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Abstract: Problem statement: A new multi-objective approach, Strength Pareto Evolutionary 
Algorithm (SPEA), is presented in this paper to solve the shortest path routing problem. The routing 
problem is formulated as a multi-objective mathematical programming problem which attempts to 
minimize both cost and delay objectives simultaneously. Approach: SPEA handles the shortest path 
routing problem as a true multi-objective optimization problem with competing and noncommensurable 
objectives. Results: SPEA combines several features of previous multi-objective evolutionary algorithms 
in a unique manner. SPEA stores nondominated solutions externally in another continuously-updated 
population and uses a hierarchical clustering algorithm to provide the decision maker with a manageable 
pareto-optimal set. SPEA is applied to a 20 node network as well as to large size networks ranging from 
50-200 nodes. Conclusion: The results demonstrate the capabilities of the proposed approach to generate 
true and well distributed pareto-optimal nondominated solutions.  
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INTRODUCTION 

 
 A computer network is an interconnected group of 
computers with the ability to exchange data. Today, 
computer networks are the core of modern 
communication. Routing problem is one of the important 
research issues in communication networks (Jayakumar 
and Gopinath, 2008). An ideal routing algorithm should 
strive to find an optimal path for packet transmission 
within a specified time so as to satisfy the Quality of 
Service (QoS). The objective functions related to cost, 
time, reliability and risk are appropriated for selecting the 
most satisfactory route in many communication network 
optimization problems. Traditionally, the routing 
problem has been a single-objective problem of 
minimization of either cost or delay. However, it is 
necessary to take into account that many real world 
problems are multi-objective in nature and so is the 
shortest path routing problem in computer networks. 

 Current routing protocols use a simple metric and 
shortest path algorithm so as to work out the routes. In 
QoS routing, routes must be determined by 
requirements based on features of the data flows, such 
as cost, delay, and bandwidth (Murad and Al-
Mahadeen, 2007). There are two main goals that are to 
be achieved by the QoS routing algorithm. The first 
goal is to find a path that satisfies the QoS 
requirements. The second goal is to optimize the global 
network resource utilization (Rouskas and Baldine, 
1997). Many applications, such as audio, video 
conferencing or collaborative environments and 
distributed interactive simulations have multiple QoS 
requirements such as bandwidth, packet delay, packet 
loss, cost (Sriram et al., 1998).  
 Extensive research has been done on shortest path 
routing problems. It includes Dynamic Programming 
for directed networks, Dijkstra labeling algorithm and 
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Bellman-Ford successive approximation algorithm 
(Lawler, 1976). These algorithms have major 
shortcomings such as they search only for the shortest 
route and they exhibit high computational complexity 
for real-time communications. Artificial Neural 
Networks (ANN) has been examined to solve the 
shortest path problem relying on their parallel 
architecture to provide a fast solution (Araujo et al., 
2001). However, the ANN approach has several 
limitations. These include the complexity of the 
hardware which increases considerably with 
increasing number of network nodes; at the same time, 
the reliability of the solution decreases. Secondly, they 
are less adaptable to topological changes in the 
network graph. Evolutionary algorithms such as 
Genetic Algorithm (GA) (Ahn and Ramakrishna, 
2002) and Particle Swarm Optimization (PSO) 
(Mohemmed et al., 2008) have been used. However, 
the approaches are meant to find single-objective 
optimization of either cost or delay, mostly cost only. 
It is apparent that there is a need for more efficient 
algorithm which gives multi-objective trade-off 
solutions involving cost, delay and bandwidth. 
 The simple multi-objective method is to form a 
composite objective function as the weighted sum of 
the objectives, where a weight for an objective is 
proportional to the preference factor assigned to that 
particular objective. This method of secularizing an 
objective vector into a single composite objective 
function converts the multi-objective optimization 
problem into a single-objective optimization problem. 
In an ideal multi-objective optimization procedure, 
multiple trade-off solutions are found. Higher level 
information is used to choose one of the trade-off 
solutions. It is realized that, single-objective optimization 
is a degenerate case of multi-objective optimization. 
Srinivas and Deb (1994) developed Non-dominated 
Sorting Genetic Algorithm (NSGA) in which a ranking 
selection method emphasizes current non-dominated 
solutions and a niching method maintains diversity in 
the population. Chitra and Subbaraj (2010) applied 
NSGA to shortest path routing problem and compared 
its validity with single-objective optimization. 
However, NSGA suffers from three weaknesses: 
computational complexity, non-elitist approach and 
the need to specify a sharing parameter.  
 In this study, SPEA is applied to route the traffic 
in communication network. Simulation results 
considering two objectives are presented for a few 
sample test networks. A hierarchical clustering 
technique is implemented to provide the routing 
problem with a representative and manageable Pareto-
optimal set. To analyze and compare the quality of 

