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Abstract: Problem statement: This study presented a new and systematic method to robustly 
synchronize uncertain chaos systems. It was derived based on the observer approach for 
synchronization, where error dynamics was made asymptotically stable around the zero to accomplish 
synchronization. Approach: This method viewed the synchronization problem as a control problem in 
order to make use of the literature available in this field. In addition, it consisted of designing a digital 
response system to synchronize with a given continuous-time chaotic drive system. Takagi-Sugeno 
(TS) fuzzy model was used to model the chaotic dynamic system, while the uncertainties were 
decomposed such that the uncertain chaotic system could be rewritten as a set of local linear models 
with an additional disturbed input. Results: This study demonstrated the effectiveness of the 
methodology presented. The response (receiver) system was able to synchronize very closely with 
drive (transmitter) system. Furthermore, both piecewise linear and nonlinear uncertain Chua circuits 
synchronized wonderfully with insignificant errors. Conclusion: The study confirmed that it is capable 
of achieving excellent synchronization performances, even in the presence of significant parametric 
uncertainties for uncertain chaos systems. The Takagi-Sugeno (TS) fuzzy model was used to model the 
chaotic dynamic system, while the uncertainties are decomposed such that the uncertain chaotic system 
was rewritten as a set of local linear models with an additional disturbed input. 
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INTRODUCTION 
 
 Real world systems are uncertain in general. 
However, it is a common practice to describe a real 
system using nominal linear models; the primary reason 
to do this is the advantage of using the well-developed 
linear techniques for analysis and design of the 
controller. Unfortunately, under some conditions like 
uncertainties, modeling errors, noise and other 
disturbances, the nominal linear approach might fail to 
produce satisfactory results. To overcome this problem, 
it is critical to design and implement systems that take 
into consideration these aspects of the system’s 
dynamics. A more suitable representation of a real 
world system is a continuous-time parametric-uncertain 
model with bounded disturbances and noise inputs.  
       Generally, synchronization is when two different 
systems come to behave in accordance as a function of 
time, this occurs as the result of some kind of 
interaction between them. Recently, chaos 
synchronization has been an active research area (Yau 

and Yan, 2008; Bowong et al., 2006; Xie et al., 2002). 
Where chaos synchronization of different chaotic 
systems, such as Lorenz-Chen, Chen-Liu and Liu-
Lorenz, in drive–response structure were considered. 
Therefore, many chaos synchronization methodologies 
have been proposed in the literature. One important 
approach is to consider is the synchronization problem 
from  the  point  of  view of control theory (Blekhman 
et al., 2002; Nijmeijer,  2001; Nijmeijer et al., 1997). 
Where  synchronization was achieved with a drive 
chaotic system through coupling it with response . 
 For this representation, most of the research efforts 
have been concentrated on the design of continuous-
time controllers for continuous-time systems or digital 
controllers for digital systems. In this study we consider 
the hybrid case; our objective is to design a digital 
controller for a continuous-time uncertain chaotic 
system with structured uncertainties using fuzzy logic. 
 The idea of developing a digital controller from a 
previously designed continuous-time one has been 
utilized in (Ababneh et al., 2007) , where a controller is 
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designed in terms of the optimal linear model 
representation of the nominal system around each 
operating point of the trajectory. Also, digital 
controllers had been applied to different types of 
systems, among them are PWM controllers as in 
(Fujioka et al., 2009), cascaded analog controllers as in  
(Shieh et al., 1998), where digital redesign method is 
used to find new pulse-amplitude-modulated (PAM) 
and pulse-width-modulated (PWM) digital controllers 
for effective digital control of the analog system, Also 
delayed systems.  In addition, a new intelligent digital 
redesign method for uncertain nonlinear systems is 
presented in (Sung et al., 2010) and designing digital 
controllers for uncertain chaotic systems using fuzzy 
logic was presented in (Ababneh et al., 2009). 
 The application of digital redesign to chaotic 
systems was proposed on earlier works (Ababneh et al., 
2007), where designing different digital controllers for 
uncertain chaotic systems was implemented. However, 
the problem of applying digital redesign technique to 
synchronize chaotic systems with uncertainties using 
fuzzy modeling has not been addressed. On this regard, 
the methodology proposed in this study is to decompose 
and incorporate the uncertainty in the system. Next, 
using   Takagi-Sugeno  (TS)   fuzzy modeling (Bernal 
et al., 2009; Ahmad and Mohamed, 2009; Hafaifa et al., 
2009; Hassan et al., 2010), the uncertain chaotic system 
is expressed as set of linear models, then, for each 
linear model synchronization performed as the solution 
to a linear matrix inequality problem. 
 
