
Journal of Computer Science 7 (10): 1448-1457, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Lakshmi Deepika, Department of Electrical and Computer Engineering,
 University of Texas at San Antonio, San Antonio, Texas, USA

1448

Composite Pseudo Associative

Cache with Victim Cache for Mobile Processors

Lakshmi Deepika Bobbala, Monobrata Debnath and Byeong Kil Lee
Department of Electrical and Computer Engineering,

University of Texas at San Antonio, San Antonio, Texas, USA

Abstract: Problem statement: Multi-core trends are becoming dominant, creating sophisticated and
complicated cache structures. One of the easiest ways to design cache memory for increasing
performance is to double the cache size. The big cache size is directly related to the area and power
consumption. Especially in mobile processors, simple increase of the cache size may significantly
affect its chip area and power. Without increasing the size of the cache, we propose a novel method to
improve the overall performance. Approach: We proposed a composite cache mechanism for 1 and
L2 cache to maximize cache performance within a given cache size. This technique could be used
without increasing cache size and set associatively by emphasizing primary way utilization and
pseudo-associatively. We also added victim cache to composite pseudo associative cache for further
improvement. Results: Based on our experiments with the sampled SPEC CPU2006 workload, the
proposed cache mechanism showed the remarkable reduction in cache misses without affecting the
size. Conclusion/Recommendation: The variation of performance improvement depends on
benchmark, cache size and set associatively, but the proposed scheme shows more sensitivity to cache
size increase than set associatively increase.

Key word: Associatively increase, mobile processors, power consumption, pseudo-associativity,

increasing cache, replacement policy, remarkable reduction, composite pseudo, direct
memory, further improvement

INTRODUCTION

 While processors with multi-cores already
thrived in general purpose processor area, mobile
processor companies are recently starting to release
their multi-core version which are used in net books,
smart phones or Tablet PCs. Many design issues
presented in general-purpose processors are more
critical in mobile processors. Especially, power and
heating problems are the prominent issues in battery
operated mobile devices. In order to maximize the
effectiveness of applying multi-core technologies to
mobile processors, those problems need to be solved
with appropriate solutions for future mobile
processor designs.
 In general, memory subsystem takes a large portion
of the die area in the microprocessors and caches
consumeover 40% of a processor’s total power
(ShivaKumar and Jouppi, 2001). The reduction of
cache size and power consumption is one of the main
design goals for mobile computing devices.
 One of the easiest ways to design cache memory
for increasing performance is to double the cache size.

In mobile processors, however, simple increase of the
cache size significantly affects chip area and power. As
multi-coretrends are becoming dominant, cache
structures turns outto be sophisticated and complicated.
 The bigger shared level-2 (L2) caches are
demanded for higher cache performance, but the big
cache size is directly related to the area of
interconnection and related power consumption.
Similarly, higher performance L1 caches are required
without increasing the size of the cache. As shown in
Fig. 1, cache performance can be significantly
increased by doubling cache sizes and increasing set
associatively, but it results in hardware cost, larger area
and power consumption.
 To address this issue, in this study, we propose a
composite cache mechanism to maximize cache
performance within a given cache size. We have also
added victim cache for further improvement in
performance. Generally, not all the sets require same
associatively most of the time and the utilization of
the ways is biased to the first way (Abella and

 J. Computer Sci., 7 (10): 1448-1457, 2011

1449

González, 2006). V-way cache is one of the pseudo
associative techniques (Qureshi, et al., 2005). This
technique can be used without, size and set
associatively by increasing cache utilization and
pseudo-associatively.
 In our experiments, we use the SPEC CPU2006
benchmark suite for simulation workloads, since current
mobile internet devices (e.g., net book) are required to
run same application that are used in general-purpose
processor.
 Based on our experiments with the sampled SPEC
CPU2006 workload, the proposed cache mechanism
shows remarkable reduction in cache misses.

Fig 1: Cache misses (misses per kilo instruction) with

cache size and set-associativity variations

Fig. 2: V way Cache with 4-way set associativity

Fig. 3: Victim cache structure

Related work: There have been several approaches to
investigate cache organizations on level-1 and level-2
caches for CMPs (Qureshi, et al., 2005; Liu et al 2004;
Davanam and Lee, 2010). Here we are describing some
of the related techniques.