solution produced by SPEA, the same problem is 
solved as a single-objective optimization by weighted 
sum method. The effectiveness and potential of the 
proposed approach to solve the multi-objective 
shortest path routing problem are demonstrated. 
  
Problem formulation: The routing problem is 
formulated as a multi-objective mathematical 
programming problem which attempts to minimize both 
delay and cost simultaneously, while satisfying the flow 
conservation constraints (Lin and Gen, 2007). 
 The topology of a multi-hop network is specified 
by an undirected graph, where the set of nodes is V and 
the set of its link is E. There is a cost Cij  associated with 
each link. The costs are specified by the cost matrix C = 
[Cij], where Cij denotes a cost of transmitting a packet 
on link (i,j). There are three basic concepts of delay, 
viz. switching delay, queuing delay and propagation 
delay. It is specified by the delay matrix D = [dij], 
where dij denotes the propagation delay of transmitting 
a packet on link (i,j). Since switching delay is a 
consistent value, it is added to the propagation delay. 
Also, queuing delay makes little difference in the 
computation, the total delay is taken as only propagation 
delay. Source and destination nodes are denoted by S and 
D, respectively. Each link has the link connection 
indicator denoted by Xij, providing information on 
whether the link from node i to node j is included in a 
routing path or not. If the link is used then the binary 
variable is 1 else it is 0. A path from node Vi to node Vj is 
a sequence of nodes from V in which no node appears 
more than once. A path can also be equivalently 
represented as a sequence of nodes (Vi, Vl, . . . ,Vk, Vj). 
For example, referring to Fig. 1, (1, 2), (2, 3), (3, 8) and 
(8, 14), (14, 20) is a path from node 1 to node 20 (Ahn 
and Ramakrishna, 2002). The path representation is (1, 2, 
3, 8, 14, 20). Thus, the problem is to find a path between 
the source and destination nodes having minimum total 
cost and minimum end to end delay.  
 

 
 
Fig. 1: A simple undirected graph with 20 nodes and 48 

edges 
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Objective functions: 
Cost: The total cost function is the sum of cost of link 
along the path from the source to the destination. The 
cost can be expressed as: 
 
Minimize: 
 

1 ij ij
(i, j) E

f C X
∈

= ∑   (1) 

 
Delay: The total delay function is the sum of delay of 
the link along the path from the source to the 
destination.  
 The delay can be expressed as: 
 
Minimize: 
 

2 ij ij
(i, j) E

f d X
∈

= ∑  (2) 

 
 Subject to the constraints: 
 

ij ji
(i, j) E (i, j) E

X X 1; i S
∈ ∈
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ij ji
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∈ ∈

− = − =∑ ∑  (4) 

 
ij ji

(i, j) E (i, j) E

X X 0; i S,i D
∈ ∈

− = ≠ ≠∑ ∑   (5) 

 
 Xij = 0 or 1  (6) 
 
 Constraints (3), (4) and (5) are flow conservation 
constraints. Constraint (3) ensures that the total flow 
emerging from ingress node to egress node should be 1. 
Constraint (4) ensures that the total flow coming towards 
an egress node should 1. Constraint (5) ensures that for 
any intermediate node, the sum of their output-flows 
minus the input-flows should be zero. The variable X ij in 
(6) takes values 0 or 1, to show whether or not the link (i, 
j) is used to carry information to the egress node D. 
 
