
Journal of Computer Science 7 (10): 1596-1604, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Nawfal A. Mehdi, Department of Computer Science, Faculty of Computer Science and Information Technology,
University Putra Malaysia, 43400 Serdang, Malaysia

1596

On the Fly Negotiation for Urgent Service Level

Agreement on Intercloud Environment

Nawfal A. Mehdi, Ali Mamat,
Hamidah Ibrahim and Shamala K. Subramaniam

Department of Computer Science,
Faculty of Computer Science and Information Technology,

University Putra Malaysia, 43400 Serdang, Malaysia

Abstract: Problem statement: Impatient jobs are the jobs that have strict constraints in starting and
completion time and need a fast response and attention in mapping to resources. The negotiation
process in cloud computing needs a customer-provider agreement that leads to loss of a significant
amount of time for impatient jobs. The huge increasing in cloud service providers makes selecting the
best provider an exhaustive task. Approach: We considered the problem of Service Level Agreement
(SLA) negotiation and commitment process for immediate mode scheduling under intercloud
paradigm. This study explored an alternative model dedicated for impatient jobs under intercloud
paradigm. We developed a model of negotiation where the cloud-broker had the ability to nominate the
best cloud provider, commit the agreement and submit the jobs for execution. Cloudsim simulators
with synthetic datasets had been used to evaluate the proposed system. Results: The results showed an
improvement in SLA waiting time and the number of jobs failure. Conclusion: This study proved the
importance of rapid mapping for impatient jobs in increasing system throughput.

Key words: Cloud computing, Service Level Agreement (SLA), impatient job, virtual machine,

negotiation process, negotiation algorithm, Quality of Service (QoS), Physical
Machines (PM)

INTRODUCTION

 Cloud computing (Michael et al., 2009) is the
new paradigm of computing where easily offers
computing resources as services. These computing
services are generally charged using a pay-as-you-go
pricing method and hence, it becomes attractive to
most customers. Cloud computing can be defined as
Internet-based “cloud” services and use of computer
technology (computing) that offers flexible and
dynamic IT infrastructure, a Quality of Service (QoS)
(Yin et al., 2010) guaranteed environment and
reconfigurable services (Wang et al., 2008). This new
paradigm is being driven by many well known cloud
providers like Roebuck (2011); Miller (2011)
Microsoft (Jennings, 2010; Lohr, 2007) HP Cloud
Services and IBM Cloud Services
 Multiple clouds can interoperate with each other to
form what is called Intercloud (Bernstein et al., 2009).
It can be defined as “cloud of cloud” (Metz, 2009;
Briscoe and Marinos, 2009; Johnston, 2009) and it is a
metaphor for Internet, which is Network of Networks.

Intercloud was first coined by Kelly (2007) in his
article. “Eventually we’ll have the intercloud, the cloud
of clouds”, Kelly writes.
 SLA (Pichot et al., 2009; Hovestadt, 2006) is a
contract signed between a service provider and a
customer that describes the service, responsibilities,
terms, guarantees and service-level to be provided. SLA
is an important element of the service oriented
computing paradigm and defines a mutually agreed
upon set of consumer expectations and provider
obligations. Typically, SLAs encode QoS parameters
such as resource availability, response time and
completion deadlines. The role of the consumer is
usually limited to specify their QoS parameters and
perhaps revising those parameters if an SLA cannot be
agreed (Netto et al., 2010).
 According to Jennings et al. (2001), a negotiation
can be defined as: “the process by which a group of
agents come to a mutually acceptable agreement on
some matter”. SLA Automatic negotiation can be a
complex and time-consuming process when two parties
need to create an agreement on multiple criteria
(Jennings et al., 2001; Shen et al., 2002).