V-way cache: (Qureshi et al., 2005). Proposed Utility-
based Cache Partitioning which is a low overhead, high
performance, runtime mechanism to partition shared
level-2 caches. This work achieved improvement of
miss rate for L2 cache by choosing a pseudo associative
cache structure and implementing global replacement
policy. They proposed a novel cache structure in which
they have separate tag and data stores as shown in the
Fig. 2. In their cache structure, the tag and data store are
independent of each other. The number of tag entries is
doubled so as to provide more space for tags. The
entries may be tripled but increase in size also needs to
be taken into consideration. Generally, if the tag store is
doubled, the increase in size of cache will be 2 to 3%
(Qureshi et al., 2005). Each tag will be having a valid
bit and dirty bit to show the status and FPTR which will
be pointer associated with the tag pointing to the unique
data in data store. For data store, each entry will have
availed bit and RPTR which will be pointing to unique
tag entry. As the tag and data structure are decoupled,
data can be mapped to tag globally and there will not be
one tone corresponding relationship between them. As
each set will be having different demand, this global
mapping will help to reduce the miss rate. Form this
technique; they achieved an average miss rate reduction
of 13% (Qureshi et al., 2005).

Heterogeneous way size cache: (Abella and González,
2006). Proposed a Heterogeneous Way-size Cache, in
which different cache ways have different sizes. They
applied this mechanism to L1 and L2 caches with
dynamically adaptive version. Their experiments
proved that only a small fraction of sets require some
associativity most of the time and the numbers of sets
that make effective use of given degree of associativity
decreases as the associativity increases (Abella and
González, 2006). They designed a heterogeneous way
size cache based on this observation such that different
ways can have different sizes and number of sets in
each way should be power of 2.

Victim cache: A victim cache, as shown in Fig. 3, is
a small fully set associative cache used along with
L1 cache to improve the miss rate. Even though there
is a tradeoff of area and delay due to the use of
victim cache, the reduced miss rate will compensate
them. That is why we generally use 4-6 victim lines
so that delay and area required do not dominate the
miss rate reduction.

 J. Computer Sci., 7 (10): 1448-1457, 2011

1450

A fully associative software managed cache design:
Indirect index cache (Hallnor et al., 2000) used a novel
replacement algorithm called generational
replacement and give the miss rate performance nearly
equal to fully associative cache.

Related works: (Liu et al., 2004). Proposed Shared
Processor-based Split Leaches, statically allocating
some private banks to each competing applications
based on profile information. It might be problematic to
profile if several applications are executed
concurrently. While some research results focus on
reducing access time (Jouppi, 1990; Peir, et al., 1998;
Puzak, 1985; Seznec, 1993; Batson and Vijaykumar,
2001: Chishti et al., 2003), other approaches are based
on predicting the way where the data is stored (Belady,
1966; Calder and Elmer, 1996; Inoue et al., 1999). The
adaptive group associative cache (Peir, et al., 1998)
proposes to improve the performance of first level
cache but its benefit reduces by increasing associativity.
Prime modulo hashing (Jouppi et al., 1990) and skewed
associativity (Seznec, 1993). Suggests distributing
memory access uniformly across cache sets by targeting
the indexing function but they suffer from negative
effects of local data replacement due to static mapping
of tag entries to data lines.Satisg

Composite pseudo associative cache with victim
cache: The work presented here expands on the initial
work done in (Qureshi et al., 2005). We have modified
such that the cache structure is applicable for both L1
and L2 caches.