Concepts of multi-objective optimization: Many real-
world problems involve simultaneous optimization of 
several objective functions. Generally, these functions 
are noncommensurable and often competing and 
conflicting objectives. Multi-objective optimization 
with such conflicting objective functions gives rise to a 
set of optimal solutions, instead of one optimal solution. 
The reason for the optimality of many solutions is that 
no one can be considered to be better than any other 
with respect to all objective functions. These optimal 
solutions are known as Pareto-optimal solutions 
(Abido, 2003; 2006; Bueno and Oliveira, 2010; 
Mendoza et al., 2006; Taher, and Tabei, 2008). A 

general multi-objective optimization problem consists 
of a number of objectives to be optimized 
simultaneously and is associated with a number of 
equality and inequality constraints. It can be formulated 
as follows. 
 
 Minimize: 
 
fm (x) m = 1,2,3, … Mobjectives (7) 
 
 Subject to: 
 
λg (x) = 0, g = 1,2,3,… G (8) 
 
µh (x) ≤ 0, h = 1,2,3,… H (9) 
 
Where: 
fm = The mth objective function 
x = A decision vector that represents a solution 
Mobjectives = The number of objectives 
 
 For a multi-objective optimization problem, any 
two solutions can have one of two possibilities: one 
dominates or covers the other or none dominates the 
other. In a minimization problem, without loss of 
generality, a solution covers or dominates if the 
following two conditions are satisfied: 
 

objectives k 1 k 2k {1,2,...,M }: f (x ) f (x )∀ ∈ ≤  (10) 

 
objectives l 1 l 2l {1,2,...,M }: f (x ) f (x )∃ ∈ <  (11)  

 
 If any of the above conditions is violated, the 
solution x1 does not dominate the solution x2. If x1 

dominates x2, the solution, x1 is called the nondominated 
solution. The solutions that are nondominated within the 
entire search space are denoted as Pareto-optimal and 
constitute the Pareto-optimal set. This set is also known 
as Pareto-optimal front. 
 
Principle of strength Pareto evolutionary algorithm: 
Overview: The studies on evolutionary algorithms have 
shown that these algorithms can be efficiently used to 
eliminate most of the difficulties of classical methods 
that can be summarized as: 
 
• An algorithm has to be applied many times to find 

multiple Pareto-optimal solutions 
• Most algorithms demand some knowledge about 

the problem being solved 
• Some algorithms are sensitive to the shape of the 

Pareto-optimal front 
• The spread of Pareto-optimal solutions depends on 

efficiency of the single-objective optimizer 
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Fig. 2: Strength Pareto evolutionary algorithm 

 
 In general, the goal of a multi-objective 
optimization algorithm is not only guide the search 
towards the Pareto-optimal front but also maintain 
population diversity in the set of nondominated 
solutions (Zitzler and Thiele, 1999; Deb, 2001; 2008). 

 
Procedure: The basic elements of the SPEA technique 
are briefly stated and defined as follows. 

 
External set: It is a set of Pareto-optimal solutions. 
These solutions are stored externally and updated 
continuously. Ultimately, the solutions stored in this set 
represent the Pareto-optimal set. 

 
Strength of a Pareto optimal solution: It is an 
assigned real value s∈[0,1) for each individual in the 
external set. The strength of an individual is 
proportional to the number of individuals covered by it. 

