
Journal of Computer Science 7 (3): 434-439, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: N .Velvizhi, Department of Computer Applications RMD Engineering College, Chennai, India
434

Improving Computation Power by Reducing Query

Response Time in Peer-to-Peer Environment

1Velvizhi Nandagopal and 2 D. Manjula
1Department of Computer Applications,

RMD Engineering College, Chennai, India
2Department of Computer Science and Engineering,

Anna University, Chennai, India

Abstract: Problem statement: The Peer-to-Peer (P2P) was an emerging model and was being widely
adopted in today’s internet computing.P2P traffic contributes the largest portion of the internet traffic
which was unnecessary and led to delay. In existing Scalable Bipartite Overlay (SBO) network, Out of
“N” peers, one group of peers were probing the messages (or) queries whereas the other group of peers
were computing. This resulted in high query response time .Since the system was bipartite all peers
were not capable of computing and probing, resulting in increased computation time. Approach: To
overcome the above issue we propose a system RQR (Reduction on query response time) which is
decentralized and unstructured where each and every peer can perform both probing and computing
with no restrictions. Results: Optimal path finding algorithm is designed to find all possible path
existing in the P2P network along with the optimal path. Conclusion: Our comparison with earlier
approaches show that less than 60% of reduction on query response time which increases the system
performance.

Key words: Unstructured Peer-to-Peer (P2P), query response time, decentralized architecture,

Scalable Bipartite Overlay (SBO), optimal path

INTRODUCTION

 A P2P network is composed of an unbounded set
of peers. Each peer has its own role. Every peer to peer
network uses one of the following architectural formats.
Centralized Architecture, Decentralized Architecture
and Hybrid Architecture. Among these the
decentralized architecture does not contain a central
server, which purist administrators would consider a
“True” peer to peer network. Decentralized architecture
further can be divided into structured, unstructured and
hybrid p2p networks .In structured p2p overlays a
distributed hash table data structure is used in which
every data item can be located within a small number of
hops at the expense of keeping some state information
locally at the nodes (Demetrios et al., 2007).
Unstructured p2p systems (Cai and Wang, 2004;
Chawathe et al., 2003; Punithavathi and Duraiswamy,
2010) are highly infrastructured, because of their
decentralized nature we can easily perform updates,
increased storage and it offers fault tolerant properties.
The centralized architecture maintains a central global
file index for searching, and it is commonly believed
that the central index is a single point of failure for the
system (Liu et al., 2005; Khan et al., 2005).

 Unstructured p2p networks do not include a strict
organization of peers or their content (Gudu and
Yuksel, 2009). In existing p2p systems traffic
contributes the largest portion of the internet traffic
which is unnecessary. To address the limitation of
existing works and meet the requirements we built a
decentralized unstructured p2p system supporting the
following constraints.

• Scalable: The system may be extended based on

the request from new incoming peers
• Churn: Peers can enter and leave the network at

any time
• Failures: peers can crash at any time without

warning other peers (Weiss et al., 2010)

Related work: So many techniques have been
implemented to reduce traffic in p2p environment.
Common Junction Methodology (CJM) that resolves
the topology mismatch problem and also reduce the
large amount of redundant traffic over the network
(Bhushan et al., 2010). Based on their measurements of
popular p2p systems such as Fast Track (including
KazaA and Grokster) Gnutella and Direct connect, the

