
Journal of Computer Science 7 (2): 159-166, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Ayyasamy Sellappan, Department Information Technology, Tamilnadu College of Engineering,
 Anna University of Technology, Coimbatore, Tamil Nadu, India

159

A Robust Byzantine Fault-Tolerant Replication Technique

for Peer-to-Peer Content Distribution

1Ayyasamy Sellappan and 2Sivanandam Natarajan
1Department Information Technology, Tamilnadu College of Engineering,

2Department Computer Science and Engineering, PSG College of Technology,
1,2Anna University of Technology, Coimbatore, Tamil Nadu, India

Abstract: Problem statement: In peer-to-peer networks, Byzantine fault tolerance refers to the
capability of a system to tolerate Byzantine faults. It can be achieved by replicating the server and by
ensuring all server replicas reach an agreement on the input despite Byzantine faulty replicas and
clients. Since malicious attacks and software errors can cause faulty nodes to exhibit Byzantine
behavior, Byzantine-fault-tolerant algorithms are increasingly important. Approach: In the study, we
wish to develop a robust Byzantine Fault-Tolerance Replication (BFTR) technique for peer-to-peer
content distribution systems which contains fault detection and fault recovery. It is based on
collaborative monitoring of each node to detect the occurrence of a fault. Already we proposed a QoS
based overlay network architecture (QIRM) involving an intelligent replica placement algorithm to
improve the network utilization of the P2P system. Results: By simulation results, we show that the
proposed technique involves less overhead and recovery time with increased accuracy.
Conclusion/Recommendations: Here the result obtained is that BFTR Technique is much efficient
than the QIRM with respect to packet drop ratio, average end-to-end delay, throughput and overhead.

Key words: Fault-tolerance, Internet Protocol (IP), replication technique, content distribution,

Byzantine Fault Tolerance (BFT), Peer to Peer (P2P), Origin Server (OS)

INTRODUCTION

 A peer-to-peer, commonly abbreviated to P2P, is
any distributed network architecture composed of
participants that make a portion of their resources such
as processing power, disk storage or network bandwidth
directly available to other network participants, without
the need for central coordination instances such as
servers or stable hosts. Peers are both suppliers and
consumers of resources, in contrast to the traditional
client-server model where only servers supply and
clients consume. Peer-to-peer systems often implement
an Application Layer overlay network on top of the
native or physical network topology. Such overlays are
used for indexing and peer discovery. Content is
typically exchanged directly over the underlying
Internet Protocol (IP) network
(http://en.wikipedia.org/wiki/Byzantine_fault_tolerance
). Anonymous peer-to-peer systems are an exception
and implement extra routing layers to obscure the
identity of the source or destination of queries.
 Fault detection is a subfield of control engineering
which concerns itself with monitoring a system,

identifying the fault when it occurs and pinpoint the
type of fault and its location (Simon, 2009). If the
detector determines that some node has become faulty,
it notifies the application software, which can then take
appropriate action. For example, nodes can cease to
communicate with the faulty node; once all correct
nodes have followed suit, the faulty node is isolated and
the fault is contained.
 Fault detection is insufficient for dealing with
faults that have serious and irreversible effects, such as
deletion of all copies of an important document.
However, detection may offer an efficient and scalable
alternative to Byzantine Fault Tolerance (BFT) for
faults that have limited or recoverable effects, including
freeloading, censorship and denial-of-service. Using
fault detectors, each action is undeniably associated
with the identification of the node that has performed
the action, allowing the system to gather irrefutable
evidence of faulty behavior. The fault detection systems
we consider should guarantee at least two properties.
The system should be complete: whenever a correct
node observes the effects of faulty behavior, the system

J. Computer Sci., 7 (2): 159-166, 2011

160

eventually generates evidence against at least one faulty
node. Also, the system should be accurate: it never
generates valid evidence against a correct node (Petr
and Druschel, 2006).