Fitness of population individuals: The fitness of each 
individual in the population is the sum of the strengths 
of all external Pareto optimal solutions by which it is 
covered. The fitness of a population member is 
determined only from the individuals stored in the 
external set. This reduces significantly the 
computational burden of the fitness assignment process. 
The strength of a Pareto optimal solution is at the same 
time its fitness. 
 The SPEA algorithm is described in the following 
steps: 
 
Step 1: Generate an initial population and create an 

empty external Pareto-optimal set. 
Step 2: Update the external Pareto optimal set.  
Step 3: Calculate the fitness values of individuals in 

both external Pareto set and the population.  
Step 4: Combine the population and the external set 

individuals. Select two individuals at random 
compare their fitness. Select the better one to 
the mating pool. 

Step 5: Perform the crossover and mutation operations 
according to their probabilities to generate the 
new population. 

Step 6: Terminate if the generation counter exceeds set 
value. 

 
 The computational flowchart of the SPEA 
approach is presented in Fig. 2. 
  
Implementation of Shortest Path Routing Problem 
(SPEA): 
Initialization: routing path is encoded by a string of 
positive integers that represent the nodes through which 
the path passes. Each locus of the string represents an 
order of a node that is indicated by the gene of the 
locus. The gene of the first locus is for the source node 
and the one at the last locus is for the destination node. 
The length of a routing path should not exceed the 
maximum length n, where n is the number of nodes in 
the network. Special difficulties arise when a random 
sequence of edges usually does not correspond to a 
path. To overcome such difficulties, an indirect 
approach is adopted by encoding some guiding 
information to construct a path. The path is generated 
by sequential node appending procedure beginning 
from the specified node 1 and terminating at the 
specified node   n,  where n = 20. At each step, there are 
usually    several   nodes    available for   consideration. 
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Fig. 3: Example of Priority-based encoding 
 
Each node is assigned a priority with a random 
mechanism and adds the one with the highest priority 
into path (Chen and Sun, 2005). A gene in a 
chromosome is characterized by two factors: ‘locus’, 
i.e., the position of gene located within the structure of 
chromosome and ‘allele’, i.e., the value the gene takes. 
In the priority-based encoding method, the position of a 
gene is used to represent the node and its value is used 
to represent the priority of the node for constructing a 
path among candidates. A path can be uniquely 
determined from this encoding scheme (Mukhef et al., 
2008; Craveirinha et al., 2008). 
 An example of chromosome generated using 
priority based encoding scheme is shown in Fig. 3. To 
find a path from source node 1 to destination node 20, a 
node which is connected to node 1 is identified first. As 
seen from Fig. 1, the nodes 2, 3, 4 and 5 are such nodes 
to be considered. The priorities for them are 5, 7, 6 and 
3 respectively. The node 3 has the highest priority and 
is put into the path. The possible nodes from node 3 are 
nodes 1, 2, 4, 7, 8 and 9. The priorities of these nodes 
are 2, 5, 6, 9, 4 and 10 respectively. Since node 9 has a 
larger value than the other nodes, it is taken as the next 
node while constructing the path. Then, the set of nodes 
that are available for next consideration are chosen and 
the one with the highest priority among them is selected 
(Pangilinan and Janssens, 2007). The same procedure is 
repeated until a complete path from the source node1 to 
the destination node 20 is obtained (1, 3, 9, 15, 20). 
 
Update of external Pareto-optimal set: The external 
Pareto-optimal set is updated as follows: 
 
• Search the population for the nondominated 

individuals and copy them to the external Pareto set 
• Search the external Pareto set for the nondominated 

individuals and remove them all from the set 
• If the number of the individuals externally stored in 

the Pareto set exceeds a prespecified maximum 
size, reduce the set by means of clustering 

 
Fitness assignment: The fitness assignment 
procedure is a two-stage process. First, the individuals 
in the external nondominated set P* are ranked. 

Afterwards, the individuals in the population P are 
evaluated (Deb, 2001). 
 