J. Computer Sci., 7 (3): 434-439, 2011

435

studies in (Qiu and Srikant, 2004; Ritter, 2001; Li and
Chao, 2010; Chen and Liu, 2009) have shown that p2p
traffic contributes the largest portion of the internet
traffic. Around 18 percent of all Gnutella queries return
no results, despite the fact that for atleast two thirds of
these queries, the desired results are available in the
system. In addition,such queries often suffer long
response time (Liu et al., 2005; Modarresi et al., 2009).
 Broadcast-based systems, eg., Gnutella use
message flooding to propagate queries. In this the
source node sends message to its neighbor, inturn the
received neighbor sends message to their neighbors. So
there is no specific destination. Every neighbor peer is
contacted and forwards the message to its own neighbors.
Such systems have been successfully deployed in
worldwide adhoc networks due to their simplicity and
versatility (Zhu et al., 2008; Tang et al., 2008).
 In Adaptive Connection Establishment (ACE) there
is an overlay multicast tree among each source node
and the source peer has certain diameter and further
optimizes the neighbor connections that are not on the
tree while retaining the search scope (Liu et al., 2005),
which is not scalable.
 In clustered p2p network,the nodes are classified
into supernode and ordinary nodes.The supernode
connect among themselves to form an overlay network
just like the nodes in a flat p2p network.A supernode
and all ordinary nodes connected to it form a
cluster.Each supernode maintains an index of all the
objects available in its local cluster (Weiss et al., 2010).
A superpeer table is maintained by a bootstrap
server.Any peer joining the P2P network and wishing to
become a superpeer must first issue a request to the
bootstrap server (Zhu et al., 2008).
 In SBO (Scalable Bipartite P2P Overlay Network)
design, the nodes are categorized into two in which one
category of nodes only probe the messages (or) queries
where as the other category of peers only computes
(Liu et al., 2007). In this technique the group of peers
which is assigned for computation purpose will be
loaded heavily when compared to the probing
peers.Also,Here at initially Bootstraping node assigns
the color of the system say red color for probing and
white color for computing.
 ICRQR doesnot have any Bootstraping server to
assign the color and task and there is no such peers like
only for either probing (or) computing, Thus every peer
in ICRQR has its own roll (Either Bootsraping or client
based on the situation). All peers are capable of both
probing and computing which increases the system
performance and reduces the query response time.
 In SBO, initially when a new peer wants to join in
the existing network ,each joining peer is randomly

assigned either probing peer (or) computing peer. In
this case either probing peer may be more than the
computing peers in numbers or vice versa. Because of
above assumption the throughput of the system goes
down. In SBO, Probing peer may have an immediate
neighbor with less traffic and query response time but it
may not be a computing peer. Here we need to go for
other peer which can perform computation, this
consumes more time. Thus the response time will be
increased. This situation reduces the system
performance. In ICRQR if a new peer is joining in the
network, then the joining peer does both probing and
computing based on the request from other peers and
hence the waiting time and processing time will be
comparatively less than the existing SBO. This results
in Reduction in query response time and increased
throughput.

Design of ICRQR: This system is an efficient method to
select query forwarding paths and logical neighbors. In
ICRQR design, all peers which are connected in the
network are in ready state to probe or compute the queries.
 The optimal path algorithm finds all the possible
paths existing from source to destination along with the
optimum path through which the query can be
forwarded. After computing all the above, the query is
forwared through the optimal path and the time taken to
send and receive the queries are recorded as Adjacency
matrix. At initially time quantum is assigned along with
system time for peers. If any peer is not arrived
response within the time quantum given to them, then
the queries are resend and the waiting time is calculated
along with the processing time.
 In Fig. 1, there are 4 peers namely P1,P2,P3 and P4
which are connected through common network. In the
above example Peer “P1” is in need of some data which
is there in either “P2”,”P3” or “P4”. Since peer P1 is in
need of data , “P1”can be considered as source peer and
“P1” will have the following details in the monitor
display:

• The list of other peers which are connected to

source peer “P1”(i.e., IP Address of other peers)
• Time of joining in the network
• Time of leaving from the network

The peers details: In our example, the following
details are available in the monitor display of peer P1.
IP Address of peer ”P2” (Along with joining time in the
network and leaving time),IP Address of peer
“P3”(Along with joining time in the network and
leaving time) and IP Address of peer “P4” (Along with
joining time in the network and leaving time).The new

J. Computer Sci., 7 (3): 434-439, 2011

436

Fig. 1: Example of P2P Network (a)

peer “P5” wants to join in the network,”P5” Should
send ping message to other peers which are connected
in the existing network. Similarly we can have “N”
number of peers. The set of peers which are active will
be displayed in the source peer monitor along with the
time in which a particular peer joined. Once a peer has
joined in the network, it will periodically ping the
network connections and obtain the IP address of other
peers in the network which can be used to create new
connections for the peer’s rejoining. The peer which is
crashed cannot be displayed in the monitor so that the
updated network alone are available. Thus peers can
join and leave the network at any time.