Fuzzy modeling:  Here we will discuss the fuzzy 
modeling of chaotic systems and more specifically the 
Takagi-Sugeno (TS) fuzzy model is used. In addition, 
Chua’s circuit is utilized to demonstrate the application 
of TS model to chaotic system modeling. We represent 
the chaotic system dynamics by set of local relations in 
the state space, The TS model represents every fuzzy 
rule by a linear model. 
 Consider a family of chaotic systems of the form: 
  
x(t) f (x) g(x)u(t)= +   (1) 
 
where, n nf :ℜ →ℜ and n n mg : ×ℜ →ℜ are chaotic 
functions, nx(t)∈ℜ  is the state vector and mu(t)∈ℜ  is 
the control input. 
 The TS system is described by IF-THEN statement 
(Bernal et al., 2009). Every rule represents a linear 
model of the system as follows: 
 

j j
1 I n n

j j

Rule j : IFx (t) is M ....and x (t) is M

Then x(t) A x(t) B u(t)= +
  (2) 

where, 1 2 n 1 2 mj 1,2,...,q,x(t) [x ,x ,...x ] ,u[u ,u ,u ]γ γ= = .  The 
Mj is the fuzzy set and q is the number of rules. Given a 
pair of (x (t),u(t)), the fuzzy system is inferred as 
following: 
 

j jx(t) A x(t) u(t)= + B   (3) 
 

where,
q q

j j
j 1 j 1

A (x)A ,B (x)B
− −

= μ = μ∑ ∑ and: 

 

 
qq

j l
j j j jq

j 1 j 1
j

j 1

(x)
0, (x) 1, (x) M

(x) − −

−

ω
μ = ≥ ω = ω =

ω
∑ ∏

∑
 

 
 The input system is given by: 
 

q

j j j
j 1

q

j
j 1

(x)(A x(t) B u(y))
x(t)

(t)

−

−

ω +
=

ω

∑

∑
  (4) 

 
 Fuzzy modeling of Chua’s chaotic circuits are 
developed as explained below. The electronic circuit of 
Fig. 1 is the realization of one of the most widely used 
benchmarks for chaotic dynamics (Gámez-Guzmán et 
al., 2009).  
 There are different mathematical representations of 
Chua’s circuit, in this study we will adopt the 
representation in (Lu et al., 2004) as follows: 
 

1 2 1 NL 1
1

2 1 2 l l 2
2

1 1v ( ) (v ( ) v ( )) f (v ( ))
C R
1 1 1v ( ) (v ( ) v ( ) i ( )) i ( ) v ( )

C R L

⎡ ⎤τ = τ − τ − τ⎢ ⎥⎣ ⎦

⎡ ⎤τ = τ − τ + τ τ = τ⎢ ⎥⎣ ⎦

  (5) 

 
 Chua’s circuit has two forms, these are the 
piecewise linear and the nonlinear forms, which are 
considered below. 
 

 
 
Fig. 1: Chua’s circuit realization 
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Piecewise-linear case: In the piecewise-linear case, fNL 
represents the nonlinear resistance of the circuit, which 
is represented by a piecewise-linear function and 
expressed as follows: 
 

NL 1 b 1 a b

1 1

1f (v ( )) g v ( ) (g g )
2

( v ( ) E v ( ) E )

τ = τ + −

τ + − τ −
  (6) 

 
where, ga gb < 0, Or it can be expressed more 
conveniently as: 
 

b 1 a b 1

NL 1 a 1 1

b 1 a b 1

g v ( ) (g g )E v ( ) E
f (v ( )) g v ( ) E v ( ) E

g v ( ) (g g )E v ( ) E

⎧ ⎫τ + − τ ≥
⎪ ⎪τ = τ − < τ <⎨ ⎬
⎪ ⎪τ − − τ ≤ −⎩ ⎭

 

 
 At this point we need to obtain the fuzzy model of 
Chua’s chaotic system. Considering 

NL 1f (v ( )) [ d,d],d E 0τ ∈ − > >   as shown in Fig. 2, we 
obtain the following bounds: 
 

a 1 a 1

a b
b 1 a 1 1 ab 1

f (v ( )) g v ( )