Step 1: Each solution i∈P* is assigned a real value, 

Si∈[0, 1), called strength; Si is proportional to 
the number, ni of current population members 
that an external solution i dominates: 

 
i

i

n
S

N 1
=

+
 (12) 

 
Where: 
n = The number of individuals in population P 
                 that are covered by i, 
N = The size of randomly created population. 
 The fitness fi of i is equal to its strength: 
 
 fi = Si (13) 
 
Step 2: The fitness of an individual j∈P is calculated by 

summing the strengths of all external 
nondominated solutions i∈P* that cover j. The 
fitness of the current population is member j is 
assigned as one more than the sum of the 
strength values of all external population 
members which weakly dominate j: 

 
 

*
j i

i P i j

f 1 S
∈ ∧

= + ∑
≺

 (14) 

 
 The addition of one makes the fitness of any 
current population member P to be more than the 
fitness of any external population member P*. This 
method of fitness assignment suggests that a solution 
with a smaller fitness is better. 
 
Selection: The population and the external set 
individuals are combined and any two individuals at 
random are selected. Based on their fitness function, the 
better one is moved to the mating pool. 
 
Crossover and mutation: 
Crossover: The first genetic operation done to the 
chromosomes in the mating pool is crossover. The idea 
behind crossover is to create an information exchange 
between two chromosomes. By doing so, the algorithm 
will explore new paths and hopefully be able to find 
better paths in the process. The crossover scheme that is 
applied here is Partially Mapped Crossover (PMX). 
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Fig. 4: Parents for Partially mapped crossover 
 

 
 
Fig. 5: Offspring’s after mapping sections crossed 
 

 
 
Fig. 6: Production of offsprings after crossover 
 
 PMX is a crossover of permutations which guarantees 
all positions that will be found exactly once in each 
offspring, i.e., both offspring receive a full complement of 
genes, followed by the corresponding filling-in of alleles 
from their parents. PMX proceeds as follows: 
 
• The two chromosomes are aligned 
• Two crossing sites are selected uniformly at random 

along the strings, defining a matching section 
• The matching section is used to cross through 

position-by-position exchange operation 
• For illustration, the following two parents are 

considered 
 
 Alleles are moved to their new positions in the 
offspring. For illustration, the two parents are 
considered as shown in Fig. 4. 
 First, two cut points are selected uniformly 
at random along the parent strings. The sub strings 
between the cut points are called the mapping sections. 
Now the mapping section of the first parent is copied 
into the second offspring and the mapping section of 
the second parent is copied into the first offsprings as 
shown in Fig. 5. 
 Then offspring1 is filled up by copying the first 
two elements N1, N2 of the first parent. In case a node is 
already present in the offspring it is replaced according 
to the mapping. Here the mapping is defined as N4 ↔ 
N3, N5 ↔ N6 ↔ N8. For example the first two elements 
of parent1 N1, N2 are copied as the first two elements of 
the offspring1. The third element would be N3, like the 
first element of the mapped sections in offspring1. So 
there is already a N3 present in offspring1. Hence, 
because of the mapping N4 ↔ N3 the third element of the 
offspring1 is chosen to be N4. The seventh and ninth 

elements of offspring1 can be taken from the first parent. 
However, the eighth element of the offspring1 would be 
N8, which is already present. Because of the mapping N5 

↔ N6 ↔ N8, it is chosen as N5. Thus, offspring1 and 
offspring2 are formed and is shown in Fig. 6. 
 Here, the source node and the destination nodes are 
fixed. Each partial route is exchanged and assembled 
and thus, two new routes are produced. In other 
crossover techniques available, there is a possibility of 
loop formation after crossover. In order to avoid this, a 
repair function must be used as a countermeasure. But 
in PMX, loop formation is avoided, because, there is no 
repetition of nodes. The repetition of nodes is avoided 
by a mapping function. Therefore, PMX finds many 
new paths without increasing the computational 
complexity as no repair function is needed.  
 
Mutation: The objective of mutation is to create 
diversity in the population. The population undergoes 
mutation by an actual change or flipping of one of the 
genes of the candidate chromosomes, thereby keeping 
away from local optima. 
 
Stopping criteria: Check for stopping criteria. The 
search will be terminated if the generation counter 
exceeds set value. 
 