J. Computer Sci., 7 (10): 1596-1604, 2011

1597

 Cloud computing providers offer their services
after confirming SLA agreement between them and the
customers. The negotiation process needs both parties
to agree on the SLA and then sign the contract. This
process involves many steps, which is sometimes time
consuming for some customers with urgent needs. The
normal SLA negotiation process requires sending an
offer from the customer (i.e., buyer) to the provider
(i.e., seller) and the response by a bid from the provider
to the customer. This process can be repeated several
times until an agreement is reached between both sides.
In the last step, the provider creates the agreement
template and sends it back to the customer for
confirming. The customer then confirms the template.
The last step is time-consuming and is only needed to
confirm the offer again (i.e., sign the contract).
 In addition to above, the huge growing in cloud
providers and their services increase the difficulty for
urgent customers to surf all their services and provide a
decision to which the request should be sent. Most of
the previous negotiation strategies include the steps of
sending an offer from the customer (i.e., client or
buyer) to the provider (i.e., seller) asking for a specific
Service (s), the provider returns with their bid or
acceptance of the customer’s offer and the last step is
the confirmation from the provider side.
 On-the-Fly-Negotiation Algorithm (OFNA) is the
proposed algorithm that maps the jobs to the cloud
services with less negotiation steps to provide fast
response for urgent jobs. The proposed model takes into
consideration the urgent and normal jobs.

Related work: Since the 1980s, SLAs were established
as tools for stating the QoS. They were mainly used in
the telecommunication domain and used as study print-
outs there was a tendency in the research community to
try to adapt the SLA concepts on other domains (Green
et al., 2007; Munoz et al., 2010).
 Work presented Al-Ali et al. (2002), extended the
service abstraction in the Open Grid Services
Architecture for QoS properties. They focused on the
application layer, whereby a given service may
indicate the QoS properties it can offer, or where a
service may search for other services based on
particular QoS properties.
 Ouelhadj et al. (2005) proposed a new
infrastructure for efficient job scheduling on the Grid
using multi-agent systems and a SLA negotiation
protocol based on the Contract Net Protocol. In their
protocol, the agents exchange SLA-announcements,
SLA-bids and SLA-awards to negotiate the schedule of
jobs on Grid compute resources. Their model needs
multi-level negotiation between the agents.

Furthermore, the client in their model has to select a bid
from set of offers and commits it.
 Munoz et al. (2010) and Parkin et al. (2008)
described an abstract, domain-independent protocol for
the renegotiation of an agreement, including SLA
formed using the WS-Agreement standard. Their
proposed protocol is based on the principles of contract
law to make any new agreements using them, legally
compliant. It allows for multi-round renegotiation in a
network environment where messages may be lost,
delayed, duplicated and re-ordered. In their mode, the
user needs pre-knowledge about the current services
and commits the last agreement.
 Work presented Green et al. (2007) proposed novel
augmentations to existing service negotiation protocols
in the areas of scalability, flexibility, support for
distinct services and negotiation with several service
providers simultaneously. Their proposed autonomous
negotiation protocol is based on a distributed multi-
agent framework creating an open market for Grid
services. Their model includes at each negotiation
process a binding stage whereby a valid SLA instance
is formally agreed to by the consumer and all the
involved service providers. After binding, the consumer
and provider(s) have to commit the agreed SLA.
 Pichot et al. (2008) in their study, discussed basic
functionality for resource orchestration in grids, namely
mechanisms to dynamically negotiate and create service
level agreements using WS-Agreement. They proposed
multi-level negotiation process where the meta-
scheduler should negotiate with the provider to find the
best template. The SLA should be committed using
two-phase commit protocol.
 The proposed framework Hudert et al. (2009)
augments this WS-Agreement to enable negotiations
according to a variety of bilateral and multilateral
negotiation protocols. The framework design is based
on a thorough analysis of taxonomies for negotiations
from the literature in order to allow for capturing a
variety of different negotiation models within a single
WS-Agreement compatible framework. In order to
provide for the intended flexibility, the proposed
protocol takes a two-stage approach: a meta-protocol is
conducted among interested parties to initially agree on
a common negotiation protocol before the real
negotiation is carried out in the second step using the
protocol established in the first step.
 Work presented An et al. (2010) considered the
problem of allocating networked resources in cloud
computing platforms, where providers strategically
price resources to maximize their utility. They explore
an alternative approach where providers and consumers
automatically negotiate resource leasing contracts. In

J. Computer Sci., 7 (10): 1596-1604, 2011

1598

their model, both the provider and consumer are selfish.
The consumer needs to know the ability of each cloud
provider (i.e., pre-knowledge) and to commit the
agreement before approval.