(g g )Ef (v ( )) g v (v ( )) G (v ( ))
d

τ = τ

⎛ ⎞−
τ = + τ = τ⎜ ⎟

⎝ ⎠

 

 
 When ga = gb , the Chua’s system becomes linear, 
otherwise we use the trapezoidal membership functions 
shown in Fig. 3 to model the Chua’s system. 
 Assigning state vector as x =[vc1,vc2,i l], Chua’s 
circuit of (5) can be represented using the following 
model: 
 

1 1 1

1 1

1 2 1

2 2

Rule 1: IFv (t) is M (v )(near 0)

Then x(t) A x(t) B u(t)

Rule 2 : IFv (t) is M (v )(near d)

Then x(t) A x(t) B u(t)

= +

±

= +

  (7) 

 
Where: 
 

a

1 1 1

1
1 1 1

ab

1 1 1

2 2 c
2 2 2

1 g 1 0
C R C C R

1 1 1A ,
C R C R C

10 0
L

1 g 1 0
C R C C R

1 1 1A m m R
C R C R C

10 0
L

⎛ ⎞
− −⎜ ⎟
⎜ ⎟
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠
⎛ ⎞
− −⎜ ⎟
⎜ ⎟
⎜ ⎟

= − =⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

 

 
 
Fig. 2: Piecewise-linear representation of the Chua’s 

resistor circuit realization 
  

 
 
Fig. 3: Membership functions 
 

and 1 2 3 3B B I ×= =  substituting 
1

1 1a and b
C R L

= =   will 

result in: 
 

a

1

1

ab

1

2

ga(1 ) a 0
C

A 1 1 1 ,
0 b 0

ga(1 ) a 0
C

A 1 1 1
0 b 0

⎛ ⎞
− −⎜ ⎟
⎜ ⎟
⎜ ⎟= −
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
− −⎜ ⎟
⎜ ⎟
⎜ ⎟= −
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

  (8) 

 
Nonlinear case: In the nonlinear case NL f represents 
the nonlinear resistance as follows 

3
NL 1 1 1 2 1g (x (t)) m x (t) m x (t)= + for

1 a 2 cm m R and m m R.= =  
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  As in the previous case, consider 
NL 1f (v ( )) [ d,d],d E0,τ ∈ − > we obtain the following 

bounds  
2

1 1 a 1 2 1 1 2 1 12 1g (v ( )) m v ( ),g (v ( )) (m m d )v ( ) m v ( ).τ = τ τ = + τ = τ  
 The membership function is given by (Bernal et 
al., 2009) can be written as follows:  
 

2

1
1 1 2 1

2

1
1 1

v ( )M (v ( )) 1 ,M (v ( ))
d

v ( )1 M (v ( ))
d

⎛ ⎞τ
τ = − τ⎜ ⎟

⎝ ⎠

⎛ ⎞τ
= − τ = ⎜ ⎟

⎝ ⎠

 

 
 Then the Chua’s circuit can be represented with: 
 

1 1 1

1 1

1 2 1

2 2

Rule 1: IFv (t)is M (v )(near 0)

Then x(t) A x(t) B u(t)

Rule 2 : IFv (t)is M (v )(near d)

Then x(t) A x(t) B u(t)

= +

±

= +

  (9) 

 
Where: 
 

a

1 1 1

1
2 2 2

12

1 1 1

2
2 2 2

1 m 1 0
C R C C R

1 1 1A ,
C R C R C

10 0
L

1 m 1 0
C R C C R

1 1 1A
C R C R C

10 0
L

⎛ ⎞
− −⎜ ⎟
⎜ ⎟
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠
⎛ ⎞
− −⎜ ⎟
⎜ ⎟
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

 

 

and 1 2 3 3B B I ×− =   substituting 
1

1 1a and b
C R L

= =  will 

lead to: 
 

a 12

1 1

1 2

m ma a 0 a a 0
C C

A 1 1 1 ,A 1 1 1
0 b 0 0 b 0

⎛ ⎞ ⎛ ⎞
− − − −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= − = −
⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Uncertainty decomposition: In what follows, we 
present a method to incorporate the uncertainties of the 

chaotic system in the fuzzy linear model. In particular, 
we consider the case of parametric variations. This type 
of disturbance can be seen as a structured uncertainty of 
the system. This method consist of representing the 
uncertain chaotic system as a set of uncertain local 
linear models, then the uncertainty is decomposed and 
incorporated into the local models such that they can be 
rewritten as nominal linear models with an additional 
disturbance input. 
 Considering the following uncertain chaotic system 
of Eq. 1 and applying the fuzzy modeling discussed 
earlier the uncertain chaotic model of Eq. 9 can be 
represented by a set of local uncertain linear models of 
the form: 
 

c j c j c a, j j c

a, j j c

x (t) A x (t) B u (t) (A A )x (t)