 Limitations on performance improvement: Modern
microprocessors including general purpose processors
and embedded/mobile processors need to run wide
range of applications. While some applications are
sensitive and increased their performance as cache size
increases, some other applications might have less
sensitivity or show the saturation in performance
improvement. As shown in Fig. 1, applications show
the performances alteration (or small improvement) on
the cache size increase and set associativity increase.
This means cache size increase is not a perfect solution
for all application workloads because each application
has different 3architectural behavior to hardware
resources. Especially for battery-powered mobile
processors, cache size increases hold not is considered
as a high priority solution due to higher power
requirement and larger area requirement. In Sock
design using IPs, another simple way to improve cache
performance is to increase set associativity with the

penalty of additional hardware cost and more power
consumption. Full-way set associative cache with ideal
replacement method can provide large performance
improvement, but it is impractical to be implemented.
By increasing cache set associativity, we can expect
certain level of performance improvement, but still the
degree of improvement is saturating at some point in
most of the applications.

Cache way (sub-array) utilization: Generally, LRU
replacement policy is popularly used in cache designs
with several methods of implementations. However, its
way (physical way in sub-arrays) utilization can be
categorized into two patterns. A half of benchmarks
(e.g., vortex) in SPEC CPU2006 show the biased way
utilization with LRU replacement policy; the rest of
benchmarks (e.g., bzip2) show relatively balanced
distribution. Based on the observations, not all the sets
require some associativity most of the time and the
utilization of the ways are biased to the primary
way(s) (Abella and González, 2006). Several schemes
have been introduced to address this issue such as
heterogeneous way-size cache, in which different
cache ways have different sizes. Most of them need
complex logics to handle different size of ways and to
add adaptive features.

Composite pseudo associative cache: The proposed
composite pseudo-associative cache is designed for
level-1 and level-2 caches(Bobbala et al., 2010). Based
on the study from (Abella et al., 2006). Only a small
fraction of sets require some associativity most of the
time and the utilization of the ways are biased to the
first way. As the associativity increases, actual set
utilization will be decreased more. In order to address
this issue, (Abella and González, 2006). Use
heterogeneous way-size cache (Abella and González,
2006) ith the penalty of access time and architectural
complexity. In this study, however, we proposed
composite cache mechanism emphasizing primary way
utilization and pseudo-associativity by reconfiguring
cache structure. Figure. 4 shows a basic concept of the
proposed cache scheme. As the first step, data arrays of
the cache are divided into two parts: the first half of
data cache for the primary way; the rest of them for all
other ways.
 However, tag arrays need to be preserved as in
traditional cache in order to use the features of set
associativity. If one wants to design a 4-way 256KB
cache, 128KB will be used for a primary way and
another128KB will be shared by other ways. Also, four
tag arrays for each way need to be maintained for
getting full benefits from 4-way associativity.

 J. Computer Sci., 7 (10): 1448-1457, 2011

1451

 However, we need a special mechanism to provide
the pseudo-associativity on how to share the other
data array by three tag arrays. Several different
approaches for pseudo-associativity have been
proposed to improve the miss rate of a set associative
cache, but in our experiment v-way cache
Qureshi et al., 2005) was selected (TDR=2) and
integrated into the proposed scheme for enabling the
pseudo associativity of non-primary ways.

Operation of composite pseudo oassociative cache:
In the primary way, each block will have valid bit for
status information, tag bits and FPTR to map to
particular data line for each tag. Each time the tag gets
accessed, it will update the count that will in turn be
used for the choice of tag victim. (Bobbala et al.,2010
& Bobbala et al., 2011).
 Least Recently Used (LRU) replacement policy is
used for the primary way for selecting the tag victim.
Data will have RPTR, access and reuse bits such that
RPTR can be used to point FPTR using direct mapping.
Access and reuse bits can be used to select victims using
LRU and reuse replacement policy. Random replacement
policy is also implemented in the simulator for choosing
data victim. For the primary way, there is one to one
correspondence between the tag and data; for example,
each tag is mapped to unique data in the data store. For
all the other ways, the tag store will have the tag along
with valid bit and FPTR. The data will have availed bit,
RPTR pointing to one of the tag entries in the tag store.
Tag store will use LRU replacement policy to update the
replacement information where the data store will use
reuse replacement policy (Puzak, 1985). For the both tag
data, if the valid bit is unset then the information is
considered to be invalid. This is applicable for primary
way also. The TDR (Tag to Data Ratio) is taken as 2
through hotel the simulations. This value is taken is 2
because is the optimum value when area, power is also
taken into consideration. Figure 5 shows the algorithm
that we have implemented.