Finding paths: At initially TTL=0, when the message
gets hit the time is recorded in Matrix format. If any
peer receives the message with same messageID which
was already received by the peer then the message will
be discarded or updated by the receiving peer. Since
duplicate messages severely affect the response time
and scalability of P2P systems.
 Figure 2a-d shows the all possible paths from
source node P1 to destination P4. The set of all possible
paths are (1)P1→P2→P4 (2) P1→P2→P3→P4 (3)
P1→P3→P2→P4 4) P1→P3→P4. Among these, the
path which takes minimum time to hit the query can be
considered as the optimal path. To find the optimal path
,the optimal path algorithm is applied. Here in this
example the optimal path is P1→P2→P4. Once the
optimal path is identified, then the query will be sent in
the regular interval and query response time will be
evaluated.

Comparison of algorithms: There are algorithms to
find the optimal path based on the weights in a given
graph. Dijkstra’s Algorithm, is a graph search algorithm
that solves the single-source shortest path problem for a

(a)

(b)

(c)

(d)

Fig. 2: Set of all possible path

graph with nonnegative edge path costs, producing a
shortest path tree. Algorithm starts at the source vertex,
S, it grows a tree, T, that ultimately spans all vertices
reachable from S. Vertices are added to T in order of
distance i.e., first S, then the vertex closest to S, then

J. Computer Sci., 7 (3): 434-439, 2011

437

the next closest and so on. This algorithm has
complexity of an order of n2. So it is efficient enough to
use for relatively large problems. The major
disadvantage of the algorithm is the fact that it does a
blind search there by consuming a lot of time waste of
necessary resources. This increases the computation time.
 PRIM’S algorithm finds a minimum-cost spanning
tree of an edge-weighted, connected, undirected graph
G(V,E). This algorithm constructs the minimum-cost
spanning tree of a graph by selecting edges from the
graph one-by-one and adding those edges to the
spanning tree. Time taken to check for smallest weight
arc makes it slow for large numbers of nodes. This
results in high processing time.
 Difficult to program, though it can be programmed
in matrix form.
 Floyd-Warshall’s Algorithm is a graph analysis
algorithm for finding shortest paths in a weighted graph
(with positive or negative edge weights). A single
execution of the algorithm will find the lengths
(summed weights) of the shortest paths between n all
pairs of vertices though it does not return details of the
paths themselves. The algorithm is an example of
dynamic programming. The complexity of this
algorithm is O (n3).The disadvantage of this algorithm
is the inclusion of waiting time along with processing
time which degrades the system.

MATERIALS AND METHOD

Optimal Path Algorithm: This algorithm finds the all
possible paths from source to destination peer and
hence finds the optimal path. Unlike the above
mentioned algorithms, this algorithm computes the
waiting time and query processing time.The waiting
time of a query is comparatively less because the
optimal path is already determined and through which
we can send and receive the queries. This Algorithm
has the complexity of order of O (n2).

1. Initialize TTL = 0
2. Get the Adjacency Matrix [A] for the Network and
copy it to path [][]
3. Get all possible path based on matrix A
4. Procedure Optimal Path ()
 For k: = 1 to no of vertices
 For I := 1 to no of vertices
 For j: = 1 to no of vertices
 Path[i][j] = minimum (path[i][j],

path[i][k]+path[k][j]);

where I,j are the source and the destination ,k is the
intermediate node and path[i][j] stores the shortest path.

5. Get the system time at the time of sending the query
6. Calculate the Actual Time.
7. Processing time =

A[source,destination]+A[destination,source] (Time
to send the request and receiving acknowledgment)

8. Waiting time WT (n) = Waitingtime(n-
1)+processing time](n-1)(in general):

9. Response time(n) = Processing time(n)+ waiting
time(n)

10. Calculate Average Waiting Time(AWT) =
n

i 1
WTi

n
=
∑

11. Average Response time(RT) for “n” number of

queries =

n

i 1
RTi

n
=
∑

where I = 1,2,3…n.