(B B )u (t)

= + = ± Δ

+ ± Δ
  (10) 

 
where, 0, j n nA ×∈ℜ  and 0, j n mB ×∈ℜ  are the nominal 
system and nominal input matrices respectively, while 

j n nA ×Δ ∈ℜ   and j n mB ×Δ ∈ℜ are unknown but bounded 
structured uncertainty matrices corresponding to the 
effects of the uncertain parameters. 
 The uncertainty matrices can be rewritten in terms 
of the uncertain elements Δal and Δbl also the constant 
matrices j,i n nA ×∈ℜ  and  j,i n mB ×∈ℜ  as: 
 

ak

j ai j,l j,ac j,a j,ar
l 1

A A M N
−

Δ = Δ = = Δ∑   (11) 

 
bk

j bi j,l j,bc j,b j,br
l 1

B A M N
−

Δ = Δ = = Δ∑   (12) 

 
 From this representation and by letting 

l j,l l j,lq rank(A ),p rank(B )Δ Δ the constant matrices M j,ac , 
M j,bc, N j,ar and N j,br are given by the equations: 
 

j,ac ac,1 ac,2 ac,ka

j,bc bc,1 bc,2 bc,kb

T T T
j,ar ar,1 ar,2 ar,ka

T T T
j,br br,1 br,2 br,kb

M [M ,M ,...,M ]

M [M ,M ,...,M ]

N [N ,M ,...,M ]

N [N ,M ,...,M ]

=

=

=

=

 

 
where, n q1

ac,lM ×∈ℜ  are the ql nonzero column vectors 
of n pl

j,l bc,lA ,M ×∈ℜ  are the pl nonzero column vectors of 
Bj,l, while: 
 

T 1 T q1 n
ar,l ac,l ac,l ac,l j,l br ,l

T 1 T p1 m
bc,l bc,l bc,l j,l

N (M M ) M A , N

(M M ) M A

− ×

− ×

= ∈ℜ

= ∈ℜ
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and 
ka ka

j,a a1 q1 a 2 q2 a q
block diag [ I , I ,...., I ]Δ = Δ Δ Δ . With ql and 

pl , being ql×ql and pl×pl identity matrices respectively. 
 Without loss of generality, we can assume that 

ai bj a b1 and 1 for i 1,...,k ; j 1,.....,kΔ ≤ Δ ≤ = = . 
 So that one can rewrite the uncertain linear system 
in Eq. 10 as a nominal linear system with a disturbance 
input as shown below: 
 

c o, j i, j o, j c

c l, j l, j c

c o, j c

x (t) A B B x (t)
z (t) C 0 D w (t)
y (t) C 0 0 u (t)

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

  (13) 

 
Where: 
 

T T
l, j j,ac j,bc l, j j,ar l, j j,br o, jB [M ,M ],C [N 0],D [0 N ] and C l= = = = .  

 
 From the uncertainty decomposition of (11-12) the 
fictitious disturbance input is given by 

c j,a j,b cw (t) diag[ , ]z (t)= Δ Δ  A controller for the disturbed 
system (13) can be constructed using the general 
feedback structure. Where the disturbed local linear 
model (13) corresponds to the system under 
consideration and the objective is to find the feedback 
controller, in the form: 
 

x, j x, jc c

x, j x, jc c

A Cx (t) x (t)
C Du (t) y (t)
⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
  (14) 

 
 The closed-loop the system described in Eq. (13-
14) should be internally stable. Moreover, the effects of 
the disturbed input cw (t)  on the desired output zc(t) , 
measured in terms of the infinity norm of their transfer 
function c cT̂z w (S) ∞ , should be less than a given bound 
γ>0. Consequently, the closed-loop system becomes: 
 

c cl cl c

c cl cl c

o, j o, j x, j o, j cl, j

x, j x , j c

cl, j l, j x , j o, j i, j x, j

x (t) A B x (t)
z (t) C D w (t)

