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Abstract: Problem statement: A cryptosystem is a way for a sender and a receiver to communicate 
digitally by which the sender can send receiver any confidential or private message by first encrypting 
it using the receiver’s public key. Upon receiving the encrypted message, the receiver can confirm the 
originality of the message’s contents using his own secret key. Up to now, most of the existing 
cryptosystems were developed based on a single cryptographic assumption like factoring, discrete 
logarithms, quadratic residue or elliptic curve discrete logarithm. Although these schemes remain 
secure today, one day in a near future they may be broken if one finds a polynomial algorithm that can 
efficiently solve the underlying cryptographic assumption. Approach: By this motivation, we 
designed a new cryptosystem based on two cryptographic assumptions; quadratic residue and discrete 
logarithms. We integrated these two assumptions in our encrypting and decrypting equations so that 
the former depends on one public key whereas the latter depends on one corresponding secret key and 
two secret numbers. Each of public and secret keys in our scheme determines the assumptions we use. 
Results: The newly developed cryptosystem is shown secure against the three common considering 
algebraic attacks using a heuristic security technique. The efficiency performance of our scheme 
requires 2Texp+2Tmul +Thash time complexity for encryption and Texp+2Tmul +Tsrt time complexity for 
decryption and this magnitude of complexity is considered minimal for multiple cryptographic 
assumptions-like cryptosystems. Conclusion: The new cryptosystem based on multiple cryptographic 
assumptions offers a greater security level than that schemes based on a single cryptographic 
assumption. The adversary has to solve the two assumptions simultaneously to recover the original 
message from the received corresponding encrypted message but this is very unlikely to happen.  
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INTRODUCTION 
 
 Many designated cryptosystems (Diffie and 
Hellman, 1976) in the literature were developed based 
on a single cryptographic assumption like algebraic 
geometric code (Pramod and Manju, 2010), discrete 
logarithms (DL) (ElGamal, 1985), factorization (FAC) 
(Rivest et al., 1978), quadratic residue (QR) (Rabin, 
1979), elliptic curve discrete logarithm (ECDL) 
(Koblitz, 1987; Miller, 1986) problems. Some of them 
remain secure and are resistant to attacks. However, one 
day in the future, one could find a polynomial algorithm 
that can efficiently solve the underlying assumption 
hence break the corresponding cryptosystem easily. 
Many cryptographers realize it and start to develop a 
more secure cryptosystem. One of the methods to 
design such scheme is by using multiple cryptographic 
assumptions (Ismail et al., 2008a; Elkamchouchi et al., 
2004; Harn, 1994; Baocang and Yupu, 2005; Ismail et 

al., 2008b; Ismail and Hijazi, 2011). The reason behind 
this is an adversary needs a longer period of time in 
order to break the multiple cryptographic assumptions-
based cryptosystem since it is very unlikely for the 
adversary to obtain the solutions of these cryptographic 
assumptions simultaneously. 
 In this article, we proposed a new cryptosystem 
based on two cryptographic assumptions; quadratic 
residue and discrete logarithm problems. With the 
improved security offered, we also showed that the 
performance of the scheme requires acceptable 
numbers of operations in both encrypting and 
decrypting processes, which makes it very practical 
for real applications. 
 
Some notations and parameters: The following 
notations and parameters are used to initialize the 
developed scheme: 
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• Two large strong random primes p and q which are 
safe primes and set the modulus n = pq 

• A primitive element, g from H = {z : gcd(z, n)=1} 
of order n satisfying gn-1 = 1 mod n where gcd (a,b) 
denotes the greatest common divisor of a and b 

• A cryptographic hash-function h(.) whose output is 
a t-bit length and we suggest t = 128 

 
MATERIALS AND METHODS 

 
 We propose a cryptosystem based on multiple 
cryptographic assumptions; quadratic residue and 
discrete logarithms. The scheme consists of three 
phases namely Initialization, Encryption and 
Decryption. In Initialization phase, the public and secret 
keys of receivers are computed. The calculated public 
keys will be published in a public directory and 
everyone including adversaries could access it while the 
secret keys remain secret and will be kept by the 
receivers.  
 In Encryption phase, the original message owned 
by a sender is first hashed using the appropriate 
cryptographic hash function, h(.). This function 
transforms an input of arbitrarily length to a fixed 
length of output (128 bits). The sender then gets his 
hashed message encrypted and this is done by first 
picking a secret integer randomly plus the receiver’s 
public key. The encrypted message is then sent to the 
legal receiver. In Decryption phase, the receiver obtains 
the original message by using his own secret keys.  
 