Byzantine Fault Tolerance (BFT): In a distributed
system, an arbitrary fault occurs during the execution of
an algorithm which is known as the Byzantine fault.
Both omission failures like crash failures, failing to
receive a request, or failing to send a response and
commission failures like processing a request
incorrectly, corrupting local state and/or sending an
incorrect or inconsistent response to a request are
included in the Byzantine fault (Petr and Druschel,
2006). The potential of a system to tolerate Byzantine
faults is the Byzantine fault tolerance. By replicating
the server and ensuring all server replicas reach an
agreement on the input in spite of Byzantine faulty
replicas, Byzantine fault tolerance can be achieved.
This agreement is known as Byzantine agreement
(Zhao, 2007). Importance of Byzantine-fault-tolerance
algorithms is increasing since faulty nodes are caused
by malicious attacks and software errors which can
exhibit Byzantine behavior (Castro and Liskov, 1999).
 Though some part of replicas fail, a service
replicated over several BFT servers are able to survive
and so affecting an overall application security has a
very small probability. BFT replication can be protected
against malicious or incompetent machine operators,
only when replicas are separately administered.
 Linearizability and liveness are the two main
properties of BFT protocols. In Linearizability, the
service appears to all clients for executing a sequence
of requests which preserves the temporal order of non-
concurrent operations. Improvement in executing
client’s requests in a system with at-least some weak
assumption about eventual message delivery is known
as Liveness (Li and Mazieres, 2007). As more faults are
tolerated, the performance of the Byzantine fault-
tolerant agreement-based approaches drops rapidly due
to server-to-server broadcast communication and the
requirement that all correct servers process every
request (El Malek et al., 2005).
 Byzantine fault tolerant replication scheme must
meet the following objectives:

• Ensure that all non-faulty replicas have equivalent

logical state such that they will return the same
answer to any given query

• Ensure that the client always gets correct answers
to queries belonging to transactions that commit,
even when up to f replicas are faulty

• Detect faulty replicas and flag them for repair

Proposed work: We wish to develop a fault-tolerance
replication technique for peer-to-peer content
distribution systems which contains fault detection and
fault recovery. It is the extension of our previous study
(Ayyasamy and Sivanandam, 2009) which presents a
QoS based intelligent replica placement algorithm.
 Two fundamental classes of replication techniques
ensure linearizability: primary-backup and active.
 This primary Back-up Replication technique uses
one replica, the primary that plays a special role: it
receives invocations from client processes and returns
responses. Server x’s primary replica is denoted
prim(x); other replicas are backups. Backups interact
directly only with the primary replica, not the client
processes.
 The proposed technique involve less overhead and
recovery time with increased accuracy. It is based on
collaborative monitoring of each node to detect the
occurrence of a fault.

Related work: Clement et al. (2009) have describe
Aardvark, a new BFT replication protocol that
guarantees good performance during uncivil periods,
when the network is reliable but when up to f servers
and any number of clients are faulty. Aardvark gives up
some performance compared to protocols that focus on
optimizing for the best case, but Aardvark’s peak
throughput of 40527 requests per second seems
sufficient for many applications. Because Aardvark is
less aggressively tuned for the fault free case, it is
guaranteed to remain within a constant factor of 40527
when faults occur.
 Zhijun and Minghong (2005) Evolutionary Overlay
Service in Peer-to-Peer Systems can evolve the
overlays based on many factors, such as peers’
reliability; peers’ capacity; peers’ ability to judge the
correctness of the information, etc. The evolved
overlay can improve the system performance, which is
proved by theoretical analysis and verified by
experimental results.
 Amir et al. (2010) have presented the first
hierarchical Byzantine fault-tolerant replication
architecture suitable to systems that span multiple wide
area sites. The architecture confines the effects of any
malicious replica to its local site, reduces message
complexity of wide area communication and allows
read-only queries to be performed locally within a site
for the price of additional hardware. A prototype
implementation is evaluated over several network
topologies and is compared with a flat Byzantine fault-
tolerant approach.

