
Journal of Computer Science 7 (4): 493-498, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Malarvizhi Nandagopal, Ramanujan Computing Centre, Anna University Chennai, India
493

Performance Analysis of Resource

Selection Algorithms in Grid Computing Environment

Malarvizhi Nandagopal and Rhymend Uthariaraj
Ramanujan Computing Centre, Anna University, Chennai, India

Abstract: Problem statement: Meta- scheduling has become important due to increased number of
jobs and resources in the area of grid computing to achieve the objectives of grid users and grid
resources. Approach: A variety of factors need to be considered for effective scheduling of resources
in such environments such as total time job spend in the grid system, global and local allocation
policies and resource utilization. A general and extensible scheduling architecture addressing these
issues is proposed. Within this architecture a Multi Criteria Resource Selection (MCRS) algorithm is
developed and performance of this algorithm is evaluated using simulations for a wide range of
parameters. To select a resource for job execution the proposed algorithm considers multiple criteria
like processing power, workload and network bandwidth of the resource. Results: The proposed
algorithm is compared with the conventional single criteria resource selection algorithms.
Conclusion: Simulation results show that in order to improve the performance of both user and
resource it is important to consider multiple criteria together to select the optimal resource, rather than
considering them separately.

Key words: Performance analysis, LARS algorithm, computing environment, Meta- scheduling,

Multi Criteria Resource Selection (MCRS), Grid Information Server (GIS), Power Aware
Resource Selection (PARS)

INTRODUCTION

 Grid computing uses the resources of many
separate computers connected by a network to solve
large scale problems. The resources may involve CPU
cycles, memory, bandwidth, applications and
databases on remote systems. These heterogeneous
resources are distributed and owned geographically by
different organizations for solving large scale
problems in science, engineering and commerce
(Foster et al., 2001). The tremendously large number
and the heterogeneous potential of grid resources
cause the resource selection challenge to be a
significant effort topic in grid environments.
 Grid scheduling is defined as the process of
making scheduling decisions involving allocating jobs
to resources over multiple administrative domains. Grid
scheduling is usually viewed as a hierarchical problem
with two levels. At the first level, called meta-
scheduling, a grid scheduler selects the resources to be
used by a job. At the second level, called local
scheduling, a local scheduler schedules the jobs
assigned to it. The grid scheduler and the local
scheduler differ in that the latter only manages a single
resource, e.g. a single cluster with multiple machines,
while the former considers more than one resource in

making its decisions. In particular, the grid scheduler
receives jobs from grid users and generates job-to
resource assignments, by optimizing some objective
function. In this study more interesting is in the first
level of scheduling, the grid scheduling level.
Widespread availability of low-cost, high performance
computing hardware and the rapid expansion of the
Internet and advances in computing networking
technology have led to an increasing use of
heterogeneous computing systems (Kontothanassis and
Goddeau, 2005). Such systems are constructed by
networking various machines with different capabilities
and coordinating their use to execute jobs. The different
phases of grid scheduling process have been discussed
(Malarvizhi and Uthariaraj, 2008). A multi-agent
architecture that addressed resource management and
application execution with support for Quality of
Services (QoS) in grid environment is presented (Rezaee
et al., 2008). Grid scheduling algorithms in different
occasions are discussed by (Benoit et al., 2005).
 According to (Jiang et al., 2008), job behavior in
the job waiting queue is considered as an important
factor for scheduling algorithm. The data access cost is
also aggregated with the job waiting queue in order to
reduce the job turnaround time. A framework that
includes meta-scheduling, local scheduler and dataset

