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Abstract: Problem statement: Regression via Classification (RvC) is a method in which a regression 
problem is converted into a classification problem. A discretization process is used to covert 
continuous target value to classes. The discretized data can be used with classifiers as a classification 
problem. Approach: In this study, we use a discretization method, Extreme Randomized 
Discretization (ERD), in which bin boundaries are created randomly to create ensembles. Results: We 
show that the proposed ensemble method is useful for RvC problems. We show theoretically that the 
proposed ensembles for RvC perform better than RvC with the equal-width discretization method. We 
also show the superiority of the proposed ensemble method experimentally. Experimental results 
suggest that the proposed ensembles perform competitively to the method developed specifically for 
regression problems. Conclusion: As the proposed method is independent of the choice of the 
classifier, various classifiers can be used with the proposed method to solve the regression method.  
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INTRODUCTION 

 
 In machine learning and data mining fields, 
supervised learning plays an important role (Bishop 
2006; Mitchell, 1997; Halawani and Albidewi, 2010; 
Ahmad and Dey, 2005; Ahmad and Brown, 2009; 
Chandra et al., 2010; Alfred, 2010; Ishrat et al., 2010). 
In a regression problem, the target values are 
continuous, whereas in the classification problem we 
have discrete set of classes. The other difference is that 
regression values have a natural ordering, whereas for 
the classification the class values are unordered 
(Bishop, 2006; Mitchell, 1997). Regression models are 
not easily understood by domain experts and thus 
provide little help in understanding the problem, 
whereas classification models are more 
comprehensible, but not very useful, when the target 
values are continuous. There are some learning 
schemes, like naive Bayes, which are very successful as 
classification techniques, however, they are difficult to 
use as regression schemes. Decision trees (Breiman et 
al., 1984; Quinlan, 1993), neural networks (Bishop, 
2006; Mitchell, 1997), naive Bayes (Bishop, 2006; 

Mitchell, 1997), support vector machines (Vapnik, 
1998; Burges, 1998) are quite popular for classification 
problems, whereas regression trees (Breiman et al., 
1984), neural networks (Bishop, 2006; Mitchell, 1997), 
support vector machines (Vapnik, 1998; Burges, 1998) 
are used for regression problems. 
 Discretization (Dougherty et al., 1995) is a process 
that divides continuous numeric values into a set of 
intervals (bins) that can be considered as categorical 
values. Dougherty et al. (1995) define three axes upon 
which discretization methods can be classified; global 
vs. local, supervised vs. unsupervised and static vs. 
dynamic. Supervised methods use the information of 
class labels whereas, unsupervised methods do not. 
Local methods as the one used in C4.5, produce 
partitions that are applied to localized regions of the 
instance space. Global methods are applied to the entire 
dataset. In static methods, attributes are discretized 
independently of each other; whereas, dynamic 
methods take into account the interdependencies 
between them. Equal-width intervals, equal-frequency 
intervals and unsupervised Monothetic Contrast Criteria 
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(MCC) (Merckt, 1993) are unsupervised methods. 
Discretization methods based on entropy (supervised 
MCC (Merckt, 1993) and Vector Quantization 
(Kohonen, 1989) are supervised methods. Equal-width 
intervals and equal-frequency intervals are global 
methods. The discretization used in the C4.5 decision 
tree growing phase and Vector Quantization are local 
methods. All these methods are static methods. 
Dynamic methods are a promising area of research. As 
these methods are able to capture interdependencies 
between attributes, it may improve the accuracy of 
decision rules. 
 Researchers (Torgo and Gama, 1996; 1997a; 
1997b; Indurkhya and Weiss, 2001) suggest that the 
discretitaion process can be used to convert continuous 
target values into a discrete set of classes and then 
classification models are used to solve the classification 
problems. In other words, in a RvC problem, a 
regression problem is solved by converting into a 
classification problem. This method employs any 
classifier on a copy of the data that has the target 
attribute discretized. The whole process of RvC 
comprises two important stages: 
 
• The discretization of the numeric target variable in 

order to learn a classification model. There are 
different discretzation methods e.g., equal-width, 
equal-frequency (Dougherty et al., 1995) 

• The reverse process of transforming the class 
output of the classification model into a numeric 
prediction. We may use the mean value of the 
target variable for each interval as the final 
prediction 