J. Computer Sci., 7 (2): 159-166, 2011

161

 Kotla et al. (2007) have presented Zyzzyva, a
protocol that uses speculation to re-duce the cost and
simplify the design of Byzantine fault tolerant state
machine replication. In Zyzzyva, replicas respond to a
client’s request without first running an expensive
three-phase commit protocol to reach agreement on the
order in which the request must be processed. Instead,
they optimistically adopt the order proposed by the
primary and respond immediately to the client. Replicas
can thus be-come temporarily inconsistent with one
another, but clients detect inconsistencies, help correct
replicas converge on a single total ordering of requests
and only rely on responses that are consistent with this
total order.
 Pathak and Iftode (2006) have described Byzantine
Fault Tolerant Authentication, a mechanism for public
key authentication in peer-to-peer systems.
Authentication done without trusted third parties,
tolerates Byzantine faults and is eventually correct if
more than a threshold of the peers is honest. They
addressed the design, correctness and fault tolerance
of authentication over insecure asynchronous
networks. An anti-entropy version of the protocol is
developed to provide lazy authentication with
logarithmic messaging cost.
 Singh et al. (2009) have presented a novel BFT
state machine replication protocol called Zeno that
trades consistency for higher availability. In particular,
Zeno replaces strong consistency (linearizability) with a
weaker guarantee (eventual consistency): clients can
temporarily miss each other’s updates but when the
network is stable the states from the individual
partitions are merged by having the replicas agree on a
total order for all requests.
 Ayyasamy and Sivanandam (2010a) have proposed
a cluster based replication architecture for load-
balancing in peer-to-peer content distribution systems.
In addition to an intelligent replica placement
technique, it also consists of an effective load balancing
technique. In the intelligent replica placement
technique, peers are grouped into strong and weak
clusters based on their weight vector which comprises
available capacity, CPU speed, access latency and
memory size. In order to achieve complete load
balancing across the system, an intra-cluster and inter-
cluster load balancing algorithms are proposed.
 Ayyasamy and Sivanandam (2010b) have
presented a trust based content distribution for peer-to-
peer overlay networks, which is built on the trust
management scheme. The main concept is, before
sending or accepting the traffic, the trust of the peer
must be validated. Based on the success of data delivery
and searching time, they calculated the trust index of a
node. Then the aggregated trust index of the peers

whose value is below the threshold value is considered
as distrusted and the corresponding traffic is blocked.

Previous work on replica placement:
System model and overview: In our QOS aware
topology, nodes are grouped into strong and weak
clusters based on their weight vector which comprises
the following parameters:

• Available capacity
• CPU speed
• Memory size
• Access Latency

 In the replica placement algorithm, we classify the
content as Class I and Class II, based on their access
patterns. (i.e.,) The most frequently accessed contents
are ranked as Class I and the less frequently accessed
contents as Class II. Then more copies of Class I
content are replicated in strong clusters (having high
weight values) (Ayyasamy and Sivanandam, 2009).
Routing is performed hierarchically by broadcasting the
query only to the strong clusters. Thus the proposed
architecture achieved Low bandwidth Consumption,
Reduced Latency, Reduced Maintenance Cost, Strong
Connectivity and Query Coverage.
 Let us consider a collection of N server nodes
which forms a Peer to Peer (P2P) overlay network. In
addition to being part of the overlay, each node
functions as a server responding to requests (queries)
which come from clients outside of the overlay
network. An example could be that each node is a web
server with the overlay linking the servers and clients
being web browsers on remote machines requesting
content from the servers.
 We assume each node always stores one copy of its
own content item which it serves to clients and that it
has additional storage space to store k replicated
content items from other nodes which it can also serve
(Hales et al., 2007). The object is associated with an
authoritative Origin Server (OS) in the network where
the content provider makes the updates to the object.
The object copy located at the origin server is called as
origin copy and the object copy at any remaining server
is called a replica.

Intelligent replica placement algorithm:
Clustering the node:

iFor each node N , i 1,2.......n, let=

Where:
BWi = Available bandwidth
SPi = CPU speed
ALi = Access latency
MZi = Memory size

J. Computer Sci., 7 (2): 159-166, 2011

162

 The weight of the node Ni can be calculated as:

i i i
i

i

(BW SP M Z)W AL
+ +=

 Form the vector W = {Si, Wi}, which denotes the
node ids and their corresponding weight values, sorted
on the descending order.
 Let {Sk} denote the set of strong cluster nodes
(0<=k<n), which satisfies the following condition Wk≥β,
where β is the minimum threshold value for the weight.
 Then the set {Wj} = {Ni} – {Sk}, denote the set of
weak cluster nodes (0<=j<n), which satisfies the
condition Wk<β.