J. Computer Sci., 7 (4): 493-498, 2011

494

scheduler was proposed by (Ranganathan and Foster,
2003). Regarding meta-scheduler, the data access cost
and the job waiting queue are the only criteria
considered in the decisions. Ernemann et al., (2004)
proposed a meta-scheduler in which scheduler selects
the resource that provides the nearest distance to the
required data for the job execution to reduce the job
completion time. Hence, the data access cost is the
main factor which is focused in the scheduler. Ding et
al. (2004) provide an adaptive meta-scheduler in which
the best resource is the one that provides highest
computation. The computational power of the resource
is the main factor which is focused in the scheduler.
AL-Khateeb et al. (2009) considered a new factor
namely the job ratio which is used to reduce the job
turnaround time by submitting jobs in batches rather
than submitting the jobs one by one. The job execution
time and the data access time for each job is monitored
and computed to provide the Job-Ratio. An elaborate
prediction function is produced for computing the Job-
Ratio based on the history file and other grid services
tools. Malarvizhi and Uthariaraj (2009) discussed about
the mechanism for scheduling jobs to resources by
considering multiple criteria but did not compare the
performance with single criteria algorithms.
 In some existing methods, the grid scheduler
decides the best resource based on the number of jobs
that is waiting in the queue. While other proposed
methods select the resource based on the data access
cost which includes data transfer time, data locations
and storage access latency. Some other proposed
methods select the resource based on the processing
power of the resource. These resource selection
methods based on any one criteria is insufficient for the
best decision, because the resources are heterogeneous
and administered by different administrative domains.
Considering only job waiting time or file transfer time
or processing power of the resource does not yield best
schedule in the heterogeneous grid environment.
 In this study, Multi Criteria Resource Selection
(MCRS) algorithm is developed for the grid
environment. The overall objective of the scheduler
presented here is to select the resource (cluster) that gives
the shortest time for job completion for each job,
including the time for file staging (file transferring),
resource queue waiting and job execution. The
performance of the proposed MCRS algorithm is
compared with the following single criteria resource
selection algorithms:

• Load Aware Resource Selection (LARS): Job is

scheduled to the resource that has the least
workload. Load is simply defined as the number
of jobs waiting to run

• Bandwidth Aware Resource Selection (BARS): Job
is scheduled to the resource that has more
bandwidth

• Power Aware Resource Selection (PARS): Job is
scheduled to the resource that has more
computational power.

MATERIALS AND METHODS

 In topological point of view, grid is considered as a
collection of heterogeneous clusters as shown in Fig. 1.
There is a global scheduler (Grid Scheduler) which
communicates with each one of the distributed clusters.
For simplicity it is assumed that each cluster has two
nodes and each node has one machine and each
machine has one processing element. The scheduler
serves jobs in the FCFS order.
 Some of the important components in the
scheduling framework are described below:
 GIS contains information about all available grid
resources. Whenever a scheduler has jobs to execute, it
consults GIS to get information about available grid
resources. Grid users register themselves to the GIS of a
grid by specifying QoS requirements. The QoS
requirement consists of deadline (D), number of nodes
required and size of each job measured in Millions
Instructions (MI).

Grid scheduler: Grid scheduler is responsible for
receiving jobs from grid users, selects feasible
resources for those jobs according to acquired
information and finally generates jobs - to- resource
mappings. The entities of scheduler are Resource
Selector, Matchmaker, TTR Estimator and Job
Dispatcher. The matchmaker entity performs match
making of the resources and job requirements by
contacting GIS and filter out the resources that satisfies
job requirements. TTR estimator estimates the total
time spent by the job on each matched resource based
on transfer time, queue wait time and execution time of
the job. Resource selector selects the resource with
minimum TTR. Then the job dispatcher dispatches the
job one by one to the selected resource.

MCRS algorithm:

• Generate a list of all individual requests by

validating the user specification(s)
• Contact GIS to obtain a list of available resources
• Query each resource to obtain static and dynamic

information such as hardware and software
characteristics, current status, work load and so on

• For each job Ji with deadline Di from a queue do

J. Computer Sci., 7 (4): 493-498, 2011

495

Fig: 1. Grid Scheduling Framework

• Filter out the resources that do not fulfill the job

requirements and also the unauthorized users
• For each filtered resource Rj at which this job can

be executed do
• Retrieve estimated TTR of job TTRJi, Rj
• Filter out the resource Ri in which TTRJi, Ri > Di
• Assign job Ji to resource Rbest so that TTRJi, Rbest =

jR
Min (TTRJi,,Rj)