Fig 4: Composite pseudo associative cache with4-way

set associative

Operation of composite pseudo associative cache
with victim cache: Victim caching is implemented for
the primary way of the Composite Pseudo associative
cache (CPS). Separate tag and data stores are introduced
for victim cache, associativity_vc is added to the input
parameter that defines the number of victim lines and
fptr-vc is added to the tag to point the data lines in the
data store of victim cache. The structure of the CPS
cache is kept constant. Figure 6 shows the basic concept
and Fig. 7 shows the algorithm of Composite pseudo
associative cache with victim cache operation.

Simulations: We modified cache-slim (Burger and
Austin, 1997) simulator which is a trace driven
simulator to implement our cache structure.
 The work load is selected (Table 1) as SPEC CPU
2006(SPEC) Integer and float ing point suite (Qureshi
et al., 2005). To generate the L1 and L2missed trace
information, we used SPEC CPU 2006 integer and
floating-point suite and the Simple scalar (Burger and
Austin, 1997) Alpha binaries with skipped
initialization phase.

Fig. 5: Algorithm for composite-pseudoassociative

cache

 J. Computer Sci., 7 (10): 1448-1457, 2011

1452

Fig. 6: Composite pseudo associative cache with victim

cache

Table 1: Description of SPEC2006 benchmarks
Benchmark Short description
Astar It is derived from a portable 2D path‐finding library
 that is used in games artificial intelligence
Bzip2 Compression application which is to help isolate the
 workdone to only the CPU and memory subsystem
Gobmk Artificial Intelligence i.e., game playing
Hammer Protein sequence analysis
Libquantum A library for the simulation of a quantum\computer
Mcf Application for combinatorial

optimization/single‐depot vehicle scheduling
Perl A cut‐down version of Perl v5.8.7,\the popular

scripting language
Sjeng A program that plays chess and several chess variants,
 such as drop‐chess
Bwaves Computational Fluid Dynamics
Leslie3d The primary solver used to investigate a wide array of
 turbulence phenomena
Grimaces Chemistry of molecular dynamics Gems FDTD
 Computational Electromagnetics
Milc Application for simulations of four dimensional SU (3)
 lattice gauge theory on MIMD parallel machines
Namd A parallel program for the simulation of large bio
 molecular systems
Soplex A linear program using the Simplex algorithm
Zeusmp An application to solve problems in three spatial
 imensions with a wide variety of boundary conditions

 First 500 million instructions were fast forwarded
and the following 500 million instructions are simulated
with the ref input data sets. The baseline configuration
will be normal cache and v way cache. The results for
the traditional cache are obtained by giving Tag to Data
Ratio (TDR) = 1 for the v way cache. This result is
compared against the results of the composite pseudo
associative cache (cps) and composite pseudo
associative cache with victim caching (cpsv).
 Miss rate Per Kilo Instruction (MPKI) and miss rate
are used as measurements for miss rate. Two types of
simulation analysis are performed.
 A processor model that is considered in the v
way cache (Qureshi et al., 2005) is used and the results
are evaluated. This processor has16KB, 64B line size
and 2-way set-associative L1 cache.

Fig. 7: Algorithm for composite pseudo associative

cache with victim cache

 The replacement algorithm for L1 cache is LRU.
For Simplex and bzip2, L2 cache is of size 256KB,
128B line size and 8-way set-associative.
 For the rest of benchmarks, L2cache is 16KB,
4way set associative and 128B block size because miss
rate almost reduced to zero for 256KB size. Individual
variations of MPKI of various parameter sure also
measured. The parameters for the L1 and L2caches are
chosen such that both the extremities are covered.L1
cache simulations are done for cache sizes 8,16, 32, 64
and 128 KB. The associativity is varied as 2, 4 and 8.
The line size is varied as 64B and 128B.The
associatively of the victim cache is varied as 4, 8, 16and
32. L2 cache simulations are done for cache sizes 8,16,
32, 64, 128, 256, 512 and 1024KB.The 8KB cache is
considered for L2 cache simulations because for some

 J. Computer Sci., 7 (10): 1448-1457, 2011

1453

of the benchmarks 8KB CPS cache with 32victim lines
achieved the miss rate equal to traditional cache of
64KB. All these simulations are done to visualize the
miss rate variation across different cache sizes. The
associativity is changed as 4, 8, 16 and 32. The line size
is kept constant at 128B. L1 and L2 simulations are
done for the combinations of all the above parameters
for normal, v way, composite pseudo associative and
composite pseudo associative with victim cache. The
following benchmarks are tested.