MATERIALS AND METHODS

 In the proposed model, there are three tiers namely:
the customer, the cloud broker and the cloud providers.
Each cloud provider has set of datacenters which in turn
consists of set of Physical Machines (PM) used to host
Virtual Machines (VMs). The cloud broker acts as an
advisor for the customers. The customer c sends his
request Rc, which has the list of jobs Jc, to broker B.
The customer does not know which cloud provider is
suitable to execute his request or he does not have the
time to look for the appropriate provider.
 The main idea of this study is to let the cloud
broker commit and submit the impatient jobs to the
cloud provider. The customer should permit the broker
agent to sign the agreement on behalf of the customer if
the broker agent finds a suitable cloud provider that fits
with the requirements of the customer’s QoS.
 We assume that customer c and the broker B are
working on a utility function as described in (1).

c c cU {min(J),min()}= β (1)

Where:
Uc = Denotes the utility function of customer c
Jc = Denotes the number of deadlines (start and

complete) that do not meet their requirements
βc = Denotes the total budget for all the jobs in

request Rc

 The time needed to execute each job jc in the
request Rc is computed using (2):

up filein up fileout
jc jc jc jcTET stagein E stagein= + + (2)

where, up

jcTET denotes the time needed to execute the

job jc sent by customer c and nominated to execute on
VM vp, which is offered by provider p. filein

jcstagein is the

time needed to fetch all the necessary input files while
fileout
jcstagein is the time for sending out all the output

files to their destinations. up
jcE gives the time needed to

execute the job on the nominated virtual machine.
 The estimated job start time is calculated based on
the current time and other factors as shown in (3):

up
jc c c cEST CT N.() (1 A)= + δ + ρ + − ω (3)

Where:
CT = The current time
N = The number of counteroffers between the

customer c and broker B such thatN 1≥

 The time needed by customer c to create the
request Rc and send it to the broker B is equal to δc. The
time needed by broker B to map all the jobs in Rc to the
available resources and return back the offer is equal to
ρ. The estimated time for customer c to confirm the
offer is cω and Ac is the decision variable such that:

c

1,if csetsauto confirmation
A

0,otherwise

−
= 


 (4)

 As can be seen from (3), if the customer c sets the
auto-confirm option, the broker does not consider the
confirmation time and vice versa. The completion time
for each job jc is proposed to be computed using (5) as
shown:

vp vp vp
jc jc jcFT EST TET= + (5)

 Now let start

jcx be the decision variable that indicates

whether the start time meets with the job requirements
or not.

vp
start jc jc
c

1,if EST sd
x

0,otherwise

 >= 


 (6)

and let completion

jcx be the decision variable that indicates

whether the completion time meets with the job
requirements or not.

pv
completion jc jc
jc

1,if FT dl
x

0,otherwise

 >= 


 (7)

 Now, from (6) and (7) we can find the utility
variable Jc as shown below:

start completion
c jc jc

j Jc j Jc

J x x
∈ ∈

= +∑ ∑ (8)

 Customer c can ask for full respect of his request
Rc, which means Jc = 0 or he can specify a maximum
value for it.
 While most of the current cloud providers charge
the customers per hour, we can compute the amount of
total charge for customer c and his request Rc by:

c

vp

j p
c v

j J

TET
*cos t

3600∈

β =∑ (9)

J. Computer Sci., 7 (10): 1596-1604, 2011

1599

where, βc is the total amount of money that should be
paid by costumer c to the cloud provider(s). It is
calculated by multiplying the VM cost by the total
execution time in hours as can be seen in (9).

Negotiation protocol: The architecture of our
proposed negotiation framework is shown in Fig. 1. It
is composed of three kinds of agents that are
responsible for managing the negotiation process and
creating the SLA agreements. These agents are:

Customer agent: This agent is located at the
customer’s side. Its responsibilities are: (a) collects the
list of jobs and their requirements, (b) creates the
request template and (c) sends the request template to
the broker agent and waits for acknowledgment.

Broker agent: This agent is the mediator between the
cloud customers and cloud providers. It can also be
considered as the meta-scheduler of the cloud customers’
requests. Its main responsibilities are: (a) receives the
request template from the customers agent and decodes
it, (b) sends the requests to the scheduler that can find the
best mapping for this request, (c) creates the agreement
template and signs it on behalf of the customer in case of
auto-confirmation or sends it back to the customer’s
agent, d) submits the customer’s request to the cloud
providers and (e) receives the cloud updates from the
provider agent, which is the current status of each cloud
provider to be used by the scheduler.

Cloud provider agent: This agent is located at the side
of each cloud provider and has many responsibilities,
which are: (a) periodically sends the status of the cloud
to the broker agent and (b) receives the list of jobs to be
executed from the broker agent.

