
Journal of Computer Science 7 (2): 143-147, 2011 
ISSN 1549-3636 
© 2011 Science Publications 

Corresponding Author: Sunil Kr Pandey, Institute of Technology and Science, Mohan Nagar, Ghaziabad 
143 

 
Study of Object Oriented Analysis and Design Approach 

 
1Sunil Kr Pandey, 2G.P. Singh and 1Dr. Vineet Kansal 

1Department of I.T., Institute of Technology and Science, Mohan Nagar, Ghaziabad, U.P. India 
2Department of Science Government Dungar College, Bikaner, Rajasthan, India 

 
Abstract: Problem statement: Object and component technologies, rapidly maturing branches of 
information technology, have been becoming pervasive elements of systems development, especially 
the recently popular Internet applications and thus leading to increased complexity and at the same 
time broader range of applications. Approach: This needs to be understood in order to maximize its 
benefits and applications with consistent results. However, mainstream Object Oriented Systems 
Development (OOSD), consisting of Object Oriented Analysis and Design (OOAD) and Object-
Oriented Programming (OOP), has a history of difficulties and is still struggling to gain prevalent 
acceptance. Results: There have been number of studies and experiments conducted by experts and 
researchers in the past which provides a solid base to take up this study and look into various 
intricacies present. There have been several studies and focused efforts in this direction which laid 
down the basis for a segment of people to form the opinion as “technology adoption is mostly the 
result of marketing forces, not scientific evidence”  whereas there have been another segment that 
believes that object technology is “still long on hype and short on results ...”. The gurus of OOSD 
continue to tout its vast superiority over conventional systems development, even to the extent of 
developing a unified software development process. Conclusion: The advocates of OOSD claim many 
advantages including easier modeling, increased code reuse, higher system quality and easier 
maintenance. It is well understood that analysis and design are extremely critical aspects of successful 
systems development especially in the case of OOSD. As the development of any successful 
information system must begin with a well-conceived and implemented analysis and design, this study 
will focus on the most recent empirical evidence on the pros and cons of OOAD. 
 
Key words: Object Management Group (OMG), Extended Entity-Relationship (EER), Object 

Modeling Technique (OMT), Jackson Systems Development (JSD), methodology, fault-
proneness, Unified Modeling Language (UML) 

 
INTRODUCTION 

 
 The developments of object-oriented systems 
became possible with the proliferation of object-based 
and object oriented programming languages in the early 
1980s. As is often the case, programming languages are 
developed long before the theory of how to use them 
effectively and efficiently. While small systems may be 
developed successfully without the aid of a formal 
system of analysis and design, larger industrial strength 
(Smeda et al., 2005) projects require a more systematic 
approach. OOD methods emerged in the mid-1980s and 
OOA methods in the late 1980s. An OOAD 
methodology consists of processes (methods describing 
“how to”), techniques (formalisms, models, notation) 
and, possibly, tools (e.g., CASE). Some of the more 
significant published methods of OOAD include those 
of Booch (1993) (Wirfs-Brock and Johnson, 1990; 
Briand et al., 1999), Rumbaugh et al., 1999; Shlaer, 

1988, Pancake, 1995) (Coleman, 1994). (Briand et al., 
2000; Aleksy et al., 2006; Jacobson et al., 1999; Mehta 
and Muttoo, 2006). In fact, the number of OOAD 
methods exploded from fewer than ten to more than 50 
between 1989 and 1994. The field of OOAD has made 
particularly important strides in just the past few years 
with the development of the Unified Modeling 
Language (UML), the current standard graphical 
language for OO analysis and design. UML started as a 
unification of the Booch and OMT methods at Rational 
Corporation in 1994 and incorporated OOSE by 1996. 
The Object Management Group (OMG) accepted UML 
as a standard modeling language in November 1997 
after widespread contribution from industry.  
 

MATERIALS AND METHODS 
 
 OOA is the process of converting the real-world 
problem into a model using objects and classes as the 



J. Computer Sci., 7 (2): 143-147, 2011 
 

144 

modeling constructs (Srivastava and Sabharwal, 2006). 
The objects identified from OOA are called semantic 
objects since they have meaning in the problem 
domain. An OOA model should ideally be 
understandable by application experts who are not 
programmers. OOD is the process of converting the 
problem model (from OOA) into a solution model 
based on objects. During OOD, new objects, not found 
in the OOA models, are added for implementation 
purposes. The implementation details of semantic 
objects are also added (short of writing actual code in 
the target OOPL). OOD can be executed at different 
levels such as class design, system design and program 
design. According to Booch OOD “encompasses the 
process of object-oriented decomposition and a notation 
for depicting both logical and physical as well as static 
and dynamic models of the system under design”. Thus, 
OOD produces models of the proposed information 
system (the solution) rather than models of the real-
world system (the problem).  
 
