and R. Abdullah, 2003. Survey of Network 
Processors (NP). Malaysian J. Comput. Sci., 16: 
21-37. http://mjcs.fsktm.um.edu.my/document 
.aspx? FileName=266.pdf 

Lee, I., 2010. Analyzing performance and power of 
multicore architecture using multithreaded iterative 
solver. J. Comput. Sci., 6: 406-412. DOI: 
10.3844/jcssp.2010.406.412 

Lee, W.F. and A.Y.M. Shakaff, 2008. Implementing a 
large data bus VLIW microprocessor. Am. J. 
Applied Sci., 5: 1528-1534. DOI: 
10.3844/ajassp.2008.1528.1534 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Leon, A.S., B. Langley and J.L. Shin, 2006. The 
UltraSPARC T1 processor: CMT reliability. 
Proceedings of the IEEE Custom Integrated 
Circuits Conference, Sept. 10-13, IEEE Press, 
USA., pp: 555-562. DOI: 
10.1109/CICC.2006.320989 

Sun Microsystems, 2006. Open SPARC T1 
Microarchitecture Specification. Sun 
Microsystems, Inc, USA. 
http://users.ece.utexas.edu/~mcdermot/vlsi-
2/OpenSPARCT1_Micro_Arch.pdf 

Sun Microsystems, 2009. Sun Studio 12 Update 1: 
OpenMP API User's Guide. Sun Microsystems, 
Inc, USA. 
http://download.oracle.com/docs/cd/E19205-
01/820-7883/820-7883.pdf 

Sodan, A.C., J.C. Machina, A. Deshmeh, K. 
Macnaughton and B. Esbaugh, 2010. Parallelism 
via multithreaded and multicore CPUs. Computer, 
43: 24-32. DOI: 10.1109/MC.2010.75 

Weng, N. and T. Wolf, 2009. Analytic modeling of 
network processors for parallel workload mapping. 
ACM Trans. Embedded Comput. Syst., 8: 29. DOI: 
10.1145/1509288.1509290 

Wu, Q. and T. Wolf, 2008a. On runtime management in 
multi-core packet processing systems. Proceedings 
of the 4th ACM/IEEE Symposium on 
Architectures for Networking and Communications 
Systems, Nov. 06-07, ACM, New York, USA., pp: 
69-78. DOI: 10.1145/1477942.1477953  

Wu, Q. and T. Wolf, 2008b. Dynamic workload 
profiling and task allocation in packet processing 
systems. Proceedings of the International 
Conference on High Performance Switching and 
Routing, May 15-17, IEEE Xplore Press, Shanghai, 
pp: 123-130. DOI: 10.1109/HSPR.2008.4734432 
 