• end for

• end for

Estimation of TTR: The TTR for a job j in resource r
includes transmission time of input and output data to
and from r, waiting time of j in r and the service time of
j when assigned to r. For simplicity TTR is expressed as
ttotal and is defined by Eq. (1):

jr

totalt = jr

transfert + jr

waitt + jr

processt (1)

 The estimated transmission time of the j from the
scheduler to the resource r can be determined by Eq.
(2):

jr

transfert =

r

j

BW

S
 (2)

 where Sj is the size of the job j and BWr is the
network bandwidth between the scheduler and the
resource r.
 Processing Time of the job j in resource r is defined
by Eq.(3):

jr

processt =
r

jS

PP
 (3)

 where PPr represents the processing power of the
resource r.Waiting Time of the job j in the resource
queue r could be estimated by the sum of all processing
time of jobs in waiting queue of r which has been
assigned to that resource before arriving of job j and the
remaining processing time of job j-1 executed in the
resource and is defined by Eq. (4):

 jr

waitt =
n

i 1=
∑ r

i

processt +
r

j 1

remainingt − (4)

where n is the number of jobs in the resource queue.
The remaining time is calculated by Eq.(5):

r

j 1

remainingt − =
r

j 1

processt − - (
r

j 1

subt − -
cur rt) (5)

where

r

j 1

subt − represents submission time of job j-1 in

resource r and
cur rt represents current time of resource

r. MCRS algorithm selects the resource r for job j
which gives minimum TTR and is expressed by Eq.(6):

 Rselect = Min { jr

totalt }1<j<n, 1<r<m (6)

 Where n represents number of jobs and m
represents number of resources.

RESULTS AND DISCUSSION

 The proposed MCRS algorithm is compared with
single criteria resource selection algorithms under different
system parameters. Simulation parameters are listed in
Table 1. The setup makes this grid environment non
dedicated, heterogeneous and dynamic.

Effect of grid size: The following experiments are
carried out to test the scalability effect of the grid size.
Figure 2-4 compares the performances of LARS,
BARS, PARS and MCRS under different grid sizes. In
this experiment grid sizes vary from 10 to 50 clusters (S
= 10, 20, 30, 40, 50).
 Initially jobs are processed in the grid consisting of
the smallest size (S = 10, 20), then more clusters are
added to the grid environment until all 50 clusters are
used. In this experiment how different grid size takes
the effect on TTR is considered. To check the
performance, 1000 jobs are submitted. From the results
in Fig. 2, for all the four strategies, smaller grid size
leads to higher TTR. But when the size of the grid is
larger, TTR decreases quickly for all the algorithms.
Under a small size grid (S = 10) the TTR using MCRS
and LARS are close to each other but MCRS can be as
much as 78%, 75% shorter than that using PARS,
BARS respectively. When the size of the grid
increases(S = 50) the TTR of MCRS can be as much as
17% shorter than LARS. Figure 3 shows the throughput

J. Computer Sci., 7 (4): 493-498, 2011

496

with varying number of grid resources. MCRS achieves
good throughput in a small size grid scenario with
LARS, PARS and BARS closely behind. When the grid
size reaches 50, throughput of MCRS increases quickly
as job requirements can be satisfied by many resources.
It can be observed from Fig. 4 that MCRS outperforms
LARS, PARS and BARS in terms of resource
utilization in all cases. A further observation is that
the advantage of MCRS over LARS, BARS and
PARS are more pronounced as the grid size
increases. Table 2 shows the performance
improvement using MCRS over PARS, BARS and
LARS when grid size is 50.

