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Abstract: Problem statement: The prediction is very useful in solar energy aggtions because it
permits to estimate solar data for locations whaeasurements are not available. The developed
artificial intelligence models predict the soladiaion time series more effectively compared te th
conventional procedures based on the clearness.idgmwroach: The forecasting ability of some
models could be further enhanced with the use ditiadal meteorological parameters. After having
simulated many different structures of neural nekscand trained using measurements as training
data, the best structures were selected in ordav#duate their performance in relation with the
performance of a neuro-fuzzy system. As the alter@asystem, ANFIS neuro-fuzzy system was
considered, because it combines fuzzy logic andahewetwork techniques that are used in order to
gain more efficiency. ANFIS is trained with the gsardata.Results: The comparison and the
evaluation of both of the systems were done acngrtti their predictions, using several error metric
Fuzzy model was trained using data of daily sokiation recorded on a horizontal surface in
National Research Institute of Astronomy and Gessy Helwan, Egypt (NARIG) at ten years
(1991-2000) Conclusion: The predicting conclusion indicated that the TSzfumodel gave a good
accuracy of approximately 96% and a root mean sgeiaor lower than 6%.

Key words: Forecasting ability, neural network, neuro-fuzzysteyn, error metrics, Wang-Mendel
Method (WM), solar radiation, Fuzzy Predictor (FRyuth Degree (TD), alternative
system, Auto-Regressive Moving Average (ARMA), AlRegressive (AR)

INTRODUCTION model. In this study we represent a fuzzy predictiv
Solaimani, 2009; Dastorarét al., 2010) method for
The predicting results indicate that the TS fuzzyglobal prediction which learns an input output niagp
model gives a good accuracy of approximately 9&ntb a (Ismailet al., 2010; Antoret al., 2009; Salelet al.,
a root mean square error lower than 6%. Fuzzy rul@009; Al-Suhaibarét al., 2010; Effendi et al.,
based approach is widely accepted as a promisig t02010; Eslamiamt al., 2009; Kang and Jin, 2010; Podeh
because it uses linguistic terms, it is able tol aéth et al., 2009).
nonlinear problems and can perform predictionsigit h The WM method was one of the first methods to
speed. For those reasons, the problem we address h@esign fuzzy systems from data. The meteorological
describes the on-going research effort that takasep  arjaples including air temperature, solar radatio

to shed light on the applicability of using fuzayes to . . - .
estimate the solar radiation irradiance time sdridbe OLV;TIS s_?ssdéar;(: f,llﬁ':eaggmgmswﬁg dglc;ns\,llvierreed

plain areas of Egypt. Chen (1994) first constructe _ '
fuzzy relationship with ‘IF-THEN’ rule group betwee ©Obtained 0.92 and 0.96, respectively; whereas the
fuzzy time series. And then, many researches extergfficiency of ANNs and SVMs models were 0.83 and
and modify Chen’s model and still construct fuzzy0.91, respectively. Both ANNs and SVMs approaches
relationship with rule based (Ahmedand Isa, 2009work well for the data set used in greenhouse dimmdi
Michael, 2010; Efendioglu and Karabulut, 2009;pyt the SVMs model works better in comparison with
Alexandroset al., 2010; Kar and Kundu, 2010; Abd {he ANNs model.

Elaal et al., 2010). On forecasting step, they all use

100% match method to classify the pattern of fuing bet n th";’ study, \:ve prgpbos:[e a ne;/v S|m|tl_ar|ty mggsure
series, like classify category data. However, fusey etween fuzzy Sets and between ITuzzy ime Series an

and fuzzy time series are not category data. Thés application to pattern recognition for foresagtand
similarity measure between fuzzy time series iginge ~ outperform than 100% match method of category data
pattern recognition for fuzzy time series forecasti in fuzzy time series forecasting model.