RESULTS

Miss rate analysis of results: Graphs for only ceta in
benchmarks are captured due to the limited space. In all
the graphs (Figs. 8-14), x-axis represents different
associativities for different cache sizes and y-axis is
showing Misses per Kilo Instruction.

Fig. 8: MPKI with various set-associativity and cache

sizes for L1 cache-Gems FDTD

Fig. 9: MPKI with various set-associativity and cache

sizes for L1 cache-namd

Fig. 10: MPKI with various set-associativity and cache

sizes for L1 cache-named

Fig. 11: MPKI with various set-associativity andcache

sizes for L1 cache-soplex

Fig. 12: MPKI with various set-associativity and cache

sizes for L2 cache-gromcs

Fig. 13: MPKI with various set-associativity and cache

sizes for L2 cache-bzip2

Fig. 14: MPKI with various set-associativity and cache

sizes for L2 cache-gobmk

 J. Computer Sci., 7 (10): 1448-1457, 2011

1454

Also, we used following notations:

• Nor: Traditional set associative cache v way: V-

way cache
• Cps: Composite pseudo associative cache
• 4-vl: Composite pseudo associative cache with

victim cache
• 8-vl: Composite pseudo associative cache with

victim cache
• 16-vl: Composite pseudo associative cache with

victim cache
• 32-vl: Composite pseudo associative cache with

victim cache

 Below is the terminology that we used to analyze
the miss rate improvement. This is applicable for both
L1 and L2cache simulations. Maximum reduction of
miss rate measured for both L1 and L2 caches for all
the simulations as shown in Table 2-4:

• Intermediate performance-0.5 to 1.0 decrement in

MPKI
• Good Performance-More than 1.0 decrement in

MPKI
• Less Improvement in performance-Less than 0.5

decrement in MPKI
• No Improvement in Performance-MPKI increased

when compared to other structures.
• CPS with neither VC to nor - decrement in miss

rate
• From CPS with 32 victim lines to traditional set

associative cache.
• CPS with VC to v way-decrement in miss rate from
• CPS with 32 victim lines to v way cache

 Observations from L1 cache results: The
benchmarks leslie3d, libquantum and mcf are
computational intensive benchmarks. The increment in
line size reduces MPKI. It is not affected by cache size,
associativity or cache structure. This might be due to
repetition of particular sized blocks. Increase in cache
size is more when compared to the increase in
associativity. For the benchmarks Astar, bwaves, bzip2,
soplex, hmmer and gromcs, there is an intermediate
improvement in MPKI using the composite pseudo
associative cache.
 For Namd, Gems FDTD and gobmk, there is good
improvement inMPKI using composite pseudo associative
cache. The benchmarks libquantum, mcf, gromcs, leslie3d
and zeugma have less improvement in MPKI using

composite pseudo associative cache. Bwaves is the only
benchmark which could get good performance
improvement by adding victim caching to the CPS.

Observations from L2 cache results: The bench mark
named is not considered for analysis. MPKI is reduced
to zero at the lowest configuration of cache. For the
benchmarks milc and libquantum, increment in line
size-reduces MPKI like L1 cache.