Fig. 1: The negotiation framework architecture

Agents actions: The main actions that are proposed to
be taken by the agents are:

• Request[r]: The work flow starts from the customer

c side by sending its request Rc, which has the list
of job Jc to the broker agent B

• Submit[r]: If the scheduler finds a suitable mapping
for the customer’s request, the broker agent passes
this request to the cloud providers to execute them
and simultaneously send a confirmation message to
the customer’s agent

• Reject[r]: When the scheduler cannot find a
mapping that meets the customer’s requirements
from the deadline and budget point of view, the
broker agent sends a reject message back to the
customer agent for refining

• Bid: When the broker agent B meets the deadline
restrictions but with more budget requirement, a bid
offer O is sent back to the customer agent c

• Decommit: Decommit is defined as a withdraw
from active service. This action is done by the
customer c to cancel the current offer O or the
current request Rc

Action flow sequence: The process of SLA
negotiation can be defined as an activity to determine
certain details of an interaction. Figure 2 depicts the
finite state machine for the process of negotiation
between the cloud customer agent, the broker agent
and the cloud provider agent.
 Initially, the cloud customer c, who has an
impatient job(s), initiates the request r by creating a
template that describes all the required jobs and their
properties. It includes all the job constraints including
the deadlines and budgets.

Fig. 2: Finite state machine for the proposed system

J. Computer Sci., 7 (10): 1596-1604, 2011

1600

Fig. 3: Work flow sequence in the proposed model

Fig. 4: Algorithm of customer strategy

The broker agent B receives the request r from the
customer agent c. The broker sends r to the meta-
scheduler to find the best mapping that can respect all
the job requirements. If the mapping is done (i.e.,
respecting all the QoS requirements) then it has two
directions. The first direction is to submit the mapping
list directly to the nominated cloud provider without
waiting for customer c conurbation in the case of auto-
conurbation, which is an option selected by the
customer c. If the customer asks for the normal

negotiation process (i.e., without auto-confirmation),
the broker agent sends the agreement to the wait state,
which is the state that awaits the commitment from
customer c. In the waiting state, the customer has the
ability to commit or reject the agreement. In case of
commitment, the broker agent B sends the request to
the cloud provider p to execute, otherwise the whole
process returns to the initial state.

Events workflow of negotiation process: Figure 3
depicts the study flow sequence of the negotiation
process. It shows the three agents (customer c, broker B
and provider p). In the proposed model, the cloud
provider agent p sends the cloud status periodically as
initially occurs at time J0. These values (i.e., templates)
describe the current state of the cloud by the number of
available virtual machine images, the specifications of
each VM from SW, HW and the cost point of view and
the dynamic information such as the availability. At
time J1 the customer agent c sends the request r to the
broker agent who has the list of jobs and their QoS
requirements. The next time event J2 is for broker agent
B to submit the request r to the nominated cloud
provider. This action is done in case of auto-
conurbation permission, which is taken form customer
agent c. The broker agent at time J3 sends an
acknowledgement to the customer agent concerning the
status of agreement.
 This acknowledgment is sent after submitting the
request to the cloud provider to save time. Time j4 is the
time to start execution of the customer’s request r, thus,
it is proposed for the cloud to acknowledge the
customer about this action.
 After the cloud provider finishes its execution, it
should either send the result back to the customer or to
the third party and acknowledge the customer at the
same time.

Agents strategy: As the aforementioned model shows
the three components of intercloud paradigm, the three
agents namely customer strategy, broker strategy and
provider strategy are illustrated below.

Customer strategy: The customer’s algorithm is
depicted in Fig. 4. Steps (1-6) are used by the customer
c to create the request Rc to be sent to the broker. The if
statement at step 2 is used to set the control variable A
with or without value. We focus on this variable
because it plays an important role in the proposed
system. After creating the request Rc the customer c

J. Computer Sci., 7 (10): 1596-1604, 2011

1601

sends the request to broker B. This is done at step (7).
The statement at step (8) is used to check whether the
broker accepts the requests or not. Two actions exist if
the broker B accepts the request. If the broker accepts
the request while the customer c sets the variable A
to auto then it should wait for the acknowledgment
from the provider, otherwise (i.e., A is not auto) the
customer has to check the offer.