Replica placement: Let QS be the query server which
registers the query of each client. The query server
stores the cluster information of each node along with
the node id as “S” or “W” for strong and weak clusters,
respectively:

• At time Tk, let m clients generates query requests

{Qm} of the form q{nid, ckwd}, where nid is the
node id of the client and ckwd is the keyword of
the content to be retrieved

• The queries {Qm} are registered in the query
server QS

• The requested content of the queries are classified
and categorized as Class 1 or Class 2, depending
on the access frequencies:
(i.e.) A query Qj, j<m, is considered to be Class 1
If n (Qj) >= Amin and Class 2,

 If n (Qj) < Amin
Where:
n(Qj) = The no. of access of the content pattern
for the given query
Amin = The minimum access threshold value

• Then the query server QS assigns the class1
contents to the strong cluster nodes and class2
contents to the weak cluster nodes

• After the assignment, QS transmit these replication
pattern information to the origin server OS

• OS performs the replication placement, according
to the pattern information obtained from QS. The
weight value Wi of each node is stored along with
the content

• OS then broadcasts the replication information to
the respective clients in the following format:

{Nid, Clid (“S” or “W”), c1, c2 …}

Where:
Nid = The node id
Clid = The cluster id and c1, c2, are content

database ids

MATERIALS AND METHODS

Byzantine Fault Tolerance Replication (BFTR)
Technique:
Architecture model: In our proposed System, clients
do not interact directly with the database replicas.
Instead they communicate with the agent, which acts as
a front-end to the replicas and coordinates them. The
agent is replicated for increased fault tolerance. The
following Fig.1 shows the agent system architecture.
The architecture requires 2n + 1 database replicas,
where n is the maximum number of simultaneously
faulty replicas the system can tolerate. It requires only
2n + 1 replica because the database replicas do not
carry out agreement; instead they simply execute
statements sent to them by the agents. The Fig.1
illustrates a system in which n = 1.
 We assume that the agent itself is trusted and does not
have Byzantine faults, though it might crash. Since the
complexity and amount of code in the agent is orders of
magnitude smaller than in the replicas, we believe that
assuming non-Byzantine behavior is reasonable.

Fig. 1: Architecture

Fig. 2: Basic Design

J. Computer Sci., 7 (2): 159-166, 2011

163

Basic design and implementation: As shown in Fig. 2,
the agent runs a single controller and one replica
manager for each back-end replica. The controller
receives statements from clients and forwards them to
the replica managers. Replica managers execute
statements on their replicas and send answers back to
the controller. The controller sends results back to the
clients, compares query answers for agreement and
determines when it is safe for transactions to commit.
The controller may also decide to abort and retry
transactions or initiate repair of faulty replicas.
 In BFTR technique, one replica is designated to be
primary and runs statements of the transactions slightly
in advance to the other secondary replicas. The order in
which the transactions are completed on the primary
determines a serial order. BFTR ensures that all the
non-faulty secondary’s commit transactions in an order
equivalent to that at the primary. Furthermore, the agent
achieves good performance by allowing queries to
execute concurrently on the secondary’s where it
observes the queries executing concurrently on the
primary. When the primary is non-faulty, the system
performs well. A faulty primary can cause performance
to degrade but BFTR maintains correctness.
 If a non-faulty database replica completes
executing two statements without an intervening
commit then the two statements do not conflict.
 By using this property, the control try to extract
concurrency information by observing the primary
execute transactions: if the (non-faulty) primary allows
a set of queries to run without conflicting, then the
secondary’s can run these queries concurrently, or in
any order, without yielding a different equivalent serial
ordering from the primary. Execution schedules are
generated by a faulty primary where conflicting
statements execute concurrently.

Notations used: Global commit delay counters-Dc,
Query-q, q‘s delayer-qd, Commit-c0, Replica delayer-rd,
Transaction-t, ABORT-ART, PR-Primary Replica, SR-
Secondary Replica, PRM-Primary replica manager,
SRM-Secondary replica manager, Query answer- qa,
Acknowledge-ack and Client-cl.