A B D C x (t)B
B A x (t)0

w (t)C D D C D C 0

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎡ ⎤+ ⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥= ⎜ ⎟⎢ ⎥ ⎣ ⎦ ⎜ ⎟⎣ ⎦
⎜ ⎟⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

  (15) 

 
 As proposed in reference (Ababneh et al., 2007), a 
static state feedback controller can be obtained by 
solving the following LMIs: 
  

T
o, j o, j T

l, j l, j l, j
o, j o, j

T
l, j

l, j l, j

(A Y B M)
B (C Y D M)

(A Y B M)

Y 0, B l 0 0
C Y D M 0 l

⎛ ⎞+
⎜ ⎟+
+ +⎜ ⎟
⎜ ⎟

> −γ <⎜ ⎟
⎜ ⎟+ −γ
⎜ ⎟
⎜ ⎟
⎝ ⎠

  (16) 

 
 
Fig. 4: Nonlinear representation of the Chua’s resistor 
  
 A continuous-time state feedback controller for Eq. 
1 can be constructed in the form: 
 

c c, j cu (t) K x (t)= −   (17) 
 
where the feedback gain Kc,j is found from the solutions 
of (16) as 1

c, jK MY−= −  around each operating point. 
 
Digital and observer based synchronization: In what 
follows, we present the observer based method and the 
digital redesign technique for the uncertain chaotic 
system at hand. Consider the following uncertain 
nonlinear system, which will be called the Drive-System: 
 

c c c o c cx (t) f (x (t),p),x (0) x , y (t) Cx (t)= = =   (18) 
 
and a Response-System in the form: 
 

c c c o c c
ˆˆ ˆ ˆ ˆ ˆx (t) f (x (t),p),x (0) x , y (t) Cx (t)= = =   (19) 

 
where, f and fˆ are nonlinear functions, n

cx (t)∈ℜ  and 
n

cx̂ (t)∈ℜ   are the drive and response state variables, 
respectively. To achieve synchronization the 

c cx
ˆlim x (t) x (t) 0

→∞
− = must be satisfied. Furthermore, the 

drive system can be expressed as: 
 

c j c o, j j cx (t) A x (t) (A A )x (t)= = ± Δ   (20) 
 
 Using the uncertainty decomposition techniques, 
the uncertain local linear model in (23) can be rewritten 
as: 
 

c o, j l, j
c

c l, j
c

c

x (t) A B
x (t)

z (t) C 0
w (t)

y (t) C 0

⎛ ⎞ ⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟

= ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

  (21) 
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where, l, j j,ac l, jB [M ],C [N]= =  and c j,a cw (t) z (t)= Δ . 
 An H∞ robust observer for (21) can be designed 
using the output-injection structure: 
 

c o, j j,a c cˆ ˆ ˆx (t) A x(t) K (y (t) y (t))= + −   (22) 

 
with observer error defined as: 
 

c c cˆe (t) x (t) x (t)= −   (23) 

 
The error dynamics are found to be: 
 

c o, j j,o c i, j ce (t) (A K C)e (t) B w (t)= − +   (24) 

 
 The error dynamics will then have an H ∞ robust 
performance given by 1

j,o j,oK N X−=  where TX X 0= >  
and j,oN are the matrix solutions of the following LMI 
problem: 
 

T T T
o, j o, j j,o j,o l, j n

T
i, j

n

A X XA C N N C XB l
B X l 0 0

l 0 l

⎛ ⎞+ − −
⎜ ⎟

−σ <⎜ ⎟
⎜ ⎟−σ⎝ ⎠

  (25) 

 
 Consider that the objective is to design a digital 
observer in the form: 
 

d o d o c

j,d c c

ˆ ˆx (kT) G x (kT T) H u (kT T)

L [y (kT T) y (kT)]

= − + −

+ − +
  (26) 

 
Such that the digital states of (26) closely match the 
states of the continuous-time observer. For the nominal 
part of system (18), the continuous-time error dynamics 
become: 
 

c o, j j,o ce (t) A(A K C)e (t)= −   (27) 
 
where the digital error is defined as 

d d dˆe (kT) x (kT) x (kT)= − . The error dynamics in can be 
seen as a feedback-controlled system of the form: 
 

c o, j c n ee (t) A e (t) l u (t)= +   (28) 
with e j,o cu (t) K Ce (t)= − .  
 