Fig. 5: Algorithm of broker strategy

Fig. 6: Algorithm of provider strategy

 In case the broker rejects the offer for its
impossibility, then the customer should cancel the
submitted request Rc as can be seen in step (14). Step
(15) and (16) check the case if the provider p sends an
acknowledgment to the customer c and calls the wait
function. If the result is received by the customer, then
customer agent c finishes its work, as can be seen in
steps (17) and (18).

Broker strategy: The broker algorithm is depicted in
Fig. 5. The broker keeps listening to two things: (a)
requests from the clients and (b) cloud status from the
cloud providers. Steps (1) and (2) are responsible for
listing the clients’ requests and sending them to the
scheduler. In this study we consider the Minimum
Completion Time (MCT) algorithm as immediate mode
scheduling algorithm.
 It is adopted to be compatible with the cloud
environment and renamed it to Cloud Minimum
Completion Time (CMCT). In step (2), the scheduling
algorithm returns the number of failed to meet
deadlines, which is denoted by Jc and the estimated
execution price, which is denoted by βc. If all the jobs
meet their deadlines (i.e., step (3)) then the request is
either submitted directly to the nominated cloud
provider if the customer sets A as auto (steps (5) and
(6)) or waits for the customer to confirm the offer (see
step (10). In case of failure in some deadlines then step
(12) sends a reject message to the customer. Step (14)
submits the request to the cloud provider if the
customer confirms. Step (16) sends a reject message to
the customer in case the latter decommit the offer.
Cloud providers periodically send their cloud status.
Step (18) updates the cloud status.

Provider strategy: This study proposes that each cloud
provider has an agent to deal with the broker agent.
Figure 6 shows the main steps of this agent. Let µ be
the time interval to send the cloud status to the broker
as can be seen in steps 1 and 2. Steps 3 and 4 are
responsible for request execution if the broker B sends
as request. Sending the results back to the customer c is
at step 5 and 6.

RESULTS

 In the absence of real traces from real cloud
providers, we generated the input workload randomly.
Casazza et al. (2006) present a workload methodology
to characterize the performance of servers exploiting
virtualization technologies to consolidate multiple
physical servers. They combine the workload of the

J. Computer Sci., 7 (10): 1596-1604, 2011

1602

web server, an email server and a database application
to reflect the variation of application that can be run
on cloud computing.
 As aforementioned, we assume a certain number of
users, jobs and cloud providers. The job workload is
selected randomly (Ranganathan and Foster, 2002) with
uniform distribution between 500-2000MB. Each job has
a set of input and output files selected randomly between
1 and 6. Job length is a function to the total input size for
300D if we assume D is the total input size. For
simplicity and without loss of generality we assume all
jobs need a fixed time to offer or bid and each job needs
0..5 counteroffers. The job deadlines are functions that
are based on their length and their data size. For the
purpose of this work, the deadlines are very strict and
hard, which means the jobs need quick attention.
 Simulation is the process of imitation of the real
system. Because of the difficulty in testing the proposed
system in a real system, a simulation evaluation has
been conducted on synthetic datasets. CloudSim
(Calheiros et al., 2009) is a discrete event simulator that
is used to simulate cloud environments. Cloudsim has
the ability to create data centres, virtual machines and
physical machines and configure system brokers,
system storage.
 Table 1 specifies the simulation parameters used
for our study. Two performance metrics have been used
to evaluate the proposed model namely: number of jobs
failure and average waiting time. To evaluate the
performance of the proposed model, twenty
experiments were done using the cloudsim simulator.
We created ten datasets with a different number of jobs
and different loads to evaluate the performance.
 As aforementioned, the deadlines are functions of
the job’s length and their data. The simulation process
is done to evaluate the impact of on-the-fly algorithm
on impatient job mapping under intercloud paradigm.
 Figure 7 depicts the number of job failures in the
proposed model and the CMCT. It indicates the number
of jobs for which the scheduler cannot meet their
deadlines. The value of this metric is the inverse to the
value of throughput that indicates the number of
finished jobs. The figure shows some failure even with
the proposed system, which is because of the hard
deadlines created within the synthetic datasets. The
improvement in the system throughput using the
proposed model is quite clear. Also, it is possible to
notice that as the number of submitted jobs increase, the
number of failed jobs is also increase. This is because
of start deadline constraint that failed to meet the jobs
requirements which is because of more waiting time
through confirmation step.