Table 2: Analysis of results for L2 cache simulations

Benchmark Comments

Astar Overall CPS with victim lines has good performance
Bwaves Overall CPS with victim lines has good performance
GemsFDTD Over all CPS has good performance
Gobmk Over all CPS has good performance
Gromcs Over all CPS has Intermediate performance
Hmmer Over all CPS has Intermediate Performance
Leslie3d Over all CPS has less performance
Libquantum CPS has no performance improvement
Mcf CPS has no performance improvement

Table 3: Analysis of Results for L1 cache simulations
 CPS with
 CPS with VCCPS with VCCPS with VC VC to
Benchmark to nor‐L1 vway‐L1 to nor‐L2 vway‐L2
Astar 12.22 5.81 15.1 6.2
Bwaves 13.26 14.26 3.5 1
Bzip2 7.79 5.79 8.1 5.25
Gemfdtd 17.98 15.74 -- --
Hmmer 8.1 12.6 5.82 7.42
Gobmnk 22.63 22.63 8 6.35
Gromcs 8.67 4.51 7.08 7.08
Lelie3d 7.87 12.21 3.46 --
Soplex 13.54 9.36 11.68 --
Zeusmp 2.4 2.4 15.7 --
Hmmer 8.1 12.6 5.82 --
Lelie3d 7.87 12.21 3.46 --

Table 4: Results for L1 and L2 cache simulations for the alpha
processor configuration

Benchmark Comments
Astar Overall CPS with victim cache has good reduction in
 MPKI
Bwaves CPS performance is less than victim cache
Gobmk Overall CPS with victim cache has good performance
Gromcs Overall CPS with victim cache has good performance
Hammer Overall CPS with victim cache has good performance
Leslie3d Overall CPS with victim cache has relatively Less
 performance improvement
Libquantum CPS has no performance improvement
Mcf CPS has no performance improvement
Soplex CPS has intermediate improvement in MPKI when
 compa-red to v way
Zeusmp CPS has less improvement in miss rate when compared
 to v way
Bzip2 Overall CPS with victim cache has good performance

 J. Computer Sci., 7 (10): 1448-1457, 2011

1455

Table 5: Percentage numbers of hits for 256KB, 8 way associative
composite pseudo associative caches for astar benchmark

Way Number of hits (%)
0 5959086 (39.21)
1 1349358 (8.88)
2 1331165 (8.76)
3 1401675 (9.22)
4 1305575 (8.59)
5 1288913 (8.48)
6 1288585 (8.48)
7 1273056 (8.38)

MPKI not affected by cache size, associativity or cache
structure. This might be due to repetition of particular
sized blocks. For rest of the benchmarks, v way showed
good performance than CPS at the cache size 8KB and
CPS is good than v way when the cache size more than
8KB.This is because as the number of entries in
primary way increases as the cache size increases. Then
the direct memory part of the CPS cache works well as
it gets more data which is having locality.
 For bwaves, change in cache size and associativity
has no effect. MPKI got reduced only with the use of
composite pseudo associative cache structure. Astar,
soplex, bzip2, Gombak and hammer, there is
intermediate improvement in the MPKI. For the
benchmarks bwaves, leslie3d and zeusmp, there is less
improvement in the MPKI. For gromcs, there is good
improvement in MPKI. We observe that, in all the L2
cache simulations, there is less impact of introducing
victim cache.

 Storage cost and delay analysis for CPS and V way:
A physical address space of 36 bits is assumed for the
below analysis. Block size of 128 bytes is assumed. Then
the number of tag bits will be 36-log2 (sets)-log2 (block
size). The number of tag store entries is assumed as 2048
and the associativity is 8 for the traditional cache. Table
5 shows the hit rates obtained by composite pseudo
associative cache when simulated for astar benchmark
whose cache size is 256KB and associativity is 8. It has
miss rate of 0.88%. Table 6 describes the storage cost
analysis for different types of caches.
 From the Table 5, maximum number of hit entries
fromway0 comes around 40%. CPS needs an extra
multiplexer to select between the different ways. But, it
has direct memory cache whose latency will be less
when compared to other types of caches. As the number
of hit’s in way0 is far bigger when compared to that of
other ways, the latency of the CPS cache will be less
than v way cach.

