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Abstract: Problem statement: Meta- scheduling has become important due to increased number of 
jobs and resources in the area of grid computing to achieve the objectives of grid users and grid 
resources. Approach: A variety of factors need to be considered for effective scheduling of resources 
in such environments such as total time job spend in the grid system, global and local allocation 
policies and resource utilization. A general and extensible scheduling architecture addressing these 
issues is proposed. Within this architecture a Multi Criteria Resource Selection (MCRS) algorithm is 
developed and performance of this algorithm is evaluated using simulations for a wide range of 
parameters. To select a resource for job execution the proposed algorithm considers multiple criteria 
like processing power, workload and network bandwidth of the resource. Results: The proposed 
algorithm is compared with the conventional single criteria resource selection algorithms. 
Conclusion: Simulation results show that in order to improve the performance of both user and 
resource it is important to consider multiple criteria together to select the optimal resource, rather than 
considering them separately. 
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INTRODUCTION 

 
 Grid computing uses the resources of many 
separate computers connected by a network to solve 
large scale problems. The resources may involve CPU 
cycles, memory, bandwidth, applications and 
databases on remote systems. These heterogeneous 
resources are distributed and owned geographically by 
different organizations for solving large scale 
problems in science, engineering and commerce 
(Foster et al., 2001). The tremendously large number 
and the heterogeneous potential of grid resources 
cause the resource selection challenge to be a 
significant effort topic in grid environments. 
 Grid scheduling is defined as the process of 
making scheduling decisions involving allocating jobs 
to resources over multiple administrative domains. Grid 
scheduling is usually viewed as a hierarchical problem 
with two levels. At the first level, called meta-
scheduling, a grid scheduler selects the resources to be 
used by a job. At the second level, called local 
scheduling, a local scheduler schedules the jobs 
assigned to it. The grid scheduler and the local 
scheduler differ in that the latter only manages a single 
resource, e.g. a single cluster with multiple machines, 
while the former considers more than one resource in 

making its decisions. In particular, the grid scheduler 
receives jobs from grid users and generates job-to 
resource assignments, by optimizing some objective 
function. In this study more interesting is in the first 
level of scheduling, the grid scheduling level. 
Widespread availability of low-cost, high performance 
computing hardware and the rapid expansion of the 
Internet and advances in computing networking 
technology have led to an increasing use of 
heterogeneous computing systems (Kontothanassis and 
Goddeau, 2005). Such systems are constructed by 
networking various machines with different capabilities 
and coordinating their use to execute jobs. The different 
phases of grid scheduling process have been discussed 
(Malarvizhi and Uthariaraj, 2008). A multi-agent 
architecture that addressed resource management and 
application execution with support for Quality of 
Services (QoS) in grid environment is presented (Rezaee 
et al., 2008). Grid scheduling algorithms in different 
occasions are discussed by (Benoit et al., 2005). 
 According to (Jiang et al., 2008), job behavior in 
the job waiting queue is considered as an important 
factor for scheduling algorithm. The data access cost is 
also aggregated with the job waiting queue in order to 
reduce the job turnaround time. A framework that 
includes meta-scheduling, local scheduler and dataset 
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scheduler was proposed by (Ranganathan and Foster, 
2003). Regarding meta-scheduler, the data access cost 
and the job waiting queue are the only criteria 
considered in the decisions. Ernemann et al., (2004) 
proposed a meta-scheduler in which scheduler selects 
the resource that provides the nearest distance to the 
required data for the job execution to reduce the job 
completion time. Hence, the data access cost is the 
main factor which is focused in the scheduler. Ding et 
al. (2004) provide an adaptive meta-scheduler in which 
the best resource is the one that provides highest 
computation. The computational power of the resource 
is the main factor which is focused in the scheduler. 
AL-Khateeb et al. (2009) considered a new factor 
namely the job ratio which is used to reduce the job 
turnaround time by submitting jobs in batches rather 
than submitting the jobs one by one. The job execution 
time and the data access time for each job is monitored 
and computed to provide the Job-Ratio. An elaborate 
prediction function is produced for computing the Job-
Ratio based on the history file and other grid services 
tools. Malarvizhi and Uthariaraj (2009) discussed about 
the mechanism for scheduling jobs to resources by 
considering multiple criteria but did not compare the 
performance with single criteria algorithms. 
 In some existing methods, the grid scheduler 
decides the best resource based on the number of jobs 
that is waiting in the queue. While other proposed 
methods select the resource based on the data access 
cost which includes data transfer time, data locations 
and storage access latency. Some other proposed 
methods select the resource based on the processing 
power of the resource. These resource selection 
methods based on any one criteria is insufficient for the 
best decision, because the resources are heterogeneous 
and administered by different administrative domains. 
Considering only job waiting time or file transfer time 
or processing power of the resource does not yield best 
schedule in the heterogeneous grid environment. 
 In this study, Multi Criteria Resource Selection 
(MCRS) algorithm is developed for the grid 
environment. The overall objective of the scheduler 
presented here is to select the resource (cluster) that gives 
the shortest time for job completion for each job, 
including the time for file staging (file transferring), 
resource queue waiting and job execution. The 
performance of the proposed MCRS algorithm is 
compared with the following single criteria resource 
selection algorithms: 
 
