
Journal of Computer Science 7 (6): 832-835, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Kiran Kumar Patnaik, ABV-Indian Institute of Information Technology and Management,
Autonomous Institute of Government of India, Gwalior, Madhya Pradesh, 474010, India
Tel: 919406580064

832

Extending Binary Large Object Support to Open Grid Services

Architecture-Data Access and Integration Middleware Client Toolkit

Kiran Kumar Patnaik and Bollam Nagarjun
ABV-Indian Institute of Information Technology and Management,

Autonomous Institute of Government of India,
Gwalior, Madhya Pradesh, 474010, India

Abstract: Problem statement: OGSA-DAI middleware allows data resources to be federated and
accessed via web services on the web or within grids or clouds. It provides a client API for writing
programs that access the exposed databases. Migrating existing applications to the new technology and
using a new API to access the data of DBMS with BLOB is difficult and discouraging. A JDBC Driver
is a much convenient alternative to existing mechanism and provides an extension to OGSA-DAI
middleware and allows applications to use databases exposed in a grid through the OGSA-DAI 3.0.
However, the driver does not support Binary Large Objects (BLOB). Approach: The driver is
enhanced to support BLOB using the OGSA-DAI Client API. It transforms the JDBC calls into an
OGSA-DAI workflow request and sends it to the server using Web Services (WS). The client API of
OGSA-DAI uses activities that are connected to form a workflow and executed using a pipeline. This
workflow mechanism is embedded into the driver. The WS container dispatches the request to the
OGSA-DAI middleware for processing and the result is then transformed back to an instance of
ResultSet implementation using the OGSA-DAI Client API, before it is returned to the user. Results:
Test on handling of BLOBs (images, flash files and videos) ranging from size 1 KB to size 2 GB were
carried out on Oracle, MySQL and PostgreSQL databases using our enhanced JDBC driver and it
performed well. Conclusion: The enhanced JDBC driver now can offer users, with no experience in
Grid computing specifically on OGSA-DAI, the possibility to give their applications the ability to
access databases exposed on the grid with minimal effort.

Key words: Grid computing, Binary Large Objects (BLOB), Web Services (WS), Application

Programming Interface (API), client toolkit, exposed databases, Uniform Resource
Locator (URL), binary data

INTRODUCTION

 Grid is a system that is concerned with the
integration, virtualization and management of services
and resources in a distributed, heterogeneous
environment that supports collection of users and
resources i.e., virtual organizations across traditional
administrative and organizational domains i.e., real
organizations. A grid middleware must ensure to
provide ways for interoperability to find specific
resources, allocate jobs and transfer files among
resources and users.
 Grid Computing required the development of
middleware to provide the functionalities necessary for
the systems. Today, we have dozens of opportunities to
implement and deploy a grid infrastructure, for
example: Globus Toolkit (Richard et al., 2008),

Unicore (Richard et al., 2008) gLite (Latip et al., 2011)
and so on.
 Web Services architecture that defines and uses
open protocols for exchanging messages in a language
and platform independent manner makes it appropriate
for dealing with the issues in dynamic environment of
the grid. OGSA-DAI middleware allows data resources,
such as relational or XML, to be accessed, integrated
and federated via web services to the users over Grid
environment. The main purpose of OGSA-DAI is to
provide the required data resource sharing not only to
support the access to disparate resources but also to
transform, integrate and deliver the data (Antonioletti et
al., 2005). OGSA-DAI middleware can be deployed in
the Globus container, or the Tomcat Container. Along
with the middleware, the OGSA-DAI team offers a
client Application Programming Interface (API) for

J. Computer Sci., 7 (6): 832-835, 2011

833

writing programs that access the exposed databases. A
Binary Large OBject is a collection of binary data
stored as a single entity in a database management
system. BLOBs are typically images, audio or other
multimedia objects, though sometimes binary
executable code is stored as a BLOB.
 Using a new API to access the data of a DBMS
with BLOB can discourage the domain experts,
programmers using Grid as a platform. Moreover it
makes the users feel difficult migrating existing
applications to the new technology. The intention of
picking JDBC is for its acceptance in industry and
provides a common interface to access databases
managed by any DBMS using the Java language.