Table 6: Storage cost analysis for traditional cache, v way cache and
composite pseudo associative cache

 Traditional
Storage cache VWAY CPS
Each tag-store entry Contains (bits)
Status (v+dirty+LRU) 5000 5 5
Tag 2100 20 20
FPTR 11 11
Total number of tag bits 2600 36 36
Each data-store entry Contains (bits)
Status (v+reuse) 3 3
Data 128*8 128*8 128*8
RPTR 12 12
Total number of bits in 1024 1039 1039
data store entry
Number of tag store Entries 2048 4096
 256+3584=3840
Number of data store Entries 2048 2048 2048
Size of tag store 6.7KB 18.43KB 17.2KB
Size of data store 256KB 259KB 259KB
Total size of cache 262.7KB 277.4KB 276.2K

 This is true for all the benchmarks who achieved
intermediate-and good performance compared to that
of v way cache because the MPKI has reduced to the
increase of number of hits in the direct memory cache.
From Table 6, it is evident that CPS occupies less area
when compared to v way cache. So, we can achieve
the savings in delay and area for the composite pseudo
associative cache when compared to v way
cache for the benchmarks who achieved intermediate
and good performance.

CONCLUSION

 The performance of cache is very important in the
memory design as it will have huge impact on the speed
and power of the processor. As the usage of multi-core
processors in mobile devices is becoming prevalent,
there is a need for the high performance caches with
minimum area. Composite pseudo associative with
victim cache is one of such techniques which attempt to
increase the performance of the cache without
increasing the area. This work is developed from the
simulator of v way cache (Puzak, 1985). Composite
pseudo associative cache uses direct memory cache as
primary way and pseudo associative cache for other
ways. A victim cache is added to the primary way of
the composite pseudo associative cache for further
improvement in the performance. A 16KB, 2-way set
associative, 64B block size L1 CPS cache with 32
victim lines outperforms the traditional cache by 16.7%
and v way cache by 8.86%. A 256KB, 8-way set-
associative, 128B block size L2 cache is considered for
soplex andbzip2 benchmarks where as 16KB, 4-way
set-associative, 128B block size is considered for rest of
the bench marks.This is due to the reduction of miss
rate to very less for the other benchmarks at 256KB, 8-
way configuration. CPS cache with victim cache

 J. Computer Sci., 7 (10): 1448-1457, 2011

1456

achieved an average of 8.7% better per for mance when
compared to traditional set associative cache and 5.47%
better than v way cache. Simulations for different
cache sizes and associativity are done for choosing the
best configuration.
 CPS cache will also help to reduce the overall
latency and size when compared to the v way cache.
This in turn will reduce the power. The results from this
cache configuration can be effectively used for multi-
core designs in mobile processors for which area and
power is a major constraint. Future work will
concentrate on more effective designs for pseudo
associative cache, estimation of exact power and
latency (using Wilton et al., 1996) implementing
composite pseudo associative cache technique on multi-
core simulators and retrieving the exact trace data for
multi-core mobile processors.

REFERENCES

Abella, J. and A. González, 2006. Heterogeneous waym

size cache. Proceeding of the International
Conference on Supercomputing, (ICS '06), ACM
New York, USA, pp: 239-248.
DOI: 10.1145/1183401.1183436

Albonesi, D. and H. Selective 1999. Cache Ways: On
demand cache resource allocation. Proceedings of
32nd Annual International Symposium on Micro
Architecture, (MICRO-32), IEEE Xplore Press,
Haifa, Israel, pp: 248-259. DOI:
10.1109/MICRO.1999.809463

Batson, B.M. and T.N. Vijaykumar, 2001. Reactive
Associative Caches. Proceeding of the 2001
International Conference on Parallel Architectures
and Compilation Techniques, Sep. 8-12, IEEE
Xplore Press, Barcelona, Spain, 49-60. DOI:
10.1109/PACT.2001.953287

Belady, L.A., 1966. A study of replacement algorithms
for a virtual storage computer. IBM Syst. J., 5: 78-
101. DOI: 10.1147/sj.52.0078

Bobbala, L.D, Byeong K.L, 2011. Hybrid way cache
for mobile processors. Proceeding of the eigth
International Conference on Information
Technology, Apriel 11-13, IEEE Xplore Press, Las
Vegas, NV, USA, pp: 707-712. DOI:
10.1109/ITNG.2011.125