 Figure 8 depicts the average waiting time for all the
submitted jobs. These metric measures the time needed
to finish the negotiation process. It is the difference
between the job arrival-time to the starting time of the
scheduler to map this job as shown in Eq. 12. In this
Fig. 8, we compute the waiting time for all the jobs
even the failed jobs.

jc j jj Jc

1
AWT (st at)

Jc ∈
= −∑ (12)

Where:
AWTJc = The average waiting time for job list Jc
stj = The time for the job j to reach the scheduler

(i.e., finish the negotiation process)

 Figure 8 shows the improvement that happened in
the waiting time or the negotiation time. The effect of
confirmation on the total negotiation time is quite clear.
The need for confirmation can improve the system
based on the user’s response time which implemented
randomly in this study.

Table 1: Cloudsim configurations
Item Value
Number of datacenters 14
Number of VM 100
Number of CPU/VM 1
CPU Speed/VM 1, 2, 2.5 and 3 GHz
Number of tasks 5,10,15,20,30,50,100,200,300,400

Fig. 7: Job failure among different sets of jobs

Fig. 8: Average waiting time among different set of
jobs

J. Computer Sci., 7 (10): 1596-1604, 2011

1603

DISCUSSION

 The SLA negotiation is the bargaining process
between the cloud service provider and the cloud
service client (i.e., consumer). The urgent client needs
fast attention to speed up the process of its execution.
The negotiation process steps can be reduced to save
the client’s time if both agents agree. This can be done
if the urgent client trusts the cloud provider and agrees
to let the provider to select services and forward it the
task on behalf of the client. This way can reduce an
amount of time that is precious and can increase the
total system throughput.

CONCLUSION

 This study tackles the negotiation process and tries
to minimize the number of steps needed for agreement
to minimize the waiting time for impatient jobs. The job
waiting time depends on the number of counteroffers
and the confirmation steps if we assume there are
enough resources. System throughput can be increased
for impatient jobs if we can offer quick attention and
less response time. We can conclude from these
experiments that the commitment step is an expensive
process to urgent jobs.

REFERENCES

Al-Ali, R., O. Rana, D. Walker, S. Jha and S. Sohail,

2002. G-QoSM: Grid service discovery using QoS
properties. Comput. Inf., 21: 363-382.

Amazon Elastic Compute Cloud, 2011.
http://aws.amazon.com/ec2.

An, B., V. Lesser, D. Irwin and M. Zink, 2010.
Automated negotiation with decommitment for
dynamic resource allocation in cloud computing.
Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent System,
(AAMAS '10), International Foundation for
Autonomous Agents and Multiagent Systems,
Richland, SC, pp: 981-988.

Bernstein, D., E. Ludvigson, K. Sankar, S. Diamond
and M. Morrow, 2009. Blueprint for the intercloud-
protocols and formats for cloud computing
interoperability. Proceedings of the 4th
International Conference on Internet and Web
Applications and Services, IEEE Xplore Press,
Venice/Mestre, pp: 328-336. DOI:
10.1109/ICIW.2009.55

Briscoe, G. and A. Marinos, 2009. Digital ecosystems
in the clouds: Towards community cloud
computing. Proceeding of the 3rd IEEE
International Conference on Digital Ecosystems
and Technologies, June 1-3, IEEE Xplore Press,
Istanbul, pp: 103-108.
10.1109/DEST.2009.5276725

Calheiros, R., R. Ranjan, C. De Rose and R. Buyya,
2009. CloudSim: A novel framework for modeling
and simulation of cloud computing infrastructures
and services. Cornell University Library.

Casazza, J., M. Greeneld and K. Shi, 2009. Redefining
server performance characterization for
virtualization benchmarking. Intel Technol. J., 10:
243-251. DOI: 10.1535/itj.1003.07

Green, L., V. Mirchandani, I. Cergol and D. Verchere,
2007. Design of a dynamic SLA negotiation
protocol for grids. Proc. Int. Conf. Networks Grid
Appl.