Empirical studies in OOAD: 
Early studies on OOAD: Many early studies of 
OOAD (1992-1996) made direct comparisons between 
OO and conventional methods. Boehm-Davis and Ross 
(1992) compared the quality of designs and solutions 
for various projects using three different types of 
systems development methodologies: procedural, data-
oriented Jackson Systems Development (JSD) and 
object-oriented.  
 Vessey and Conger also compared the same three 
types of analysis methods: process-oriented (structured) 
data-oriented (Jackson System Development) and 
object-oriented. A total of six software engineering 
students, inexperienced in any analysis method, 
received the same training in all three methods during a 
university course. This study seemingly contradicts the 
finding of (Boehm-Davis and Ross, 1992; Herbsleb et 
al., 1995) and OO is easier to apply. While the methods 
used by developers in the Vessey and Conger study 
were almost identical to those in the Boehm-Davis and 
Ross (1992) study, the former study used students 
instead of experienced developers and used a much 
smaller sample size (n = 6 Vs. n = 18). Also, the 
students were not randomly assigned to groups.  
 Pennington et al. (1995) performed a protocol 
analysis on a total of ten experienced, professional 
developers. Three were expert procedural developers, 
four were expert OO developers and three were novice 
OO developers (who were, however, expert 
procedural developers). All three groups were given a 
relatively simple swim meet scoring problem and 

asked to create a complete design using their 
respective methods. Completed designs were judged 
in terms of quality while developers were evaluated on 
productivity. The results revealed that the designs of 
the OO experts were more complete but took more 
time compared to the procedural experts. Even though 
they took more time, the OO experts were graded 
more efficient than the procedural experts when 
overall design quality was considered. The study 
concludes that OO designs are of higher quality than 
procedural designs and take less time to complete. 
 Hardgrave and Dalal (1995) performed a lab study 
of 56 advanced undergraduate MIS majors, all enrolled 
in a senior level DBMS course, to compare two 
competing data modeling techniques: the Extended 
Entity-Relationship (EER) model and the Object 
Modeling Technique (OMT) of (Vijay and Manoharan, 
2009) The independent variables were modeling 
technique (OMT or EER) and complexity of the 
resulting model. The results indicated that, for both 
simple and complex systems, OMT models were more 
quickly understood than EER models. However, no 
significant difference was found for the depth of 
understanding and the perceived ease of use of the two 
methods, regardless of task complexity. Thus, OO 
modeling techniques may be more quickly understood, 
but not more completely understood, compared to data-
oriented techniques. One possible shortcoming of this 
study is that it compares object-oriented to data-
oriented modeling techniques. These two methods are 
much more closely related than object oriented and 
process-oriented techniques, so differences in 
understanding or perceived ease of use may be difficult 
to detect and even if detected, less relevant to the 
concerns of many practitioners and researchers.  
 Wang performed an experiment using 32 
undergraduate students with no previous systems 
analysis training or experience. The subjects were 
randomly divided into two groups. One group was 
trained for 5 h on the Data Flow Diagram (DFD) 
method, while the other group was trained for 5 h on an 
object-oriented analysis method. The subjects were then 
presented with a mini-case in management information 
systems analysis. The OO group reported that the OOA 
method was easier to learn and understand. The OOA 
method was also rated superior overall. This study 
confirms the results of several previously cited studies: 
OOA produces higher quality models more quickly 
than procedural analysis.  
 In a separate study, Wang again compared a 
structured method of analysis (DFD) with Object-
Oriented Analysis (OOA) using two groups of 
inexperienced undergraduate MIS majors. Students 
were randomly assigned to two groups, in the DFD 