Initialization phase: 
 
• Choose randomly an integer x < n from H  
• Compute the number y = gx mod n  
 
 The public key is given by y and can be accessed in 
the public directory and the secret key is given by x and 
only known to the legal receiver. Also only the receiver 
knows the primes factorization of n. 
 
Encryption: Get the original message, m hashed. The 
sender encrypts his message h(m) of 128-bits as follows 
before sends receiver a pair (c1, c2). 
 
• Select at random an integer c < n from H 
• Disguise the message by computing 
 
c1 = h(m)2y-c mod n (1a) 
 
• Calculate the number: 
 
c2 = gc mod n (1b) 

 In the original ElGamal, (1985) cryptosystem we 
compute the number c1 in Eq. 1a without squaring the 
original message. In our scheme, we need this as we 
implementing the Rabin, (1979) cryptosystem for QR-
like scheme.  
 
Decryption: The receiver decrypts the obtained 
encrypted message (c1, c2) as below. 
 
• Compute the following: 
 
c1(c2)

x  = h(m)2 mod n (2)  
 
• The receiver uses the known technique (Rabin, 

1979) to extract the original message h(m) from 
[h(m)2] and this can be done since he knows the 
prime factorization of n. 

  
A simple example: We describe an example to show 
the basic principle of our developed cryptosystem. 
Practitioners are not recommended to select keys or 
parameters computed in this example in practice since 
inappropriate parameters would make this scheme 
vulnerable to attacks.  
 Assume that p = 29 and q = 43. Then the modulus 
is now given by n = 1247. Next picks the number x = 
37 and a primitive element, g = 17. Thus the public and 
secret keys of the scheme are respectively given by 
1003 and 37. To encrypt the original message h(m) = 
1122, the sender selects c = 3 and sends receiver 
 
c1 = 1122(1003)-3 = 1116 mod 1247 
 
and 
 
c2 = 173 = 1172 mod 1247 
  
 The receiver once obtains (1116, 1172) recovers 
the original message as below:  
 
(1116)117237 = 661 mod 1247 
and one can check easily that the quadratic residue of 
661 mod 1247 is given by the original message 1122 
mod 1247. 
 

RESULTS 
 
We discuss our results of the newly developed 
cryptosystem according to the following criterion.  
 
• Verification 
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• Security analysis 
• Efficiency performance 
 
 We start by proving the validity of our scheme then 
we show that our scheme is heuristically secure by 
considering common algebraic attacks on cryptosystem. 
Lastly, we describe the efficiency consideration using 
computational complexity of the proposed scheme. 
 For verification, we prove that the decrypting Eq.2 is 
correct. For security consideration, we use a technique 
from heuristic security to show that the scheme is secure. 
We do this by delivering the scheme to the literature for 
attacks. We consider three possible attacks by which an 
Adversary (Adv) may try to take down the new 
cryptosystem. We define each attack and give the 
corresponding analysis of why this attack would fail. For 
efficiency performance, we evaluate the time complexity 
for both phases; encryption and decryption and we 
calculate the communication cost for our scheme. 

 
Verification: We validate our new cryptosystem by 
proving the following theorem. 
 
Theorem: If the algorithms of Initialization and 
Encryption run smoothly then the decryption of the 
encrypted message in Decryption is correct. 
 
Proof: The Eq.2 above is true for all encrypted message 
(c1, c2) since 
 
c1(c2)

x  = h(m)2y-c (gc)x  = h(m)2g-cx (gc)x = h(m)2 mod n 
 
Security analysis: We show that our scheme is 
heuristically secure by considering the following three 
most common attacks on cryptosystem. 
 