Corresponding Author: W.A. Rahoma, Department of Astronomy, Cairo Unsitgr
1605




J. Computer <ci., 7 (10): 1605-1611, 2011

Data based, on many different scientific efforts i example is presented to the network. The symhl) Z
order to realize better results in the domain ofrefers to the prediction signal appearing at thguuof
forecasting meteorological parameters. TemperaturINP. The symbol Y (n) refers to the final predictian a
and solar radiation forecasting constitutes a eeugial  iteration n.
issue for different scientific areas as well as rfmany
different aspects of everyday life. It has to belststep: Divide the input and output spaces into
mentioned that the meteorological data used, comizzy regions: We consider that the input and the
from the NRIAG, Helwan. The data obtained wereoutput y lie in the domain intervals B, Xijmad and

hourly measurements for the period 1991-2000 anﬁ,mim Ymax] respectively. We divide each interval into

were measured in w After obserylng the data it's 5,9 fuzzy region and assign each region a symaoaétri
obvious that apart from the logical values. Theytrian uar fuzzv set. Of course. other shapes of
constitute measurement errors and have to be explac 9 y ) ’ P

The object is to create the mean daily solarMembership functions are possible.
radiation time series without error measurements i

order to use it to the prediction systems. Hnd step: Data-generated fuzzy rules:From the

training set, take the '™ numerical data
MATERIALS AND METHODS pair(xgm),xgm),...,xﬁﬂm);W)). For each data pair calculates

Fuzzy Predictor (FP): The method (Yedjoust al., their respective membership grades. in the gttrcpute
2011; Mahi and Izabatene, 2011;Guagigal., 2009:; fuzzy sets. Next, choose for each variable thajhést
Alsaade, 2010) , for prediction system designgmes membership degree from the respective grades. ow,
three characteristics: simplicity, a one-pass dmgran  rule from the m training pair is obtained:

the numerical input-output pairs to extract thesuind

fast computational time. Suppose we are given Ntinp R™: IF X" is A" AND...AND xy

output samples: is AT THEN y" is C"
(. x P, :y®) yPO R p=1,2,...,0 where, A™ and C" are fuzzy sets that attributed in the
here: condition and conclusion parts of the rule and rthés
Xy ?r(leﬁputs index of the rule. Especially, we definé E 1,..., M)
1 - _ A
M = The number of the inputs fuzzy sets\!, q =1,...| for each input xwhere }

The output represents the number of membership functions én th
output space.

y

This method consists of the following five stepgs a I A
shown in Fig. 1. ANFIS is a technique for autorraijc x(k-1)— \Vﬂ\i)

tuning (Back propagation algorithm) TS-type fuzzy yuo)—»

inference system based on some collection of ioptgut Forecasting

I

Processing-pre

Processing-post

data. The ANFIS predictor uses first-order TS-type “*7'" _ ystem o) B
systems, single output derived by weighted defigztibn /v ’

and membership function type that is a generalizetl x(k=m)y— y(k-m)

curve (MATLAB). Another method for solving T X)) (ke 1), ..x(kem)

forecasting tasks is the combination of neural ogtw

predictors called committee machine Aggarvenlal.,  Fig. 1: Basic structure of the forecasting system
2005; Babuska, 1996; Chen, 1994; Huaehgl., 2007,

Li, and Cheng, 2009; Pratumsuwanal., 2010). The Z,(n

proposed committee machine is a static structarghis MNP

technique the predictors are combined by means of v
mechanism that does not involve the input signae T ANEIS Yiu

outputs of four different predictors are nonlingarl
combined to produce an optimum prediction as shiown
Fig. 2. Here, the nonlinear mechanism is the nturpy
system ANFIS which is trained by the output datamfr
predictors. For simplicity, the NNP will be refairéo as
IL-HL-OL network, corresponding to the number oties . . , )
in each layer (IL: Input Layer, HL: Hidden layerce®L: ~ Fig- 20 A typical architecture of a committee
Output layer). In iteration (time step) n, the mtaining machine based
1606
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The fuzzy setA™ is one of th&\?’s. Generally, in
real applications we give, in the fuzzy sets lirsgjai

names, like “big”, “very positive”.

3rd step: Assign a degree to each ruleAs there are
usually many data pairs and therefore many rules
generated, there is high probability of conflichaf is,
rules which have the same IF part and a differeant
part. To resolve this problem is to assign a Truth
Degree (TD) to each rule and accept only the rude t
has the largest truth degree. We use the followingN
product strategy:

m) — (m) (m) (m)
TD™ =, (™) (IR, gy (X”) i m (y ™)

4th step: Create a combined fuzzy rule baseThe

DEI =

Error metrics:

MSE = %Z x(K) = X(K)Y

RMSE = /%Z (k)= X(K)Y

n

AME =23 |x(k) ~%(K))|

ni=

RMSE _
o

;(x(k) ~%(K))’

n

> (x(k) - %) Ox(k) - X)

k=1

p=T2 ——
JE 03 Y (309 =Ry

Where:

maximum number of rules that can be generateg is Ix(k) = The real value in time instance k

l2-... - Iu. From the 3rd step the reduction of the numbery)

of rules is achieved. The generated rules deterraine N

The prediction of the model
Number of test data used for the prediction

combined fuzzy rule base.