12. In case of not receiving the response apply
 If (Waiting Time == Systemtime)
 If(Response Received)
 If(flag==1)then
 Success(process completed)
 Exit
 End if
 Else Resend the queries
 End if
 End if

RESULTS AND DISCUSSION

 The monitor display will have the following
details:

IP Address of P1(10.0.4.32)8.00AM
IP Address of P2(10.0.4.33)8.02AM
IP Address of P3(10.0.4.32)8.07AM
IP Address of P4(10.0.4.32)8.10AM

 Let predetermined periodic Time Interval be TI. At
initially 50 Queries were sent in the periodic Time
Interval 50, 100 and 150 ms. The response time is
recorded for first series. The same process is continued
with 100 and 150 queries and the corresponding
response time is recorded in the Table 1.

J. Computer Sci., 7 (3): 434-439, 2011

438

Table 1: Response time reduction with different time interval
 Number of
 queries
S. No: (in 10 sec) TI = 50ms TI = 100ms TI = 150ms
1 5 3.10 2.30 3.42
2 10 4.23 4.43 3.58
3 15 6.20 3.29 3.39
4 20 9.00 3.98 4.11
5 25 12.10 6.18 12.27

Table 2: Comparison of average response time (SBO AND ICRQR)
 Average Average
 Response Response
 Number of Time(in Time(in
 Queries millisec) millisec)
S.No (10 sec) (SBO) (ICRQR)
1 5 4.01 2.10
2 10 7.23 3.90
3 15 10.45 5.92
4 20 14.83 7.99
5 25 18.75 10.78

 Figure 3 shows the result of some samples of TI at
50-150 milliseconds respectively, where x-axis
indicates the number of queries and y-axis represents
average response time per query in milliseconds.
Though the queries are sent at different time interval
the response time is not affected during heavy traffic.
Similarly number of queries sent per unit time also can
be increased based on the requirements and availability.
Finally the throughput of the system remains same. The
SBO architecture uses Bootstraping peer which acts as
a server and it does all process. So, all other peers
depend on bootstrapping node and hence the system is
not directly communicating each other. This takes much
time to complete a process or set of processes. In
ICRQR a peer communicates directly with other peer
and the result shows that the query is processed through
optimal path. Thus the response time of our system is
50% less than the earlier system SBO.
 Table 2 show that the average response time (in
milliseconds)of SBO and ICRQR.Here the same set of
queries are sent for processing with two different P2P
design model SBO and ICRQR. The data is arrived in
the regular interval by sending queries range from 50 to
250 are recorded in the following format which is
showed in Table 2.

ICRQR with SBO: We have discussed the design of
SBO to further improve ICRQR. The system is
designed with SBO architecture and sent set of queries
and arrived the response time. Similarly the same set of
queries are sent and recorded the query response time
with ICRQR. The data which we arrived through the
above mentioned design are presented below.

 Fig. 3: Response time reduction in dynamic p2p

environment

Fig. 4: Comparison on response time

 Figure 4 shows the comparitive results of SBO and
ICRQR, where x-axis indicates the number of queries
and y-axis represents average response time per query
in milliseconds. The graph shows that the average
query response time of ICRQR is about 50% less
compared to SBO. In the Fig. 4, we can see that the
convergent speed of SBO is the slowest, so its overall
performance in dynamic environments is not as good as
ICRQR. Overall, ICRQR outperforms SBO.

CONCLUSION

 We propose ICRQR to reduce the query response
time in P2P environment. This system is scalable and
completely distributed. Also, does not require any global
knowledge when a node is optimizing its logical
neighbors. The performance benefit of ICRQR is
consistent with different time intervals and different
amount of queries. ICRQR achieves about 50% of
reduction in query response time. Our experimental
results show that ICRQR comparatively outperforms
existing approach. Further this system can be enhanced
with the security, where only the peers which are probing
or computing can have the original messages, so that the
message is secured from other external causes.