 
 Ensembles are a combination of multiple base 
models (Hansen and Salamon, 1990; Tumer and Ghosh, 
1996); the final classification or regression results 
depends on the combined outputs of individual models. 
Ensembles have shown to produce better results than 
single models, provided the models are accurate and 
diverse (Hansen and Salamon, 1990;   Minku and Yao, 
2011;  Abdulsalam et al., 2011; Zhang and Lu, 2010). 
Neural networks and decision tree ensembles are quite 
popular. Bagging (Breiman, 1996) and Boosting 
methods (Freund and Schapire, 1997) are general and 
can be used with any classifiers. Bagging and Boosting 
have been used with regression trees for the regression 
problem. Several different methods have been proposed 
to build decision tree ensembles. Breiman (2001) 
proposes Random Forests. To build a tree, it uses a 
bootstrap replica of the training sample, then during the 
tree growing phase, at each node the optimal split is 
selected from a random subset of size K of candidate 

features. Geurts et al. (2006) propose Extremely 
Randomized Trees. Extremely Randomized Trees 
combines the feature randomization of Random 
Subspaces with a totally random selection of the cut-
point. Random decision trees proposed by Fan et al. 
(2006; 2003) use completely random splits points. 
These decision tree ensemble methods have shown 
excellent performance for the regression problems. In 
spite of the excellent performance of pure 
randomization-based ensemble methods, there is little 
theoretical explanation about their performance 
(Rodriguez et al., 2006). 
 The success of an ensemble method depends on its 
ability to create uncorrelated individual models 
(Kuncheva, 2004). However, it is very difficult to 
predict exactly the performance of these ensembles. 
 Our main contributions in this study are: 
 
• We propose a novel ensemble method for RvC 

problems 
• We show theoretically that for a set of problem, it 

is possible to predict exactly the performance of 
the proposed ensembles. Our theoretical 
predictions match experimental results 

 
MATERIALS AND METHODS 

 
 We propose an ensemble method for RvC. We also 
show that the proposed ensembles for RvC performs 
better than single model with equal-width discretization 
for RvC, if the number of bins is 3. 
 
Extreme Randomized Discretization (ERD): Ahmad 
(Ahmad, 2010) presents a discretization method, 
Extreme Randomized Discretization (ERD), for 
creating ensembles of decision trees. In this method bin 
boundaries are created randomly. This method was used 
to discretize attributes. We will use the same method to 
create ensembles for RvC. Though the same method is 
used, the theoretical explanation and applications are 
different. Ahmad (2010) ERD was used to discretize 
attributes, whereas in this study, ERD is used to 
discretize the target variable. 
 We propose that ERD is useful in creating 
ensembles for RvC. As discussed above, In ERD, bin 
boundaries for the discretization are created randomly. 
This may be used in stage (1) of RvC. As it creates 
diverse datasets, different classifiers can be created. 
Uncorrelated models are the keys to the success of any 
ensemble method (Kuncheva, 2004). Now, we will 
show our theoretical results. 
 
Theoretical results: All the results are proved under 
following conditions: 



J. Computer Sci., 7 (3): 387-393, 2011 
 

389 

• The target value is uniformly distributed between 0 
and 4L 

• Each value is predicted once 
• The classification error is 0 
• The mean value of the target variable for each 

interval is the predicted value. As the target value 
is uniformly distributed, the center of the bin is the 
predicted value 

• y is the target variable 
• yp is the target value of the point p 
• The number of models in an ensemble is infinity 

and each model has different bin boundaries 
• The final result is the mean of all the predictions 
 
RvC with the equal-width discretization method 
with two bins: In this case, two equal sized bins are 
created, the bin boundary is at 2L, all the points at the 
left side of the bin boundary will be predicted as L (the 
midpoint of the left bin) and all the points at the right 
side of the bin boundary will be predicted as 3L (the 
midpoint of the right bin). Hence, the points with target 
values around L and 3L will be predicted relatively 
more accurately, whereas points at the 0, 2L and 4L 
will have relatively more error. 
 The Mean Square Error (MSE) in this case is: 
 

4L2L
2 2 2

0 2L

(1 / 4L) (y L) dy (y 3L) dy 0.33L
⎛ ⎞
⎜ ⎟− + − =
⎜ ⎟
⎝ ⎠
∫ ∫  (1) 

 
 For 4L = 100, the MSE is 208.33. 
 