5th step: Determine a mapping based on the
combined fuzzy rule base:Determine the overall
continuous fuzzy predictive model. Using the corablin

It has to be mentioned that the most characteristi
error criterion showing the quality of predictiorasv
proved be the correlation coefficient criterign).(As
the prediction improves is getting close to 1.

Neural networks training: After having trained and

rule base with K fuzzy rules, the product inferenceiegted all the different cases and structures ofate

engine, the singleton fuzzifier and the center-ager

networks with the different in normalization andey

defuzzifier, the following fuzzy system is obtained meteorological time-series, they have been compared

Chen (1997):

pa0(  [INED)

y=fpo=H AN
Z( uA.i (%))

= =

Where, y! is the centre of CThe output variable vy is
based on the inputs |(xXs,..., %4). Training methods
object is to minimize the mean square error betviken
predictions and the real values. In order to fihe t
most appropriate training algorithm, there was wea
a small neural

and it was simulated for normalized data in théaeg
0.1-0.9 for 13 different algorithms that appearthie

network 3-10-1, with sigmoid
activation function in the nodes of the hidden laye

according to the above error criteria in ordergsutt in
the most suitable neural predictor’s structure €eery
different time-series:

e In the beginning there were chosen the best four
neural networks for every different type of
normalization

* Next there were chosen the best four neural
network predictors for every different type of
meteorological time-series in order to use them to
more complex systems like neural network
committee machines

« Finally there was made choice of the best neural
network predictor for every different time-seri@es i
order to be able to compare its results with ANFIS
or any other system created

The best neural network predictors for every
different time-series using Sigmoid Activation Ftian

neural toolbox of MATLAB. Five error metrics were (SAF) are introduced.

used in order to choose the most efficient algorith

MSE, RMSE, AME, NDEIlp. The algorithms used are Mean daily solar radiation: 5-15-1, normalized in the

the following:

range 0.1-0.9, using SAF.
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Mean daily temperature: 5-10-1, normalized in the Finally, the best neural network predictor for ewver
range 0.1-0.9, using SAF. different time-series in order to be able to corepits

‘ ’ ) _ results with ANFIS was chosen. The optimum neural
Best' neural network predictors Vs ANFIS: For the  npetwork predictors for every different time-serae
training and testing of data there was createdsa TiS  htroduced.

type system c_:onsisting of 7 inputs. The combinatibn
fuzzy logic with neural networks proved to havewer piy mean solar radiation: 5-15-1, normalized in the
good results in the daily solar radiation and terapge :

. . .__range 0.1-0.9, using SAF.
forecasting. Below there is presented a comparison
between the ‘best’ N.N. predictors and ANFIS, foe t : . . .
four different time series, using as criterion thetric ~ D&ily mean temperature: 5-10-1, normalized in the
that proved to be the most accurate, which is théange 0.1-0.9, using SAF.
correlation coefficientf) as shows in Table 1. For the
global prediction scheme we split the collectechdato RESULTS
two categories. The training set consists of the , , .
temperature of the first five years (1991-1995),levh Timgh?ozog?xlrngloilgi dgs(?:t?ef tlt:ﬁ ?:rgrpphsdrr:_resent.
the test set includes the remaining five years §199 plot, P plot. fiag

2000). The choice of four inputs to form the TSInoet 2N testing of data a first TS type system comusti
Q]f 7 inputs was created. The combination of fuzzy

is case-dependent. For the numerical fuzzy approagfl ..\ oh | network dto h 4
125 rules were obtained. In the table of compartsen 09! With neural networks proved to have very goo
results in the daily mean solar radiation and

computational time has also been recorded. :
temperature forecasting.