Reducing Pareto set by clustering: In some problems, 
the Pareto optimal set can be extremely large or even 
contain an infinite number of solutions. In this case, 
reducing the set of nondominated solutions without 
destroying the characteristics of the trade-off front is 
desirable from the decision maker’s point of view. An 
average linkage based hierarchical clustering algorithm 
is employed to reduce the Pareto set to manageable 
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size. It works iteratively by joining the adjacent clusters 
until the required number of groups is obtained. The 
algorithm is illustrated in the following steps: 
 
Step 1: Initialize cluster set C; each individual i∈P* 

constitutes a distinct cluster. 
Step 2: If number of clusters |C|≤ N*, then go to Step 5, 

else go to Step 3. 
Step 3:  Calculate the distance of all possible pairs of 

clusters. The distance dxy between two clusters C1 
and C2 is defined as the average Euclidean 
distance of all pairs of solutions (i∈C1 and j∈C2). 
It is calculated using the following equation: 

 

 
1 2

xy
x C ,y C1 2

1
d d(x, y)

n n ∈ ∈

=
× ∑  (15) 

 
Where: 
n1  = The numbers of individuals in clusters C1 

n2  = The numbers of individuals in clusters C2 

 
Step 4:  Determine two clusters with minimal distance 

dxy. Merge these clusters together. This reduces 
the number of clusters by one. Go to Step 2. 

Step 5: For each cluster, find the centroid and select 
the nearest individual to the centroid as a 
representative and remove all other individuals 
from the cluster. 

Step 6: Compute the reduced nondominated set by 
uniting the representatives of the clusters. 

 
MATERIALS AND METHODS 

 
 The SPEA for shortest path search is tested on 
networks with randomly varying topologies through 
computer simulations. Simulation runs were carried out 
100 times with MATLAB 7.4 software package on 
IBM PC with Pentium dual core processor.  
 

RESULTS AND DISCUSSION 
 
Simulation results for a fixed network with 20 
nodes: In order to test the capability of SPEA for 
shortest path routing problem, the simulation studies 
involve the undirected, weighted network topology with 
20 nodes depicted in Fig. 1. Each of the links in the 
network is associated with two QoS parameters, cost 
and delay. The range of cost varies from 10-250 and the 
range of delay from 5-200. In general, any evolutionary 
search algorithm shows improved performance with 
relatively larger population. As there are no general 
guidelines available at present for the selection of 

parameters, they are chosen by trial and error. For all 
the runs, the sender is always the first node and the 
receiver is the twentieth node since that would give 
the largest number of possible paths in the network. 
The higher the population size and/or the number of 
generations, the larger the number of solutions found. 
Several runs have been carried out to set the 
parameters and after experimentation, the population 
size was set as 200. The size of the Pareto-optimal set 
was chosen as 40. If the number of nondominated 
Pareto-optimal     solutions     exceeds     this    bound, 
the    hierarchical     clustering   technique is     called. 
Since the population in SPEA is augmented to include 
the externally stored set for selection process, the 
population size in SPEA was reduced to 160 individuals 
only. Crossover and mutation probabilities were chosen 
as 0.8 and 0.01 respectively, in all simulation runs.  
 The Pareto-optimal front for the best optimization 
runs obtained by SPEA is shown in Fig. 7. It is worth 
mentioning that the Pareto optimal set has 23 
nondominated solutions generated by a single 
simulation run. The average CPU execution time was 
found to be 59 sec. 
 For completeness and comparison purposes, the 
problem was also treated as a single-objective 
optimization problem by linear combination of cost and 
delay as follows (Deb, 2008): 
 
Minimize: 
 
w f1 + (1 – w) f2 

 
where, w is the weighting factor.  
 