And this can be represented as: 
 

de (kT T) (G MN)e(kT)− = −   (29) 

where, o, jA T 1
n o, j j,oG e ,M (G l )A K−= = −  and 

1
dN (l CM) CG−= + . 

 Let 1
j,d mL M(l CM)−= + one gets j,dMN L CG= and 

the error dynamics become: 
 

d d

j,d d d

ˆx (kT T) x (kT T)
ˆ(G L CG)[x (kT) x (kT)]

+ − + +

− −
  (30) 

 
Then substituting the following equations: 
 

d d d

c d d

x (kT T) Gx (kT) Hu (kT),

y (kT) y (kT) Cx (kT)

+ = +

= =
 

 
And: 
 

d d d

d d

CGx (kT) Cx (kT T) CHu (kT)

y (kT T) CHu (kT)

= + −

= + −
  

 
This produces the final observer equation: 
 

d 0 d d

j,d c c

ˆ ˆx (kT) G x (kT T) Hu (kT T)

L [y (kT T) y (kT)]

= − + −

+ − +
  (31) 

 
where, o j,dG G L CG= −  

d o d o c

j,d c c

ˆ ˆx (kT) G x (kT T) H u (kT T)

L [y (kT T) y (kT)]

= − + −

+ − +
 

and o j,dH H L CH= − . 
 
Numerical simulation: Here, the proposed 
methodology will be used to perform digital 
synchronization for two benchmark Chua’s chaotic 
systems. Given the following Chua system where 
parameters α and β are assumed to be uncertain but 
bound to a given interval: 
 

c1 c2 c1 NL c1 c,1

c2 c1 c2 c3 c,2

c3 c2 c,3

x (t) a[x (t) x (t) g (x (t))] u (t)
x (t) x (t) x (t) x (t) B u (t)
x (t) bx (t) u (t)

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (32) 

 
 The linear model of Eq. 32 can be rewritten using 
the fuzzy modeling as: 
 

*1 *
j c j j c

c *2 *
j c j j c

A [a,b]x (t) B [B ]u (t),(near 0)
x (t)

A [a,b]x (t) B [B ]u (t),(near d)
⎧ +⎪= ⎨ + ±⎪⎩

  (33)  

  
Here j jB  refers to the uncertainty of the input matrix 
of the local linear system, which will be treated as an 
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extra uncertain parameter. Rewriting the uncertain 
parameters j(a, ,B )β  as 0 1 0 1a a a ,= + Δ β = β + Δβ  and 

j 0 lB B B= + Δ where 0 0 3 3 1 l
19 100 19 5a , , l ,a ,
2 7 40 7×= β = = β =  

and l
5B

100
= . Then the linear model of the uncertain 

Chua’s circuit can be written as: 
 

*1 *1 * *1
o, j l, j c o, j l, j

c
c *2 *2 * *1

o, j l, j c o, j l, j

c

(A A )x (t) (B B )

u (t),(near 0)
x (t)

(A A )x (t) (B B )

u (t),(near d)

⎧ + Δ + + Δ
⎪
⎪

= ⎨
+ Δ + + Δ⎪

⎪ ±⎩

  (34) 

 
with *1 *1 *2 *2

o, j j 0 0 o, j j 0 0A A [a ,b ],A A [a ,b ]= =  and * *
o, j j 0B B [B ]= . 

Note that both piecewise and nonlinear Chua’s circuits 
has the same treatment since they differ only in the item 
11i of the system matrix A. Using the decomposition 
method presented earlier, the uncertainties of equation 
(34) can be decomposed into the following matrices: 
 

l b a

* * *
ac,1 ac,2 ac,3

l 2 1

a (g g )
0 for piecewise
0

M M M
a (g g )

0 for nonlinear
0

⎧ ⎫⎧ ⎫⎡ ⎤− −
⎪ ⎪⎪ ⎪⎢ ⎥
⎨ ⎬⎪ ⎪⎢ ⎥
⎪ ⎪⎪ ⎪⎢ ⎥
⎣ ⎦⎪⎩ ⎭ ⎪= = = ⎨ ⎬
⎧ ⎫⎡ ⎤− −⎪ ⎪
⎪ ⎪⎢ ⎥⎪ ⎪
⎨ ⎬⎢ ⎥⎪ ⎪
⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭⎩ ⎭

 