RvC with ERD with two bins: ERD create different 
bin boundaries, in different runs (we have assumed that 
no two bin boundaries are same in different runs, that 
can be achieved by selecting a new boundary from the 
boundaries that is not selected before). Hence, the 
predictions are different in different runs. As given in 
Fig. 1, the bin boundary (B1) can be anywhere between 
the minimum value (0) and the maximum value (4L) of 
the continuous target variable. If the target value we 
want to predict is yp, if the bin boundary is at the left 
side of the yp, the predicted value is (4L + B1)/2. If the 
bin boundary is at the right side of the yp, the predicted 
value is (0 + B1)/2. As the final result is the mean value 
of all the predictions. If the number of runs is infinity. 
 The predicted value is: 
 

yp 4L

1 1 1
0 yp

(1 / 4L) ((4L B ) / 2)dB (0 B ) / 2dBy
⎛ ⎞

+ + +⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ∫  (2) 

 
The predicted value = yp/2 + L. 

(The general formula is,  
The predicted value = yp/2 + (ymin + ymax)/4, where ymin 
is the minimum value of the target and ymax is the 
maximum value of the target.) 
We discuss some of the properties of this result. 
 
For yp = 0 the predicted value is L. 
For yp = 2L the predicted value is 2L. 
For yp = 4L the predicted value is 3L. 
 
 This behavior is different from the RvC with the 
equal-width method with two bins as in this case target 
points near the midpoint of the range are predicted 
more accurately. One of the important point about the 
predicted value function is that it is a continuous 
function with respect to the target value. In other words, 
the predicted values change smoothly with respect to 
the target value. This is similar to the Guerts et al. 
(2006) study about the ERT, “extremely and totally 
randomized tree ensembles hence provide an 
interpolation of any output variable which for M goes 
to infinity is continuous”, where M is the size of the 
ensemble. 
 The MSE in this case is: 
 

( )( )( )
4L

2 2

0

(1 / 4L) y  y / 2  L dy   0.33L
⎛ ⎞

− + =⎜ ⎟⎜ ⎟
⎝ ⎠
∫  (3) 

 
 For 4L = 100, the MSE is 208.3. 
 The MSE in this case is equal to the RvC with a 
single classifier with the equal-width discretization 
method. Hence, there is no advantage of the proposed 
ensembles over single model with equal-width 
discretization if the number of bins is 2. 
 
RvC with the equal-width disretization method with 
three bins: In this case the target variable is divided 
into equal width bins. The size of these bins is 4L/3 and 
mid points of these bins will be 4L/6, 2L and 20L/6. 
Hence, the predicted values will be 4L/6, 2L and 20L/6 
depending upon in which bin the point lies. The MSE 
for this case is: 
 

( ) ( )

( )

4L/3 8L/3
2 2

0 4L/3

4L
2 2

8L/3

y –  4L / 6 dy y – 2L dy  
(1 / 4L)

y – 20L / 6 dy  0.14L  

⎛ ⎞
+ +⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟=⎜ ⎟
⎝ ⎠

∫ ∫

∫
 (4)  

  
 For 4L = 100, the MSE is 87.5. 
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Fig. 1: In the subfigure 1(top figure) the bin boundary 

B1 is at the left side of the point to be predicted, 
yp, whereas in the subfigure 2 (bottom figure), 
the bin boundary, B1 is at the right side of yp 

 
RvC with ERD with three bins: In this case, there are 
two bin boundaries; B1 and B2. To calculate the 
predicted value, we will calculate the mean value of all 
the predicted values by different models. There are two 
cases (Fig. 2): 
 
• The bin boundary B1 is left of the given point yp. 

The two conditions are possible: 
• The bin boundary B2 is at the right of the B1. 

In this case, for different runs B2 is placed at 
different points between points B1 and 4L. 
This case is similar to the two bin case with 
the boundaries; B1 and 4L. Hence, for a given 
B1, the mean value is yp/2 + (4L + B1)/4 (by 
using Eq. 2) 

• The bin boundary B2 is at the left of the B1. In 
this case, the predicted values is the center of 
the rightmost bin, which is (B1 + 4L)/2, this 
value is independent of B2. Hence, the mean 
value for a given B1 is (B1 + 4L)/2 

 
The probability of the first condition = (4L-B1)/4L. 
The probability of the second condition = B1/4L. 
 