Table 1: Simulation parameters
Parameter Value
Number of clusters 10-50
Number of nodes/cluster 4-12
No. of processor/node 1
No. of nodes required 4-8
Processing power/node 277-577 MIPS
Job Length 1000000-100, 00, 000 MI
Input and Output file size 5000-7000
No. of Queue/Cluster 1
Number of jobs 100-800
Deadline 10 -100 Seconds
Bandwidth 100KB-1MB

Fig. 2: TTR with Grid Size

Fig. 3: Throughput with grid size

Fig. 4: Resource utilization with grid size

Effect of job-to-resource ratio: Job-to-resource ratio,
denoted as Rjr is the ratio of the number of jobs and the
number of resources. When the numbers of jobs and
resources are equal, the job-to-resource ratio equals
1(Rjr =1). When there are more jobs than resources, the
job-to-resource ratio is more than 1(Rjr>1). When there
are more resources than jobs, the job-to-resource ratio
is less than 1(Rjr<1).
 As shown in Fig. 5, the TTR goes down as the job-
to-resource ratio is decreased. The reason is that the
more the grid resources offered, the lesser that the jobs
need to wait for getting the resource. PARS, BARS,
LARS and MCRS present good results when the value
of job-to-resource ratio is small. But when the value of
the ratio is larger, TTR using PARS and BARS
increases quickly; the TTR using of MCRS can be 13%
shorter than that using LARS algorithm. When the
number of jobs increases, many jobs will have to wait
for a long time to find a match in PARS, BARS and
LARS. The MCRS outperforms the BARS, PARS and
LARS algorithms. From the result of Fig. 6, before Rjr>2,
the throughput will increase as the job-to resource ratio is
increased. After Rjr>2, the number of jobs is higher than
the capacity of the resource, the throughput might
even decrease since time is wasted on request that
cannot be processed and are eventually discarded. The
throughput of BARS and PARS decreases quickly; the
throughput of MCRS can be 17% more than that using
LARS algorithm. Considering the resource utilization,
from the results in Fig. 7, before Rjr >2, the resource
utilization increases, as job-to-resource ratio increases.
After Rjr >2, as job-to-resource ratio is higher, the
resource utilization becomes lower. Because when job-
to-resource ratio increases quickly, the number of grid
resources is not enough to be allocated to the jobs.
Table 3 shows the performance improvement using
MCRS over PARS, BARS and LARS when Rjr is 10.

Table 2: Improvement using MCRS when S = 50
 Algorithms
Parameter PARS (%) BARS (%) LARS (%)
TTR 91 83 17
T 27 33 7
RU 19 25 5

Fig. 5: TTR with job resource ratio

J. Computer Sci., 7 (4): 493-498, 2011

497

Fig. 6: Throughput with job resource ratio

Fig. 7: Resource utilization with job resource ratio

Table 3: Improvement using MCRS when Rjr =10
 Algorithms
Parameter PARS (%) BARS (%) LARS (%)
TTR 80 76 13
T 33 43 17
RU 33 39 17

Effect of deadline: How the user deadline affects
TTR, throughput and resource utilization is
illustrated in Fig. 8-10 respectively. This experiment is
simulated with 1000 jobs, 40 resources having different
resource configurations and the user deadline (d) is
varied from 20-70 sec.
 Figure 8 reveals the impact of different deadline
constraints on the TTR. When the deadlines are
small, all the algorithms take more time to complete
jobs, because the jobs can get few resources. Larger
deadline enable jobs to get more resources and obtain
the result in less time. When the deadline increases
MCRS outperforms the LARS, BARS and PARS
algorithms because MCRS considers multiple criteria to
select the resource, so the incoming jobs can be
scheduled to multiple resources than other algorithms.
From Fig. 9 it can be inferred that when increasing

Fig. 8: TTR with deadline

Fig. 9: Throughput with deadline

Fig. 10: Resource utilization with deadline

Table 4: Improvement using MCRS when d=70
 Algorithms
Parameter PARS (%) BARS (%) LARS (%)
TTR 89 87 24
T 18 24 7
RU 16 22 5

deadline the throughput becomes higher. Increasing the
deadline will facilitate the number of jobs to be
admitted by the system. When increasing the deadline
by d = 50, the throughput in MCRS is 39% more than
that with d = 20.When d = 70, the throughput increases
to nearly 52% compared with d=20. Considering the
resource utilization, from the results in Fig 10, as the
deadline is higher, the resource utilization becomes
higher. When d =70, the resource utilization in MCRS

J. Computer Sci., 7 (4): 493-498, 2011

498

is 24% more than utilization by d=20, because when the
deadline decreases quickly the jobs will be prevented
from obtaining resources. Table 4 shows the
performance improvement using MCRS over PARS,
BARS and LARS when d is 70.