• Load Aware Resource Selection (LARS): Job is 

scheduled to the resource that has the least 
workload. Load is simply defined as the number 
of jobs waiting to run 

• Bandwidth Aware Resource Selection (BARS): Job 
is scheduled to the resource that has more 
bandwidth 

• Power Aware Resource Selection (PARS): Job is 
scheduled to the resource that has more 
computational power. 

 
MATERIALS AND METHODS 

 
 In topological point of view, grid is considered as a 
collection of heterogeneous clusters as shown in Fig. 1. 
There is a global scheduler (Grid Scheduler) which 
communicates with each one of the distributed clusters. 
For simplicity it is assumed that each cluster has two 
nodes and each node has one machine and each 
machine has one processing element. The scheduler 
serves jobs in the FCFS order.  
 Some of the important components in the 
scheduling framework are described below: 
        GIS contains information about all available grid 
resources. Whenever a scheduler has jobs to execute, it 
consults GIS to get information about available grid 
resources. Grid users register themselves to the GIS of a 
grid by specifying QoS requirements. The QoS 
requirement consists of deadline (D), number of nodes 
required and size of each job measured in Millions 
Instructions (MI).  

Grid scheduler: Grid scheduler is responsible for 
receiving jobs from grid users, selects feasible 
resources for those jobs according to acquired 
information and finally generates jobs - to- resource 
mappings. The entities of scheduler are Resource 
Selector, Matchmaker, TTR Estimator and Job 
Dispatcher. The matchmaker entity performs match 
making of the resources and job requirements by 
contacting GIS and filter out the resources that satisfies 
job requirements.  TTR estimator estimates the total 
time spent by the job on each matched resource based 
on transfer time, queue wait time and execution time of 
the job. Resource selector selects the resource with 
minimum TTR. Then the job dispatcher dispatches the 
job one by one to the selected resource.  
  
MCRS algorithm: 
 
• Generate a list of all individual requests by 

validating the user specification(s) 
• Contact GIS to obtain a list of available resources 
• Query each resource to obtain static and dynamic 

information such as hardware and software 
characteristics, current status, work load and so on 

• For each job Ji with deadline Di from a queue do 
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Fig: 1. Grid Scheduling Framework 
 
• Filter out the resources that do not fulfill the job 

requirements and also the  unauthorized users 
• For each filtered resource Rj at which this job can 

be executed do 
• Retrieve estimated TTR of job TTRJi, Rj 
• Filter out the resource Ri in which TTRJi, Ri > Di         
• Assign job Ji to resource Rbest so that TTRJi, Rbest  =    

jR
Min  (TTRJi,,Rj)   

• end for 

• end for  
 
Estimation of TTR: The TTR for a job j in resource r 
includes transmission time of input and output data to 
and from r, waiting time of j in r and the service time of 
j when assigned to r. For simplicity TTR is expressed as 
ttotal and is defined by Eq. (1): 
 

jr

totalt  = jr

transfert  + jr

waitt  + jr

processt  (1) 
                                           
 The estimated transmission time of the j from the 
scheduler to the resource r can be determined by Eq. 
(2): 
 

jr

transfert =

r

j

BW

S
 (2) 