J. Computer Sci., 7 (3): 434-439, 2011

439

REFERENCES

Bhushan, S., M. Dave and R.B. Patel, 2010. CJM: A

Technique to reduce network traffic in p2p
systems. Proceedings of the International
Conference on Advances in Computer
Engineering, June 20-21, Bangalore, Karnataka,
India, pp: 306-308. DOI: 10.1109/ACE.2010.55

Cai, H. and J. Wang, 2004. Foreseer: A novel, locality-
aware peer-to-peer system architecture for keyword
searches. Middleware, 3231: 38-58. DOI:
10.1007/978-3-540-30229-2_3

Chen, H. and Y. Liu, 2009. Difficulty-aware hybrid
search in peer-to-peer networks. IEEE Trans.
Parallel. Distributed Syst., 2: 71-82.

Demetrios, Z.Y., V. Kalogeraki and D. Gunopulos,
2007. PFusion: A P2P architecture for internet-
scale content-based search and retrieval. IEEE
Trans. Parallel. Distributed. Syst., 18: 804-817.

Gudu, H. and M. Yuksel, 2009. Limited scale-free
overlay topologies for unstructured peer-to-peer
networks. IEEE Trans. Parallel. Distributed Syst.,
20: 667-679. DOI: 10.1109/TPDS.2008.150

Khan, Z.A., S. Shahid, H.F. Ahmad, A. Ali and H.
Suguri, 2005. Decentralized architecture for fault
tolerant multi agent system. Proceedings of.
Autonomous Decentralized Systems, Apr. 4-8,
Rawalpindi, Pakistan, pp: 167-174. DOI:
10.1109/ISADS.2005.1452043

Li, J.S. and C.H. Chao, 2010. An efficient superpeer
overlay construction and broadcasting scheme
based on perfect difference graph. IEEE Trans.
Parallel. Distributed Syst., 21: 594-606. DOI:
10.1109/TPDS.2009.94

Liu, Y. S. Member, L. Xiao and L.M. Ni, 2007.
Building a scalable bipartite p2p overlay network.
IEEE Trans. Parallel. Distributed Syst., 18: 1296-
1306. DOI: 10.1109/TPDS.2007.1059

Liu, Y., S. Member, L. Xiao and L.M. Ni, 2005.
Improving unstructured peer-to-peer systems by
adaptive connection establishment. IEEE Trans.
Comput., 54: 1091-1103. DOI:
10.1109/TC.2005.146

Modarresi, A., A. Mamat, H. Ibrahim and N. Mustapha,
2009. Modeling and simulating semantic social
overlay peer-to-peer systems. J. Applied Sci., 9:
3547-3554. DOI: 10.3923/jas.2009.3547.3554

Punithavathi, R. and K. Duraiswamy, 2010. A fault
tolerant mobile agent information retrieval system.
J. Comput. Sci., 6: 553-556. DOI:
10.3844/jcssp.2010.553.556

Qiu, D. and R. Srikant, 2004. Modeling and
performance analysis of bittorrent-like peer-to-peer
networks. Proceedings of the Conference on
Applications, Technologies, Architectures, and
Protocols for Computer Communications,
(SIGCOMM’04), ACM New York, NY, USA., pp:
367-378. DOI: 10.1145/1015467.1015508

Tang, X., J. Xu and W.C. Lee, 2008. Analysis of TTL-
based consistency in unstructured peer-to-peer
networks. IEEE Trans. Parallel. Distributed. Syst.,
19: 1683-1694. DOI: 10.1109/TPDS.2008.44

Weiss, S., P. Urso and P. Molli, 2010. Logoot-undo:
Distributed collaborative editing system on p2p
networks. IEEE Trans. Parallel. Distributed Syst.,
21: 1162-1174. DOI: 10.1109/TPDS.2009.173

Zhu, Z.Z., P. Kalnis and S. Bakiras, 2008. DCMP: A
distributed cycle minimization protocol for peer-to-
peer networks. IEEE Trans. Parallel. Distributed
Syst., 19: 363-377. DOI:
10.1109/TPDS.2007.70732