* * *
ar,1 ar,2 ar,3

* * *
br,1 br,2 br,3

1 0 0
N N N [ ],

0 1 0
N N N 1

= = =

= = =
 

* * *
ac,1 ac,2 ac,3

1 a 1 1

1

1 ab 1 1

1

1 a 1 1

1

1 ab 1 1

1

M M M

a (1 g / C ) a
0 0 (near 0)
0

for piecewise
a (1 g / C ) a

0 0 (near d)
0

a (1 g / C ) a
0 0 (near 0)
0

a (1 g / C ) a
0 0
0

= = =

⎧ ⎫⎡ ⎤− +
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥−β⎣ ⎦⎪ ⎪
⎨ ⎬
⎧ ⎫⎡ ⎤− +⎪ ⎪
⎪ ⎪⎢ ⎥⎪ ⎪±⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪⎢ ⎥⎪ ⎪−β⎣ ⎦⎩ ⎭⎩ ⎭

⎡ ⎤− +
⎢ ⎥
⎢ ⎥
⎢ ⎥−β⎣ ⎦

⎡− +

−β

for nonlinear

(near d)

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎧ ⎫
⎨⎪ ⎪
⎪⎪ ⎪
⎪⎪ ⎪
⎪⎪ ⎪
⎨ ⎬⎪ ⎧ ⎫⎤⎪ ⎪⎪ ⎪ ⎪⎢ ⎥⎪ ⎪⎪ ±⎨ ⎬⎢ ⎥⎪ ⎪⎪ ⎪ ⎪⎢ ⎥⎪ ⎪⎪ ⎣ ⎦⎩ ⎭⎩ ⎭⎪

⎪
⎪
⎩

 

Methodology:  The synchronization method can be 
summarized as follows: 
 
Firstly:  the fuzzy modeling of chaotic systems using 
the Takagi-Sugeno (TS) model is derived. 
 
Secondly: the uncertainty decomposition is worked 
out by incorporating the uncertainties of the chaotic 
system in the fuzzy linear model. Where the uncertain 
chaotic system is expressed as set of linear models. 
 
Thirdly: the digital and observer-based 
synchronization is performed for each linear model 
synchronization performed as the solution to a linear 
matrix inequality problem. 
 Note that the synchronization phenomenon may 
be viewed as an observer design problem; so that the 
error signal converges to zero globally and 
asymptotically, in this way the response system is 
synchronized to the drive system. 
 
Results and discussions:  The robust synchronization 
for the chaotic Chua’s circuit with a piecewise-linear 
negative resistance is presented in Fig. 5. The output 
matrix is expressed as C = [1, 0, 0] . The simulations 
were carried out with SIMULINK of MATLAB using a 
fifth-order Dormand-Prince algorithm with a fixed 
integration step of τ = 0.001 and performance bound of 
σ = 0.1 for the continuous-time simulation and a 
sampled-hold period of T = 0.1 for the discrete-time 
simulation. The simulation results shown in the Fig. 5. 
 

 
 
Fig. 5: Performance of synchronization for the 

piecewise-linear Chua’s circuit 
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Fig. 6: Performance of synchronization for the 

nonlinear Chua’s circuit 
 
 Furthermore, using the same MATLAB parameters 
and sample and a sampled-hold period, the robust 
synchronization for the chaotic Chua’s circuit with a 
nonlinear negative resistance is presented in Fig. 6. 
 Figures 5 and 6 demonstrated the effectiveness of 
the methodology presented in this study. The response 
(receiver) system was able to synchronize very closely 
with drive (transmitter) system. Furthermore, both 
piecewise linear and nonlinear uncertain Chua circuits 
synchronized wonderfully in the three trajectories with 
insignificant errors. 
 

CONCLUSION 
 
 This chaos synchronization method consists of 
designing a digital system (receiver) to synchronize 
with a given continuous-time chaotic system 
(transmitter). The chaos synchronization was derived 
based on the classical observer approach to 
synchronization, where the synchronization is achieved 
by making the error dynamics asymptotically stable 
about zero. As shown by convincing numerical results 
on uncertain chaotic systems, this new methodology is 
capable of achieving excellent synchronization 
performances, even in the presence of significant 
parametric uncertainties for uncertain chaos systems. 
The Takagi-Sugeno (TS) fuzzy model was used to 
model the chaotic dynamic system, while the 
uncertainties are decomposed such that the uncertain 
chaotic system was rewritten as a set of local linear 
models with an additional disturbed input. 
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