 
 
Fig. 7: Pareto-optimal front of SPEA in last generation 
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Fig. 8: Pareto-optimal front of linear combination in 20 

separate runs 
 
Table 1: Route Optimal Rate for networks of varying topologies 
Number Population Route CPU 
of nodes size optimal rate time (in sec) 
50 500 96 70 
75 500 96 76 
100 600 89 85 
125 600 87 91 
150 750 86 99 
175 900 82 102 
200 1000 79 112 

 
 To generate 20 nondominated solutions, the 
algorithm was run 20 times with varying w as a random 
number, w = rand [0,1]. The solutions obtained by 
weighted sum method for the routing problem 
considered are plotted in Fig. 8. The execution time is 
found to be 205 sec just to generate 20 solutions. With 
the solutions detected by SPEA, the decision-maker has 
the opportunity to visualize trade-offs and may be 
inclined to accept a very small violation of the delay 
requirement for a large cost saving. Comparing the 
results shown in Fig. 7 and 8, it can be concluded that: 
 
• The 23 solutions shown in Fig. 7 represent the 

results of the SPEA technique obtained in a single 
run while the 20 solutions by weighted sum 
method shown in Fig. 8 has been obtained in 20 
separate runs 

• The solutions of SPEA approach shown in Fig. 7 
have better diversity characteristics and well-
distributed solutions over the trade-off surface than 
weighted sum method 

• The number of solutions found depends on the cost 
and delay data available which is generated 
randomly 

• The CPU execution time of SPEA is much less 
than that of the weighted sum method as it 
produces all the Pareto optimal solutions in one 
single run 

• The minimum cost of 142 Units and delay of 140 
Units are reached in a single run by SPEA. All the 
solutions provided are best solutions and it is up to 
the decision maker to choose one among them 
depending upon the requirement 

• No need to give any weightage for any particular 
objective in SPEA, whereas in weighted sum 
method, the solutions are found by varying the 
weighting factor, w 

 
Simulation results for random network topologies: 
A serial of optimization runs were conducted with 
random and varying topologies of 50-200 nodes 
through computer simulations. The main objective of 
these simulation experiments is to investigate the quality 
of solution and convergence speed for different network 
topologies and number of nodes. For the randomly 
generated networks with 50-200 nodes with randomly 
assigned link costs and link delays are investigated for 
shortest path solution. The cost and delay of the networks 
are randomly   chosen   in the   interval [10, 500]. In all 
the    cases,   the    priority   based   encoding/decoding 
and      partially      mapped       crossover      is       used. 
The quality of solution, in terms of Pareto-optimal front 
and the performance in terms of route optimal rate are 
tabulated in Table 1. The route optimal rate is defined 
as the rate at which the algorithm reached the optimal 
solution in 100 runs. The population size of different 
nodes with the obtained route optimal rate is tabulated 
in Table 2. For all the simulation runs of networks 
having nodes varying from 50-200, the crossover 
probability and mutation probability is uniformly set as 
0.8 and 0.01 respectively for fair comparison. However, 
the increase in the number of nodes warrants the 
population size to be increased. 
 When the number of nodes and number of edges 
are increased in this randomly varying topology 
network, the algorithm works better and finds all 
nondominated solutions. From the simulation results it 
is clear that as the population size is increased the route 
optimal rate also increases. But when the population 
size is increased the computational time increases. 
 

CONCLUSION 
 
 In this study, investigative results on using SPEA 
to solve the shortest path routing problem have been 
reported. SPEA is capable of exploring more efficient 
and non-inferior solutions. This demonstrates that the 
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search of SPEA span over the entire trade off surface. 
The SPEA based search used a modified indirect path 
encoding scheme, called the priority based encoding 
scheme and partially mapped crossover scheme, so as 
to widen the scope of search space. It also reduces the 
probability of invalid path/loop creation during the path 
construction procedure using a heuristic operator. The 
performance of the SPEA has been compared with the 
weighted sum method. The results obtained by SPEA 
are superior to weighted sum method and also it finds 
all the possible solutions in a single run, thus saving 
computer execution time. SPEA is applied to networks 
of various sizes and it is clear that the algorithm 
performs well in large network sizes too. 
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