                                    
     where Sj is the size of the job j and BWr is the 
network bandwidth between the scheduler and the 
resource r.   
     Processing Time of the job j in resource r is defined 
by Eq.(3): 
 

jr

processt   = 
r

jS

PP
  (3)   

 where PPr represents the processing power of the 
resource r.Waiting Time of the job j in the resource 
queue r could be estimated by the sum of all processing 
time of jobs in waiting queue of r which has been 
assigned to that resource before arriving of job j and the 
remaining processing time of job j-1 executed in the 
resource and is defined by Eq. (4): 
 

 jr

waitt =
n

i 1=
∑ r

i

processt  + 
r

j 1

remainingt −   (4)  

                                                              
where n is the number of jobs in the resource queue. 
The remaining time is calculated by Eq.(5): 
 

r

j 1

remainingt − = 
r

j 1

processt − - (
r

j 1

subt −  -
cur rt ) (5) 

 
where 

r

j 1

subt −  represents submission time of job j-1 in 

resource r and 
cur rt  represents current time of resource 

r. MCRS algorithm selects the resource r for job j 
which gives minimum TTR and is expressed by Eq.(6): 
  
 Rselect = Min { jr

totalt }1<j<n, 1<r<m (6)  
                                 
 Where n represents number of jobs and m 
represents number of resources. 
  

RESULTS AND DISCUSSION 
 
 The proposed MCRS algorithm is compared with 
single criteria resource selection algorithms under different 
system parameters. Simulation parameters are listed in 
Table 1. The setup makes this grid environment non 
dedicated, heterogeneous and dynamic. 
 
Effect of grid size: The following experiments are 
carried out to test the scalability effect of the grid size. 
Figure 2-4 compares the performances of LARS, 
BARS, PARS and MCRS under different grid sizes. In 
this experiment grid sizes vary from 10 to 50 clusters (S 
= 10, 20, 30, 40, 50). 
 Initially jobs are processed in the grid consisting of 
the smallest size (S = 10, 20), then more clusters are 
added to the grid environment until all 50 clusters are 
used. In this experiment how different grid size takes 
the effect on TTR is considered. To check the 
performance, 1000 jobs are submitted. From the results 
in Fig. 2, for all the four strategies, smaller grid size 
leads to higher TTR. But when the size of the grid is 
larger, TTR decreases quickly for all the algorithms. 
Under a small size grid (S = 10) the TTR using MCRS 
and LARS are close to each other but MCRS can be as 
much as 78%, 75% shorter than that using PARS, 
BARS respectively. When the size of the grid 
increases(S = 50) the TTR of MCRS can be as much as 
17% shorter than LARS. Figure 3 shows the throughput 
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with varying number of grid resources. MCRS achieves 
good throughput in a small size grid scenario with 
LARS, PARS and BARS closely behind. When the grid 
size reaches 50, throughput of MCRS increases quickly 
as job requirements can be satisfied by many resources. 
It can be observed from Fig. 4 that MCRS outperforms 
LARS, PARS and BARS in terms of resource 
utilization in all cases. A further observation is that 
the advantage of MCRS over LARS, BARS and 
PARS are more pronounced as the grid size 
increases. Table 2 shows the performance 
improvement using MCRS over PARS, BARS and 
LARS when grid size is 50. 
 
Table 1: Simulation parameters 
Parameter Value 
Number of clusters 10-50 
Number of nodes/cluster 4-12 
No. of processor/node  1 
No. of nodes required  4-8 
Processing power/node 277-577 MIPS 
Job Length 1000000-100, 00, 000 MI 
Input and Output file size 5000-7000 
No. of Queue/Cluster 1 
Number of jobs 100-800 
Deadline 10 -100 Seconds 
Bandwidth 100KB-1MB 
 