 As B1 can take value from 0 to yp. The mean value 
of this case (the bin boundary B1 is left of the given 
point yp) is: 
 

( )( )( )
( )( )
( )( )( )

p 1
yp

p 1 1
0

1

y / 2  4L  B / 4

(1 / y ) 4L  B / 4L    dB  

B1  4L / 2 B / 4L

⎛ ⎞⎛ ⎞+ +
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− +⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+⎜ ⎟⎝ ⎠⎝ ⎠

∫  (5) 

 
 = -(yp)2/24L + 3yp/4 + L (6) 

  
Fig. 2: (1) The first bin boundary B1 is at the left side 

of the yp. The second bin boundary B2 is at the 
right side B1. (2) The first bin boundary B1 is at 
left side of the yp. The second bin boundary B2 
is at the left side B1. (3) The first bin boundary 
B1 is at the right side of the yp. The second bin 
boundary B2 is at the right side B1. (4) The first 
bin boundary B1 is at the right left side of the 
yp. The second bin boundary B2 is at the left 
side B1 

 
• The bin boundary B1 is at right of the given point 

yp. The two conditions are possible: 
• The bin boundary B2 is at the right of the B1. 

In this case, the predicted values is the center 
of the leftmost bin, which is (B1)/2. Hence, the 
mean value, for a given B1, is (B1)/2 

• The bin boundary B2 is at the left of the B1. In 
this case, for different runs B2 is placed at 
different points between points 0 and B1. This 
case is similar to the two bin case with the 
range of the target variable between 0 and B1. 
Hence, the mean value, for a given B1 is, yp/2 
+ (0 + B1)/4 

 
The probability of the first case = (4L - B1)/4L. 
The probability of the second case = B1/4L. 
 As B1 can take value from yp to 4L. The mean 
value of this case (the bin boundary B1 is at right of the 
given point yp) is: 
 

( )
( )( )
( )( )

4L
1 1

p 1
yp p 1 1 

B / 2 4L  B / 4L 
1 / 4L  y  dB  

 y / 2  B / 4 B / 4L

⎛ ⎞− +
⎜ ⎟−
⎜ ⎟+⎝ ⎠
∫  (7) 
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 = -(yp)2/24L + 5yp/12 + 3L/4 (8) 
 
The mean value of all the cases: (The mean value of 
case 1)(The probability of case 1) + (The mean value of 
case 2)(The probability of case 2): 
 

( )( )
( )( )( )

2

p p p

2

p p p

 y / 24L  3y / 4  L y / 4L  

y / 24L  5y / 12  3L / 4 4L  y / 4L 

= − + + +

− + + −
 (9) 

 
= yp/2 + ( 2L/3 + (yp)2/8L - (yp)2/48L2 ) (10) 
 
For yp = 0 the predicted value is 2L/3. 
For yp = 2L the predicted value is 2L. 
For yp = 4L the predicted value is 14L/3. 
 The MSE for this case is: 
 

( )
( )

2 2
4L

p

2 20 p

 2L / 3  y
1 / 4L y –  ( y / 2  dy) 

/8L  y / 48L  

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
∫  (11) 

 
 MSE = 0:12L2 (for 4L = 100, the MSE is 75), 
which is better than RvC with the equal-width method 
with three bins (MSE = 0:14L2). This proves that the 
ensembles with the proposed ensemble method 
performs better than single model with equal-width 
discretization for RvC, if the number of bins is 3. One 
may follow the same kind of calculation to extend these 
results for bins more than 3. It will be cumbersome but 
straightforward calculation. As 3 bins, improves the 
performance of ERD ensembles more as compared to 
single model with equal-width discretization, we may 
suggest intuitively that the larger number of bins will 
give more performance advantage to the proposed 
ensemble method.  
 

RESULTS 
 
 We carried out experiments with y = x function. 
This is a uniformly distributed function. We generated 
10000 points between 0<=x<=100, 5000 points were 
used for training and 5000 points were used for testing. 
We used unpruned C4.5 decision tree (J48 decision tree 
of WEKA software (Witten and Frank, 2005)) as the 
classifier. The final result from a classifier was the 
mean value of the target variable (y in this case) of all 
the points in the predicted bin. In the results, we found 
that the classification error was almost 0. As in these 
experiments all the conditions of our theoretical results 
were fulfilled, we expected that experimental results 
should follow the theoretical results. We carried out 

experiments with two bins and three bins. The size of 
the ensemble was set to 100. The experiments were 
conducted following 5×2 cross-validation. The average 
results are presented in the Table 1. Results suggest that 
there is an excellent match in experimental results with 
theoretical results for two bins and three bins cases. We 
also carried out experiments with 5, 10 and 20 bins. 
Results suggest that the ratio of the average MSE of 
RvC with equal-width discretization to the average 
MSE of RvC with ERD is increasing with the number 
of bins. This suggests that there is more performance 
advantage with ERD when we have large number of 
bins. This verifies our intuition that as we increase the 
number of bins the performance advantage increases for 
ERD ensembles. We also carried out experiments with 
other popular datasets used for regression studies. We 
also did experiments with REP regression trees 
(available in WEKA software) with the Bagging 
procedure. The size of the ensembles was set to 100 for 
all the experiments. The number of bins was set to 10 
for RvC methods. 
 