Commit delayer principle: We implement the
commit-ordering and transaction-ordering rules using
the commit delayer principle. The controller maintains
a global commit delay counter, Dc and SRM maintains
a replica delayer rd.
 The following steps are involved in the commit
delayer principle:

1. If the controller receives a response to query q
from PR, then:
qd = Dc

2. If the controller commits a transaction t, then:
td = Dc

3. Dc = Dc+1
4. Send c0 to the replica managers.
5. While qd ≥ rd (SRM waits to send query q to SR)
6. If rd = td, then

SRM commit transaction t
7. rd = rd+1
8. If SR has executed all queries of t

It commits transaction t
9. rd = Dc
 The following algorithms provide the steps for
handling Byzantine faulty primary replicas. A failure of
primary replica is indicated by returning a wrong
answer and it is handled by detecting that the client
received an incorrect answer at the transaction commit
point and aborting the transaction.

Algorithm for the controller:
1. If controller receives q from cl.
 1.1 Send q to PRM.
 End if
2. If controller receives response for q from PRM, then
 2.1 Send the response to cl.
 2.2 qd← Dc
 2.3 Record response as qa.
 2.4 Send q to SRM.
 End if
3. If controller receives response for q from SRM, then
 3.1 Add response to votes (q).
 End if
4. If controller receives ART from cl, then
 4.1 Send ART to RM.
 4.2 Send ack to cl.
 End if
5. If controller receive c0 for t from cl., then
 5.1 While f+1 replica is ready to commit t
 5.1.1 Delay processing c0
 5.2 End While
 5.3 If the response qa of cl does not contain f

votes in votes (q), then
 5.3.1 Send ART to the RM
 5.3.2 Inform cl of the ART.
 5.4. Else
 5.4.1 td ← Dc;
 5.4.2 Dc← Dc + 1.
 5.4.3 Send ack to cl.
 5.4.4 Send c0 to RM.
 5.5 End if
6. End if

J. Computer Sci., 7 (2): 159-166, 2011

164

Algorithm for the SRM:
1. For each query q in the collection, determine
 1.1 All earlier queries from q’s transaction

have completed processing.
 1.2. qd ≥ rd
 1.3. Execute each query q that is ready on the

replica
 1.4. Send the result to the controller.
 End For
2. If all queries of t have completed processing at SR
and
 rd = td, then
 2.1 RM issue a c0 to the replica
 End if
3. If c0 completes processing, then
 rd= rd + 1
 End if
4. for each ART for a transaction t in the collection,
 4.1 discard any queries of t that have not yet

been sent to the replica
 End For

Fault recovery:
Recovery of a crashed replica:
 Step 1: The replica rejoins the system after recovery

from offline. Transactions, which are not
committed before the failure gets cancelled
and these transactions must be repeated for
updating the replica. Statements for recovering
the replica are contained in the collection of
the manager.

Step 2: When a database connection breaks, the replica
manager considers that a replica had crashed.
When the connection breaks, the manager
sends a c0to the replica and when no reply is
sent back to the manger, the knowledge of
processing c0 before the replica went down
can’t be known. The transaction cannot re-run,
if it’s already committed.

Step 3: A transaction log table which consists of a row
for each committed transaction with commit
delayer for td, is added to each reply so that the
replica manager determines the situation. The
transaction log table contains an entry for the
transactions committed before failure. The
missing committed transactions can be re-run
using the information from transaction log
table.

 If a connection gets re-established, the replica
manger reads the table, compares the list of committed
transactions with agent information and re-runs it. After

processing all the committed transactions, the manger
runs the in-progress transactions.

Recovery from agent crash:
Step 1: The log should be written prior so that crashes

can be endured. When a controller determines
that it can commit a transaction, it writes
transaction queries along with the c0 to the log
and the controller forces the log to disk before
replying to the cl. After the replica’s
transaction log table information is written, the
log is also written to the disk and then the table
is truncated.

Step 2: Crash can be recovered by the agent. It reads
the log and identifies all committed
transactions and initializes the statement
collections at the managers to contain the
statements of these transactions. The replica’s
transaction log table is examined by the
controller and included in the replica manager’s
collection. When the primary replica
implements all the statements in the collection,
new cl transactions are accepted by the agent.