Direct attack: Adv wishes to obtain all secret keys 
using all information available from the system. 
Particularly, he wants to find the 3-tuples (x, p, q). In 
this case, Adv needs to solve QR and DL. For QR, he 
needs to find the primes of n and the best way to 
factorize the modulus n = pq is by using the number 
field sieve method (Lenstra et al., 1993). However, this 
method is just dependent on the size of modulus n and 
it is computationally infeasible to factor an integer of 
size 1024-bit and above. The primes p and q also must 
be well-chosen that they are must be strong primes 
(Gordon, 1984). This could resist the scheme from the 
special-purpose factorization algorithms attack. For DL, 
to resists it from various attacks one should check and 

confirm that the two integers (p-1)/2 and (q-1)/2 are the 
product of two 512-bit strong primes.  
 
Factoring attack: Assume that the Adv has 
successfully solves the factoring assumption so that 
he knows the primes p and q. He also learns the 
following equation: 
 

c1 = h(m)2y-c = h(m)2g-cx mod n 
 
 From the equation, to recover the original message, 
h(m) he has to remove the term g-cx from c1. At this 
stage, he knows gc and gx but according to Diffie-
Hellman problem (Diffie and Hellman, 1976) he cannot 
compute gcx. Thus the Adv would fail.  
 
Discrete logarithm attack: Assume that the Adv is 
able to solve the DL problem and thus obtain the secret 
integer x. He then knows that (c2)

x  = gcx mod n and tries 
to recover the original message h(m) from the equation 
 

c1 = h(m)2y-c = h(m)2g-cx mod n 
 
 Upon knowing the secret x, he manages to remove 
the term g-cx from c1 to obtain h(m)2. Unfortunately, to 
get h(m) from h(m)2 he must know the secret primes p 
and q but this is impossible since the FAC is 
computationally infeasible. 
 
Efficiency performance: Next, we investigate the 
performance of our scheme in terms of number of keys, 
computational complexity and communication costs. 
The following notations are used to analyse the 
performance of the scheme. 
 
• SK and PK denote the number of secret and public 

keys respectively 
• Texp is the time taken for a modular exponentiation  
• Tmul is the time taken for a modular multiplication 
• Tsrt is the time taken for a modular quadratic 

residue computation 
• Thash is the time taken for performing a hash 

function 
• |x| denotes the bit length of x 
 
Table 1: The performance of our new cryptosystem   
    Our scheme 
The number of keys SK 1 
 PK 1 
Computational complexity Encryption 2Texp+2Tmul +Thash 
 Decryption 2Texp+2Tmul +Tsrt 
Communication cost Encryption 2|n|   
 Decryption 2|n| 
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 We ignore the time complexity for modular 
addition or subtraction computation and we assume that 
the probability of the bit being selected as 0 or 1 is 0.5. 
The performance of our new cryptosystem is 
summarized in Table 1.  
 From Table 1, the sender performs 482Tmul+Thash 
time complexity for encryption process and the 
receiver performs 242Tmul+Tsrt time complexity for 
decryption process using the conversion 
Texp=240Tmul (Koblizt et al., 2000). Finally the 
communication costs of the scheme are given by 4|n|. 
 

DISCUSSION 
 
 Many existing cryptosystems were developed 
based on a single cryptographic assumption like 
factoring, discrete logarithm, elliptic curve discrete 
logarithm and quadratic residue problems. In a near 
future, if an attacker finds a polynomial algorithm 
solving this assumption, he then can read the original 
message from the corresponding encrypted message 
and hence break the scheme.  
 Our new proposed cryptosystem is prevented from 
this situation. This is because the scheme is designed 
based on two cryptographic assumptions namely 
quadratic residue and discrete logarithms. The enemy 
can break this scheme only if he can solve the two 
problems at one time and this is happen with 
negligible probability. Although he manages to find a 
solution to one of the underlying assumption in one 
certain period of time, our scheme remains secure as 
the other assumption remains hard to solve for at 
least another period of time. 
 Our scheme next is protected from the most three 
common considering attacks for scheme based on two 
assumptions. The performance analysis shows that the 
developed scheme requires reasonable number of modular 
operations in both encryption and decryption phases and 
thus makes it very efficient and suitable for applications. 
 

CONCLUSION 
 
 We developed a new cryptosystem based on two 
cryptographic assumptions; quadratic residue and 
discrete logarithms. The proposed scheme requires 
respectively 482Tmul+Thash and 242Tmul+Tsrt for 
encryption and decryption. Some possible attacks have 
also been considered and we showed that the scheme is 
secure from those attacks.  
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