Bobbala, L.D, Salvatierra. J,Lee B.K, 2010 Composite
pseudo associative cache for mobile processors.
Proceeding of the 18th IEEE International
Symposium on Modelling Analysis and Simulation
of Computer and Telecommunication systems,
Aug. 17-19, IEEE Xplore Press, Miami Beach, FL,
pp: 394-396. DOI: 10.1109/MASCOTS.2010.49

Burger, D.C., and T.M. Austin, 1997. The simple scalar
tool set, version 2.0. ACM SIGARCH Comput.
Archit. News, 25: 13-25. DOI:
10.1145/268806.268810

Calder, D.G.B., and J. Elmer, 1996. Predictive
sequential associative cache. Proceedings of the
IEEE International Symposium on High
Performance Computer Architecture, Feb. 3-7,
IEEE Xplore Press, San Jose, CA , USA, pp: 244-
253. DOI: 10.1109/HPCA.1996.501190

Chishti, Z., M.D. Powell and T.N. Vijaykumar, 2003.
Distanceassociativity for high‐performance
energy‐efficient nonuni form cache architectures.
Proceedings of the 36th Annual ACM/IEEE Int.
Symposium on Micro architecture, (MICRO 36),
IEEE Computer Society Washington, DC, USA,
pp: 55-66.

Davanam, N., and B.K. Lee, April 2010. Towards
smaller‐sized cache formobile pro cessors using
shared set associativity. Proceeding of the 7th
International Conference on Information
Technology New Generation, April 12-14, IEEE
Xplore Press, Las Vegas, NV, pp: 1-6. DOI:
10.1109/ITNG.2010.120

Hallnor, E.G. and S.K. Reinhardt, 2000. A fully
associative software managed cache design.
Proceedings of the 27th Annual International
Symposium on Computer Architecture, (ISCA '00),
ACM New York, NY, USA, pp: 107-116.DOI:
10.1145/339647.339660

Inoue, K., T. Ishihara and K. Murakami, 1999.
Way‐predictive set associative cache for high
performance and low. Proceedings 1999
International Symposium of Low power
Electronics and Design, (ISLPED '99), ACM New
York, USA, pp: 272-275. DOI:
10.1145/313817.313948

Jouppi, N.P., 1990. Improving direct‐mapped cache
performance by the addition of a small
fully ‐associative cache and prefetchbuffers.
Proceedings of the 17th Annual International
Symposium on Computer Architecture, May 28-31,
IEEE Xplore Press, Seattle, WA , USA, pp: 364-
373. DOI: 10.1109/ISCA.1990.134547

Liu, C, A. Sivasubramaniam and M. Kandemir, 2004.
Organizing the Last Line of Defense before Hitting
the Memory Wall for CMPs. Proceedings IEE,
Software, Feb. 14-18, IEEE Xplore Press, USA,
pp: 176-185. DOI: 10.1109/HPCA.2004.10017

 J. Computer Sci., 7 (10): 1448-1457, 2011

1457

Peir, J.K., Y. Lee, and W.W. Hsu, 1998. Capturing
dynamic memory reference behavior with adaptive
cache topology. Proceeding of the 8th International
Conference on Architectural Support for
Programming Languages and Operating Systems,
(ASPLOS-VIII), ACM New York, USA, pp: 240-
250. DOI: 10.1145/291069.291053

Puzak, T.R., 1985. Analysis of cache replacement
algorithms. University of Massachusetts.

Qureshi, M.K., D. Thompson and Y.N. Patt, 2005 The
V Way Cache: Demand Based Associativity via
Global Replacement. Proc. Int. Symp. Comput.
Arc., 33: 176-185. DOI: 10.1145/1080695.1070015

Seznec, A., 1993. A case for two way skewed
associative caches. Proc. Ann. Int. Sympos.
Comput. Arch., 21: 169-178. DOI:
10.1145/173682.165152

ShivaKumar P. and N. Jouppi, 2001. CACTI 3.0: An
Integrated Cache Timing Power and Area Model.
Western Research Laboratory.

Wilton, S.E. and N. Jouppi, 1996. Cacti: An enhanced
cache access and cycle time model. IEEE J. Solid
State Circ., 31: 677-688. DOI: 10.1109/4.509850