Step 3: The transaction information committed at all the
replicas can be discarded so that the agents log
can be shortened. Nearly all the replicas run
properly so that there is no need of very large log.

RESULTS AND DISCUSSION

Simulation setup: Here we discuss about the
experimental performance evaluation of our algorithms
through simulations. In order to test our protocol, the
NS2 simulator (http://www.isi.edu/nsnam/ns) is used.
NS2 is a general-purpose simulation tool that provides
discrete event simulation of user defined networks.
 We have used the Bit Torrent packet-level
simulator for P2P networks (Eger et al., 2007). The
network topology is used only for the packet-level
simulator. Based on the assumption that the bottleneck
of the network is at the access links of the users and not
at the routers, we use a simplified topology in our
simulations. We model the network with the help of
access and overlay links. Each peer is connected with
an asymmetric link to its access router. All the access
routers are connected directly to each other,
modeling only an overlay link. This enables us to
simulate different upload and download capacities as
well as different end-to-end (e2e) delays between
different peers.

J. Computer Sci., 7 (2): 159-166, 2011

165

Fig. 3: No. of failures Vs Packet drop ratio

Fig. 4: No. of failures Vs end-to-end delay

Fig. 5: No. of failures Vs packets received

Performance metrics: In our experiment, we measure
the following metrics:
• Packet Drop Ratio: It is the ratio of number of

dropped packets to the total number of packets sent
• Average end-to-end delay: The end-to-end-delay is

averaged over all surviving data packets from the
sources to the destinations

• Throughput: It is the number of packets received
successfully

• Overhead: Routing and control overhead in terms
of packets.

Simulation results: We have compared our BFTR
architecture to our previous QIRM architecture
(Ayyasamy and Sivanandam, 2009) with no fault-
tolerant capabilities. In the experiment, we vary the
number of failures of replicas as 1-4 and measure the
above metrics.

Fig. 6: No. of failures Vs overhead

 Fig. 3 shows the packet drop ratio obtained with
our BFTR technique compared with the QIRM
technique. It shows that the packet drop ratio is
significantly less than the default technique, when
number of failures increases. Fig. 4 shows the end-to-
end delay occurred for the number of failures. It shows
that the delay of BFTR is significantly less than the
QIRM technique.
 Fig. 5 shows the throughput occurred for various
failures. As we can see from the figure, the throughput
is more in the case of BFTR when compared to QIRM
technique.
 The communication overhead is represented in
Fig. 6. It shows that the overhead is comparatively less
for BFTR technique than the QIRM technique.

CONCLUSION

 In this study, we have developed a Byzantine
Fault-Tolerance Replication (BFTR) technique for
peer-to-peer content distribution systems which
contains fault detection and fault recovery. Initially we
have proposed a QoS based overlay network
architecture involving an intelligent replica placement
algorithm to improve the network utilization of the P2P
system. In our BFTR technique, clients do not interact
directly with the database replicas. Instead they
communicate with the agent, which acts as a front-end
to the replicas and controls them. The agent is
replicated for increased fault tolerance. In this
technique, one replica is designated to be the primary
and runs statements of transactions slightly in advance
to the other secondary replicas. The commit-ordering
and transaction-ordering rules are implemented using
the commit delayer principle which ensures correctness
while handling the faulty primary replica. By
simulation results, we have shown that the proposed
technique involves less overhead and recovery time
with increased accuracy.

J. Computer Sci., 7 (2): 159-166, 2011

166

REFERENCES

Amir, Y., C. Danilov, D. Dolev, J. Kirsch and J. Lane et al.,

2010. Steward: Scaling byzantine fault-tolerant
replication to wide area networks. IEEE Trans.
Dependable Sec. Comput., 7: 80-93. DOI:
10.1109/TDSC.2008.53

Ayyasamy, S. and S.N. Sivanandam, 2009. A QoS-
aware intelligent replica management architecture
for content distribution in peer-to-peer overlay
networks. Int. J. Comput. Sci. Engg., 1: 71-77.
ISSN: 0975-3397

Ayyasamy, S. and S.N. Sivanandam, 2010a. A cluster
based replication architecture for load balancing in
peer-to-peer content distribution. Int. J. Comput.
Networks communi., 2: 158-172. DOI:
10.5121/ijcnc.2010.2510

Ayyasamy, S. and S.N. Sivanandam, 2010b. Trust
based content distribution for peer- to- peer overlay
networks. Int. J. Network Security Appl., 2: 134-145.
DOI: 10.5121/ijnsa.2010.2211

Castro, M. and B. Liskov, 1999. Practical byzantine
fault tolerance. Proceeding of the 3rd Symposium
on Operating Systems Design and Implementation,
(SOSDI’99), New Orleans, USA., pp: 1-14.