Prediction results with NNP: The main object is to Neural network structure for temperature
create many different structures of neural networkprediction as shown in Table 2, 4-5:

predictors and train and test them with the ) )

meteorological data available in order to concltise * NNP1: 5-10-1, normalized data in the range 0.1-

best and more efficient topology for forecastindaso 0.9, SAF _ _
radiation and temperature. For the meteorologica¢ét < NNP2: 3-5-1, normalized data in the range 0.1-0.9,
series used in this study, one hidden layer is@pjate SAF

and sufficient. The following cases of structurels o« NNP3: 7-3-1, real data, SAF

neural networks have been created and simulated:

Inputs: 2,3,5,7 previous daily measurements forlithe NNP4:7-3-1, normalized data in the range 0.1-8AF
different time series created (real and normalidet), .

Number of hidden layers: 1, Number of nodes of &idd Table 2: Daily mean temperature

layer: 2,3,5,10,15, Output: 1 (One day prediction),mgfvrvilrk Activation
Activation Functions used in neurons: Hidden layer;z o
sigmoid, linear, Output layer: linear Babuska (1996
After having trained and tested all the differeases Table 3: Daily mean solar radiation

and structures of neural networks with the difféerien  Neural Activation

normalization and type meteorological time-seribgy N_it\;irk f;in?n“gir:j '\c;|§50451 AOMOE78213 £ 0.8267
have been compared according to the above erref 9 : : :
criteria in order to result in the most suitableurad  Table 4: Values of M.S.E., AM.E. and for Mean Daily Solar
predictors’ structure for every different time-saxi radiation and Mean Daily Temperature;

A Mean daily Performance index MSE AME  »p
In the begmnlng, the best four neural networks fo Solar radiation Committee machine 0.01104 0.069582%411

every different type of normalization were chosen.temperature; Committee machine 0.000702 0.0209 68%7

Next, the best four neural network predictors foerg _ _
. . . . . Table 5: A Comparison of FP, NNP, ANFISP and CMé&dmtors;
different type of meteorological time-series in @rdo . .
Forecasting system Performance indgx (

use them in more complex systems like neural N&WOrpziy mean solar radiation

function MSE AME p
Sigmoid 0.000801 0.020861 0.97689

committee machines were chosen. N.N.-5-15-1 0.81632
_ , _ ANFIS 0.81857

Table 1: Comparison between N.N. predictors and N®hich are CMP 0.82245

the correlation coefficienp} Daily mean temperature

Mean daily solar radiation; N.N.- 5-15-1 p=0.81751 NNP-5-10-1 0.9604

ANFIS p=0.81305 ANFISP 0.9660

Mean daily temperature; N.N.-5-10-1 p=0.97689 CMP 0.9670

ANFIS p=0.97699 FP 0.9695
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Fig. 3: Prediction results of temperature with ASFI
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Fig. 4: Prediction results of temperature with ASFbr a small sample

DISCUSSION models which suppose that the observed time series
.. result from a determinist process.
I_\le_ural network_ structure for solar radiation The linear model supposes that the time series is
prediction as shown in Table 3-5: signal generated by a linear stochastic proces®-Aut
, . Regressive Moving Average stochastic process
* NNP1: 5-15-1, normalized data in the range 0.1yaARMA). To identify the linear model ARMA able to

0.9, SAF describe the daily solar radiation and the pararsete
« NNP2: 7-3-1, normalized data in the range 0.1-0.9estimated using. The derived linear regression inode
SAF (Auto-Regressive (AR) of order two AR (2)):
« NNP3: 7-10-1, normalized data in the range 0.1-
0.9, SAF yi=0.31y_1—-0.021y_,+¢g
 NNP4: 5-10-1, normalized data in the range 0.1- . . . . .
0.9, SAF where,g; is a white noise with mean 0 and varianee

0.824. It can be observed, according to the Tabtedh
The prediction results of the identified TS fuzzy MSE found are 2.974, 3.2924 respectively for til
model are compared with those obtained using aiine test. The linear models are represents less thand8
model as shown in Fig. 5. Contrary to the TS fuzzyl1% of the mean of the daily solar radiation data.
1609
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estimated using the TS method. Additionally, a
comparison is performed between the identified 02y
model. The obtained results show that the ideditifi&
fuzzy model provides satisfactory performances. V@,
conclude that the fuzzy systems can be used as an
alternative method to generate solar data for imcst
where measurements are not available.

Predicted
(=3}
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