  
Fig. 2: TTR with Grid Size 
 

  
Fig. 3: Throughput with grid size 
 

  
Fig. 4: Resource utilization with grid size 

Effect of job-to-resource ratio: Job-to-resource ratio, 
denoted as Rjr is the ratio of the number of jobs and the 
number of resources. When the numbers of jobs and 
resources are equal, the job-to-resource ratio equals 
1(Rjr =1). When there are more jobs than resources, the 
job-to-resource ratio is more than 1(Rjr>1). When there 
are more resources than jobs, the job-to-resource ratio 
is less than 1(Rjr<1).  
 As shown in Fig. 5, the TTR goes down as the job-
to-resource ratio is decreased. The reason is that the 
more the grid resources offered, the lesser that the  jobs 
need to wait for getting the resource. PARS, BARS, 
LARS and MCRS present good results when the value 
of job-to-resource ratio is small. But when the value of 
the ratio is larger, TTR using PARS and BARS 
increases quickly; the TTR using of MCRS can be 13% 
shorter than that using LARS algorithm. When the 
number of jobs increases, many jobs will have to wait 
for a long time to find a match in PARS, BARS and 
LARS. The MCRS outperforms the BARS, PARS and 
LARS algorithms. From the result of Fig. 6, before Rjr>2, 
the throughput will increase as the job-to resource ratio is 
increased. After Rjr>2, the number of jobs is higher than 
the capacity of the resource, the throughput might 
even decrease since time is wasted on request that 
cannot be processed and are eventually discarded. The 
throughput of BARS and PARS decreases quickly; the 
throughput of MCRS can be 17% more than that using 
LARS algorithm. Considering the resource utilization, 
from the results in Fig. 7, before Rjr >2, the resource 
utilization increases, as job-to-resource ratio increases. 
After Rjr >2, as job-to-resource ratio is higher, the 
resource utilization becomes lower. Because when job-
to-resource ratio increases quickly, the number of grid 
resources is not enough to be allocated to the jobs. 
Table 3 shows the performance improvement using 
MCRS over PARS, BARS and LARS when Rjr is 10. 
 
Table 2: Improvement using MCRS when S = 50 
  Algorithms 
Parameter  PARS (%) BARS (%) LARS (%) 
TTR   91  83  17 
T  27 33 7 
RU  19 25 5 
 

  
Fig. 5: TTR with job resource ratio 
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Fig. 6: Throughput with job resource ratio 
 

 
 
Fig. 7: Resource utilization with job resource ratio 
 
Table 3: Improvement using MCRS when Rjr =10 
  Algorithms 
Parameter PARS (%) BARS (%) LARS (%) 
TTR  80 76 13 
T  33 43 17 
RU  33 39 17 

 
Effect of deadline: How the user deadline affects 
TTR, throughput and resource utilization is 
illustrated in Fig. 8-10 respectively. This experiment is 
simulated with 1000 jobs, 40 resources having different 
resource configurations and the user deadline (d) is 
varied from 20-70 sec. 
 Figure 8 reveals the impact of different deadline 
constraints on the TTR. When the deadlines are 
small, all  the  algorithms take more time to complete 
jobs, because the jobs can get few resources. Larger 
deadline enable jobs to get more resources and obtain 
the result in less time. When the deadline increases 
MCRS outperforms the LARS, BARS and PARS 
algorithms because MCRS considers multiple criteria to 
select the resource, so the incoming jobs can be 
scheduled to multiple resources than other algorithms. 
From Fig. 9  it   can  be   inferred that when increasing  

 
 
Fig. 8: TTR with deadline 
 

 
 
Fig. 9: Throughput with deadline 
 

 
 
Fig. 10: Resource utilization with deadline 
 
Table 4: Improvement using MCRS when d=70 
      Algorithms 
Parameter PARS (%) BARS (%) LARS (%) 
TTR  89 87 24 
T   18 24 7 
RU   16 22 5 
 
deadline the throughput becomes higher. Increasing the 
deadline will facilitate the number of jobs to be 
admitted by the system. When increasing the deadline 
by d = 50, the throughput in MCRS is 39% more than 
that with d = 20.When d = 70, the throughput increases 
to nearly 52% compared with d=20. Considering the 
resource utilization, from the results in Fig 10, as the 
deadline is higher, the resource utilization becomes 
higher. When d =70, the resource utilization in MCRS 
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is 24% more than utilization by d=20, because when the 
deadline decreases quickly the jobs will be prevented 
from obtaining resources. Table 4 shows the 
performance improvement using MCRS over PARS, 
BARS and LARS when d is 70. 
 

CONCLUSION 
 
 In this study the performance of proposed MCRS 
algorithm is compared with the conventional single 
criteria resource selection algorithms. The experimental 
results demonstrate that proposed algorithm effectively 
schedule the grid jobs by considering multiple criteria 
in spite of highly dynamic nature of grid. The analysis 
clearly reveals that it is important to consider multiple 
criteria together to select the optimal resource, rather 
than considering them separately. Throughout all the 
varied experimental scenarios simulated, the proposed 
MCRS algorithm maintains its superiority over many 
single criteria resource selection algorithms. 
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