Clement, A., M. Marchetti, E. Wong, L. Alvisi and
M. Dahlin, 2009. Making byzantine fault tolerant
systems tolerate byzantine faults. Proceeding of the
6th USENIX Symposium on Networked Systems
Design and Implementation, (NSDI’09), USENIX
Association, Berkeley, CA, USA., pp: 153-168.

Eger, K., T. Hobfeld and R. Binzenhofer, 2007.
Efficient simulation of large-scale p2p networks:
Packet-level vs. flow-level simulations.
Proceedings of 2nd Workshop on the Use of P2P,
GRID and Agents for the Development of Content
Networks, (UPGADCN’07), ACM, New York,
NY, USA., pp: 9-16. DOI:
10.1145/1272980.1272986

El Malek, M.A., G.R. Ganger, G.R. Goodson, M.K. Reiter
and J.J. Wylie, 2005. Fault-scalable byzantine
fault-tolerant services. Proceedings of the 20th
ACM symposium on Operating systems principles
(SOSP’05), ACM, New York, NY, USA.,pp: 59-74.
DOI: 10.1145/1095810.1095817

Hales, D., A. Marcozzi and G. Cortese, 2007. Towards
cooperative, self-organised replica management.
Proceeding of the 1st IEEE International
Conference on Self - Adaptive and Self-Organizing
Systems, July 9-11, Cambridge, MA, USA., pp:
367-370. DOI: 10.1109/SASO.2007.62

Kotla, R., L. Alvisi, M. Dahlin, A. Clement and E. Wong,
2007. Zyzzyva: Speculative byzantine fault
tolerance. Proceeding of the 21st ACM SIGOPS on
Operating Systems Principles, (SOSP’07), ACM
New York, NY, USA., pp: 45-58. DOI:
10.1145/1294261.1294267

Li, J. and D. Mazieres, 2007. Beyond one-third faulty
replicas in byzantine fault tolerant systems.
Proceedings of the 4th USENIX Symposium on
Networked Systems Design and Implementation,
(USNSDI’07). VMware Inc. and Stanford
University, CA., pp: 131-144.

Pathak, V. and L. Iftode, 2006. Byzantine fault tolerant
public key authentication in peer-to-peer systems.
Comput. Network, 50: 579-596. DOI:
10.1016/j.comnet.2005.07.007

Petr, A.H. and K.P. Druschel, 2006. The case for
byzantine fault detection. Proceedings of the 2nd
Conference on Hot Topics in System
Dependability, (HOTDEP’06), SENIX Association
Berkeley, USA., pp: 5-5.
http://portal.acm.org/citation.cfm?id=1251019

Simon, L.M., 2009. Fault Detection: Theory, Methods
and Systems. Nova Science Publishers, USA.,
ISBN-10: 161728291X

Singh, A., P. Fonseca, P. Kuznetsov, R. Rodrigues and
P. Maniatis, 2009. Zeno: Eventually consistent
byzantine-fault tolerance. Proceedings of the 6th
USENIX Symposium on Networked Systems
Design and Implementation, (NSDI’09), USENIX
Association, CA., pp: 169-184.

Zhao, W., 2007. Byzantine fault tolerant coordination
for web services atomic transactions. Proceedings
of the 5th International Conference on Service-
Oriented Computing, (ICSOC ‘07), Springer-
Verlag Berlin, Heidelberg, pp: 307-318. DOI:
10.1007/978-3-540-74974-5_25

Zhijun, L.I. and L. Minghong, 2005. EOS: Evolutionary
overlay service in peer-to-peer systems. Am. J.
Applied Sci., 2: 1401-1406. DOI:
10.3844/ajassp.2005.1401.1406