MATERIALS AND METHODS

 OGSA-DAI is a framework that executes
workflows. Workflows are submitted by clients to
OGSA-DAI web services. The client toolkit of OGSA-
DAI provides components which contact OGSA-DAI
web services submit the workflows to OGSA-DAI and
parse the request status and data after a workflow has
been executed. Prior to our effort in this direction any
client attempting to access data had to perform the
following steps:

• Get a server proxy
• Create activities
• Configure and connect activities
• Create the workflow
• Execute the workflow
• Run the client
• Get status information and data from the request

status

 The above approach was tedious for the users and
moreover difficult to migrate to a new technology to
write the Client programs.
 JDBC API has been revised several times since its
creation and its latest specification is the 4.0 version.
The intention of JDBC is to provide a common
interface to access databases managed by any DBMS
using the Java language.
 A JDBC Driver was designed (Brito and Sato,
2008) to bring together JDBC and the OGSA-DAI
middleware, offering java developers, with no experience
in Grid computing specifically on OGSA-DAI, the
possibility to give their applications the ability to access
databases exposed on the grid with minimal effort. A

standard API is available based on a middleware that
intend to be in conformity with open standards.
 JDBC works fairly easy compared to OGSA-DAI
client API. As shown in Fig. 1, in order to get a
Connection instance, a class offered by sun called
DriverManager, contacts the driver implementation of
the Driver interface. In this implementation
DeviceManager must be told if the driver can handle the
request based on the connection Uniform Resource
Locator (URL). If yes, the driver returns a connection
with the database. The Statement, PreparedStatement and
CallableStatement interfaces are responsible for, given a
connection, querying the database and returning the
results in the form of an integer in the case of update
statements, or a ResultSet in case of a select statement.
 The driver is implemented using the OGSA-DAI
Client API; it transforms the JDBC calls into an OGSA-
DAI workflow and sends it to the server using Web
Services. When the WS container receives the request,
it dispatches the request to the OGSA-DAI middleware.
It processes the request accessing the database and
returning the result of its execution. When delivered,
the result is then processed again using the OGSA-DAI
Client API and is returned to the user as an instance of
ResultSet implementation.
 A BLOB is a collection of binary data stored as a
single entity in a database management system.
BLOBs are typically images, audio or other
multimedia objects, though sometimes binary
executable code is stored as a BLOB.
 For inserting a BLOB, the following steps are to be
performed with OGSA-DAI client API:

• Get a server proxy
• Create WebRowSet
• Create WebRowSetCharacterDataToTuple,

SQLParameterisedUpdate activities
• Configure and connect activities
• Create the workflow
• Execute the workflow
• Run the client
• Get status information and data from the request

status

 The WebRowSet interface and (Wohrer et al.,
2010) format was introduced in J2SE Version 1.4. A
WebRowSet contains three parts: properties, metadata
and data. The WebRowSet used in this context to insert
a BLOB contains the data viz., column value and
column type such that tuples are formed using the
activity WebRowSetCharacterDataToTuple. These
tuples serve as an input to SQLParameterisedUpdate
where this activity takes SQL query and the tuples as
input and then the workflow is executed.

J. Computer Sci., 7 (6): 832-835, 2011

834

Fig. 1: Main interfaces of the JDBC API

 The code below is an example of how to insert a
BLOB using the JDBC Driver for OGSA-DAI:

/****Code above omitted…***/

 Class.forName("br.usp.pcs.lahpc.ogsadai.Driv
er");

Connection con=
DriverManager.getConnection("jdbc:ogsadai://
localhost:8080/dai/services?resources=
MyOracleDataResource","system","junnu");
File imgfile = new File("arjun.jpg");
FileInputStream fin = new
FileInputStream(imgfile);
PreparedStatement pre =
con.prepareStatement("insert into
extblackbook(id, picture) values(?,?)");
pre.setInt(1,100);
pre.setBinaryStream(2,fin,(int)imgfile.length(
));
pre.executeUpdate();

/****code below omitted…***/

 Insertion of Large Objects cannot be done through
Statement object; it has to be done through a
PreparedStatement object. The above piece of code
shows how a BLOB is inserted into the Database a
PreparedStatement.