DISCUSSION 
 
 Results (MSE) presented in Table 2 suggest the 
proposed ensemble method (RvC with ERD) perform 
consistently better than a single model (RvC with equal 
width discretization method). This shows the 
effectiveness of the our approach. The comparative 
study, with REP tree regression trees with Bagging, 
suggests that our method perform similar to this 
method. This shows that our method is comparable to 
the method that is developed specifically for the 
regression method. In the proposed ensemble method, 
we used decision trees as the classifier; however, we 
may use any other classifier. The number of bins is an 
important variable, as a small number of bins lead to 
the better classification, however, the value represented 
by bins will be less representative of the values. If the 
number of bins is large, the number of points in each 
bin will be small; this leads to the poor classification 
accuracy. However, the values represented by bins will 
more representatives of the points in the bins. One may 
use cross validation to find out the best number of bins 
for the best regression results. However, in the present 
setup, we used the default value of bins as 10 and 
results suggest that even with the default number of 
bins, we got the results similar to the models 
specifically designed for regression. This shows the 
effectiveness of our proposed ensemble method. Hence, 
we may use classifier models with the proposed 
ensemble method to solve regression problems. 



J. Computer Sci., 7 (3): 387-393, 2011 
 

392 

Table 1: MSE in different cases. For experimental results, the average results are given. s.d. is given in the bracket. 
The number Error with equal sized Error with equal sized Error with ERD Error with ERD   
of bins bins (Theoretical) bins (Experimental) (1) (Theoretical) (Experimental) (2) (1)/(2) 
2 208.3 209.1(2.2) 208.3 (2)210.3(3.1) 0.99 
3 87.5 90.3(1.7) 75 77.3(1.5) 1.17 
5 - 33.1(0.8) - 18.6(0.4) 1.78 
10 - 8.3(0.2) - 2.6(0.1) 3.19 
20 - 2.9(0.1) - 0.4(0.1) 7.25 
 
Table 2: Experimental results for different methods for different datasets. The average results for RMSE are presented. s.d. is given in the bracket 
  RvC with Bagging with REP 
Name of dataset RvC with ERD equal-width bins Regression trees 
Abalone 2.24(.05) 2.89(0.08) 2.17(.05) 
Bank8FM 3.61(.11)×10−2 5.31(0.17)×10−2 3.52(.12)×10−2 
Cart 1.06(.02) 1.46(0.06) 1.05(0.03) 
Delta(Ailerons) 1.72(.03)×10−4 2.75(0.05)×10−4 2.03(0.03)×10−4 
Delta(Elevator) 1.52(.02)×10−3 1.91(0.03)×10−3 1.55(0.02)×10−3 
House(8L) 3.12(.05)×104 4.12(.08)×104 3.06(.03)×104 
House(16H) 3.51(.07)×104 4.62(.10)×104 3.55(.05) ×104 
Housing(Boston) 3.98(.09) 5.23(0.12) 4.01(0.10) 
Kin8nm 0.17(0.01) 0.24(0.02) 0.17(0.01) 
Puma8NH 3.28(0.04) 4.50(0.06) 3.25(0.04) 
Puma32H 8.21(0.13)×10−3 1.2(.04)×10−2 7.94(0.17)×10−3 
 

CONCLUSION 
 
 In supervised learning, the target values may be 
continuous or a discrete set of class. The continuous 
target values (the regression problem) can be 
transferred to a discrete set of classes (the classification 
problem). The discretzation process is a popular method 
to achieve this task. In this study, we proposed a 
ensemble method for RvC problems. We showed 
theoretically that the proposed ensemble method 
performed better than a single model with equal-width 
discretization method. This is also verified with 
experiments. Experiments results also suggest that our 
method performed similar to the method developed for 
the regression purpose. This suggests that the proposed 
ensemble method is useful for regression problems. As 
the proposed method is independent of the choice of the 
classifier, various classifiers can be used with the 
proposed method to solve the regression method. In the 
study, we carried out experiments with the decision trees, 
however, in future we will do the experiments with other 
classifiers like naive Bayes and support vector machines 
to study its effectiveness with other classifiers. 
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