CONCLUSION

 In this study the performance of proposed MCRS
algorithm is compared with the conventional single
criteria resource selection algorithms. The experimental
results demonstrate that proposed algorithm effectively
schedule the grid jobs by considering multiple criteria
in spite of highly dynamic nature of grid. The analysis
clearly reveals that it is important to consider multiple
criteria together to select the optimal resource, rather
than considering them separately. Throughout all the
varied experimental scenarios simulated, the proposed
MCRS algorithm maintains its superiority over many
single criteria resource selection algorithms.

REFERENCES

AL-Khateeb, A., R. Abdullah and N.A. Rashid, 2009.

Job type approach for deciding job scheduling in
grid computing systems. J. Comput. Sci., 5: 745-
750. DOI: 10.3844/jcssp.2009.745.750

Benoit, A., M. Cole, S. Gilmore and J. Hillston, 2005.
Enhancing the effective utilisation of grid clusters
by exploiting on-line performability analysis.
Proceedings of the IEEE International Symposium
on Cluster Computing and the Grid, May 9-12,
Edinburgh University, UK., pp: 317-324. DOI:
10.1109/CCGRID.2005.1558571

Ding, S.L., J.B. Yuan and J.B. Ju, 2004. An algorithm
for agent-based task scheduling in grid
environments. Proceedings of the International
Conference on Machine Learning and Cybernetics,
Aug. 26-29, Jilin University, Changchun, China,
pp: 2809-2814. DOI:
10.1109/ICMLC.2004.1378510

Ernemann, C., V. Hamscher and R. Yahyapour, 2004.
Benefits of global grid computing for job
scheduling. Proceedings of the 5th IEEE/ACM
International workshop on Grid Computing, Nov.
8-8, IEEE Computer Society, USA., pp: 374-379.
DOI: 10.1109/GRID.2004.13

Foster, I., 2001. The anatomy of the grid: Enabling
scalable virtual organizations. Int. J. High
Perfomance Comput. Appl., 15: 200-222. DOI:
10.1177/109434200101500302

Jiang, J., H. Ji, G. Xu and X. Wei, 2008 .Scheduling
algorithm with potential behaviors. J. Comput., 3:
51-59. DOI: 10.4304/jcp.3.12.51-59

Kontothanassis, L. and D. Goddeau, 2005. Profile
driven scheduling for a heterogeneous server
cluster. Proceeding of the IEEE International
Conference Workshops on Parallel Processing,
June 14-17, IEEE Xplore, pp: 336-345. DOI:
0.1109/ICPPW.2005.73

Malarvizhi, N and V.R. Uthariaraj, 2008. A broker-
based approach to resource discovery and selection
in grid environments. Proceedings of the IEEE
International Conference on Computer and
Electrical Engineering, Dec. 20-22, IEEE Xplore,
Phuket, pp: 322-326. DOI:
10.1109/ICCEE.2008.149

Malarvizhi, N. and V.R. Uthariaraj, 2009. A new
mechanism for job scheduling in computational
grid network environments. Active Media
Techonol., 5820: 490-500. DOI: 10.1007/978-3-
642-04875-3_50

Ranganathan, K. and I. Foster, 2003. Simulation studies
of computation and data scheduling algorithms for
data grids. J. Grid Comput., 1: 53-62. DOI:
10.1023/A:1024035627870

Rezaee, A., A.M. Rahmani, S. Parsa and S. Adabi,
2008. A multi-agent architecture for qos support in
grid environment. J. Comput. Sci., 4: 225-231.
DOI: 10.3844/jcssp.2008.225.231