 This code is very well known for Java
programmers, where the differences are in specifying
the driver class (line 2) and the resource URL (line 3).
To do the same using the OGSA-DAI API we do a
more difficult process, however the client will have
more command over the process of retrieving
information from the database.
 In the previous version of OGSA-DAI 3.0 where
BLOBs were not supported by the driver, CSVToTuple
activity was used in the place of
WebRowSetCharacterDataToTuple activity. However,
CSVToTuple activity doesn’t support tuples containing
a BLOB column (OGSA-DAI 4.1 Axis - User guide).
The CSVToTuple activity has been replaced by
WebRowSetCharacterDataToTuple. The latter activity
has a very sound support to all types of columns. The
binary format support for tuples in the recent release of
OGSA-DAI 4.1 also backs the use of WebRowSet
instead of CSV format.
 The BLOB which is to be inserted into the database
is converted into a Binary Stream through
setBinaryStream() method in PreparedStatement
interface. The BinaryStream is encoded and converted
into a byte array. A WebRowSet is constructed using
the Byte array and other columns that are needed by the
SQL query and this WebRowSet serves as an input for
WebRowSetCharacterDataToTuple. Tuples are
constructed from this activity and these tuples serve as
an input for SQLParameterisedUpdate activity. This

J. Computer Sci., 7 (6): 832-835, 2011

835

activity performs task analogous to PreparedStatement
in JDBC. The SQLParameterized Update activity
inserts the required BLOB into the database.
 For the purpose of retrieval of a BLOB, the
middleware’s ResultSet contains getBlob() method
which returns the BLOB object in accordance with the
SQL select statement.

RESULTS

 The enhanced driver code was tested using
versions ranging from OGSA-DAI 3.1 to OGSA-DAI
4.1 installed under Windows and Linux operating
systems on a single machine. The hardware was a Core
2 Duo machine with 1GB of RAM memory. The tests
were carried out on Oracle, MySQL and PostgreSQL
databases. BLOBs like images, flash files and videos
ranging from size 1 KB to size 2 GB are tested and all
of them inserted well into each database.

DISCUSSION

 By the time the basic driver was written, OGSA-
DAI 3.0 was the latest version available and it didn’t
support for BLOBs. From the version 3.1 to the latest
4.1, BLOBs and CLOBs are held in-memory with
consequent implications on memory usage. As the
BLOBs are held in-memory it is not feasible to store
BLOBs above 2GB of size.

CONCLUSION

 Providing access to resources exposed in a grid
using existing technology and techniques can promote
the OGSA-DAI and make it popular among
programmers that don’t have specific knowledge in grid
computing. For an application developed in this
direction, the contribution of supporting Binary Large
Object feature to the basic version would definitely be a
step forward in making OGSA-DAI exposed to a
greater number of people.

ACKNOWLEDGEMENT

 We would like to express our sincere thanks to
Mathias Brito, the author of the Driver who was very
helpful in carrying out the project. We would also like
to thank the OGSA-DAI team for its valuable help
through the discussion list specially Ally Hume and
Mike Jackson without whom the project wouldn’t have
been this successful.

REFERENCES

Antonioletti, M., M. Atkinson, R. Baxter, A. Borley and

N.P.C. Hong et al., 2005. The design and
implementation of Grid database services in
OGSA-DAI. Concurrency Comput. Pract. Exp., 17:
357-376. DOI: 10.1002/cpe.939

Brito, M. and L.M. Sato, 2008. Extending OGSA-DAI
possibilities with a JDBC driver. Proceedings of
the 11th IEEE International Conference on
Computational Science and Engineering, July 16-
18, IEEE Xplore, Sao Paulo, pp: 155-162, DOI:
10.1109/CSE.2008.55

Latip, R., H. Ibrahim and F.A. Al-Hanandeh, 2011.
Scientific data sharing using clustered-based data
sharing in grid environment. Am. J. Econ. Bus.
Admin., 3: 146-149. DOI:
10.3844/ajebasp.2011.146.149

Richard, R.J.A., A.A. Joshi and C. Eswaran, 2008.
Implementation of computational grid services in
enterprise grid environments. Am. J. Applied Sci.,
5: 1442-1447. DOI:
10.3844/ajassp.2008.1442.1447

Wohrer, A., T. Lustig and P. Brezany, 2010.
Performance evaluation of webrowset
implementations. Data Manage. Grid Peer-to-Peer
Syst., 6265: 88-99. DOI: 10.1007/978-3-642-
15108-8_8