Hovestadt, M., 2006. Operation of an SLA-aware grid
fabric. J. Comput. Sci., 2: 550-557. DOI:
10.3844/jcssp.2006.550.557

Hudert, S., H. Ludwig and G. Wirtz, 2009. Negotiating
SLAs An approach for a generic negotiation
framework for WS-Agreement. J. Grid Comput., 7:
225-246. DOI: 10.1007/s10723-009-9118-3

Jennings, N., P. Faratin, A. Lomuscio, S. Parsons and
M. Wooldridge et al., 2001. Automated
negotiation: Prospects, methods and challenges.
Group Decis. Negot., 10: 199-215. DOI:
10.1023/A:1008746126376

Jennings, R., 2010. Cloud Computing with the
Windows Azure Platform. 1st Edn., John Wiley
and Sons, New York, ISBN: 1118058755, pp: 360.

Johnston, S., 2009. The Inter cloud is a global cloud of
clouds. Sam Johnston.

Kelly, K., 2007. A cloudbook for the cloud. The
Technium.

Lohr, S., 2007. Google and IBM join in cloud
computing research. New York Times.

Mehdi, N.A., A. Mamat, H. Ibrahim and S.K.
Subramaniam, 2011. Impatient task mapping in
elastic cloud using genetic algorithm. J. Comput.
Sci., 7: 877-883. DOI: 10.3844/jcssp.2011.877.883

Metz, C., 2009. The Meta Cloud-flying datacenters
enter fourth dimension. The register.

Michael, A., F. Armando, G. Rean, D. Anthony and K.
Randy et al., 2009. Above the clouds: A berkeley
view of cloud computing. University of California.

J. Computer Sci., 7 (10): 1596-1604, 2011

1604

Miller, M., 2011. Using Google Apps. 1st Edn.,
Pearson Technology Group, Indianapolis, ISBN:
0789743973, pp: 298.

Munoz, H., I. Kotsiopoulos, A. Micsik, B. Koller and J.
Mora, 2010. Flexible SLA Negotiation Using
Semantic Annotations, Service-Oriented Comput.,
6275: 165-175 DOI: 10.1007/978-3-642-16132-
2_16

Netto, M., K. Bubendorfer and R. Buyya, 2010. SLA-
based advance reservations with flexible and
adaptive time QoS parameters. Service Oriented
Comput., 4749: 119-131. DOI: 10.1007/978-3-540-
74974-5_10

Ouelhadj, D., J. Garibaldi, J. MacLaren, R. Sakellariou
and K. Krishnakumar et al., 2005. A multi-agent
infrastructure and a service level agreement
negotiation protocol for robust scheduling in grid
computing. Adv. Grid Comput., 3470: 651-660.
DOI: 10.1007/11508380_66

Parkin, M., P. Hasselmeyer, B. Koller and P. Wieder,
2008. An SLA re-negotiation protocol. Sit Seerx
Beta.

Pichot, A., O. W. Aldrich, W. Ziegler and P. Wieder,
2009. Towards Dynamic service level agreement
negotiation: An approach based on WS-agreement.
Web Inf. Syst. Technol., 18: 107-119. DOI:
10.1007/978-3-642-01344-7_9

Pichot, P. Wieder, O. W Aldrich and W. Ziegler, 2008.
Dynamic SLA-negotiation based on WS-
agreement. Proceedings of the 4th International
Conference on Web Information Systems and
Technologies, May 4-7, Funchal, Madeira-
Portugal, pp: 38-45.

Ranganathan, K. and I. Foster, 2002. Decoupling
computation and data scheduling in distributed
data-intensive applications. Proceeding of the 11th
International Symposium on High Performance
Distributed Computing, July 23-26, IEEE Xplore
Press, USA, pp: 352-358.

Roebuck, K., 2011. Amazon Elastic Compute Cloud
(EC2): High-impact Strategies - What You Need to
Know: Definitions, Adoptions, Impact, Benefits,
Maturity, Vendors. 1st Edn., Emereo Pty Limited,
USA, ISBN: 1743046979, pp: 326.

Shen, W., Y. Li, H. Ghenniwa and C. Wang, 2002.
Adaptive negotiation for agent-based grid
computing. University of Western Ontario

Wang, L., J. Tao, M. Kunze, A. Castellanos and D.
Kramer et al., 2008. Scientific cloud computing:
Early definition and experience. Proceedings of the
10th IEEE International Conference on High
Performance Computing and Communications, Sept.
25-27, IEEE Xplore Press, Dalian, pp: 825-830.

Yin, K., B. Zhou, S. Zhang, H. Jiang and J. Cristoforo,
2010. Optimizing services composition in multi-
network environment. Inf. Technol. J., 9: 399-411.