J. Computer Sci., 7 (2): 143-147, 2011 
 

145 

group and 20 in the OOA group. Each participant 
learned his respective analysis method and created 
analysis diagrams based on information in a mini-case 
study. The total time allowed for training and problem 
solving was 7.5 h spanning several class sessions. The 
two dependent variables were the syntactic and 
semantic accuracy (in conveying system requirements) 
of the resulting analysis diagrams. Using ANOVA 
techniques, the results indicated that the syntactic 
accuracy for the DFD group was significantly greater in 
the early sessions, but that syntactic accuracy for the 
OOA group was significantly greater in the last session. 
However, there was no significant difference in 
semantic accuracy for the DFD and the OOA groups. 
Apparently contradicting the results of this researcher's 
previous study, this experiment concludes that OOA 
appears more difficult to learn than DFD and that OOA 
does not produce solutions of higher quality.  
 Another important benefit claimed for OOAD is 
improved communication among development team 
members, as well as between users and developers 
(Garceau et al., 1993). In this research, several field 
studies were conducted using developers’ timesheets, 
videotapes of meetings on design activities and semi-
structured interviews with developers. Results 
indicated that when OOD methods are used, fewer 
spontaneous episodes of clarification occur. Also, 
planned summaries and walkthroughs occur much 
more often when using OOD. More attention was 
given to the reasons for specific design choices for the 
OO projects. OOD seems to encourage a deeper 
inquiry into the reasons underlying design decisions 
but less inquiry into the requirements. The increased 
number of planned summaries and walk-through could 
result if developers perceive a lack of understanding 
among peers. Thus, the study may indicate that OOD 
decreases one form of communication and increases 
another simply because it is new or more difficult to 
understand, not because it is easier or more natural. 
 Supporters of OOAD claim that thinking in terms of 
interacting objects rather than in terms of functions or 
procedures should be more natural to humans Davies, 
Gilmore and Green (Lin, 2007) set out to test the claim 
that OO decomposition of the problem domain is more 
natural to the ways of human cognition than functional 
decomposition. The results showed that expert subjects 
seemed to focus more on the functional properties of the 
code while the novice subjects tended to classify the code 
fragments according to important features of the OO 
paradigm (class membership, object similarity, or 
inheritance relations). According to them, the “results 
appear to suggest fairly clearly that functional 
information is of much greater importance to experts 
than is information about objects and their relations” (p. 

242). The implication is that OO decomposition is not 
more natural for expert developers, as was expected by 
the researchers. Of course, an alternative explanation is 
that experts are simply more experienced with functional 
decomposition and tended to see the code fragments in 
that way.  
 Agarwal et al. (1996) performed a thorough 
experiment comparing the ability of novice analysts to 
correctly perform a requirements analysis using either a 
Process-Oriented (PO) or an Object-Oriented (OO) 
analysis methodology. A total of 43 undergraduate 
students (with no prior training or experience in any 
type of systems analysis) were randomly divided into 
two groups: a PO group (n = 24) and an OO group (n = 
19). Each group was trained 6 h in its respective 
analysis methodology -the (DeMarco, 1979; Coleman, 
1994) method for the PO group and the (Coad and 
Yourdon, 1991; Gao et al., 2004) method for the OO 
group. Individuals in each group were then presented 
with two problems to analyze - one problem was clearly 
more function strong (PO) while the other was more 
structure-strong (OO). The researchers found that the 
PO group had significantly better overall performance 
than the OO group on the PO task, but that there was no 
difference in overall performance between the two 
groups on the OO task. The researchers concluded that 
PO methodologies should be easier for novices to learn 
than OO methodologies, possibly because people may 
have a greater tendency to reason procedurally.  
 
More recent studies on OOAD: During the past few 
years (1996-2001), empirical studies of OOAD have 
shifted their focus from direct comparisons of OO and 
conventional methods to an exploration of the 
characteristics of OOAD that contribute to the quality 
of completed OO systems. This shift is likely due to the 
increased overall acceptance of OOSD, leading 
researchers away from comparisons to traditional methods.  
 Ishrat et al. (2010) discovered that the frequency of 
method invocations and the depth of inheritance 
hierarchies are the major determinants of fault-
proneness (Ishrat et al., 2010) of resulting software 
classes. Existing measures of coupling (classes using 
methods or attributes in other classes), cohesion 
(methods within a classes using common attributes of 
the class) and inheritance (classes deriving methods 
from ancestor classes) defined at the class level were 
used as independent variables to predict the probability 
of fault-proneness in class code. Univariate analysis 
revealed that increased levels of coupling and 
inheritance have a significant impact on fault-proneness 
of classes while cohesion does not. Multivariate 
analysis showed that models involving coupling and 
inheritance measures could be developed to 



J. Computer Sci., 7 (2): 143-147, 2011 
 

146 

automatically detect faulty classes with an accuracy rate 
approaching 90%.  
 A similar study by (Xu et al., 2008) focused only 
on those metrics that are available at the design stage. 
The measures involved two characteristics of OO 
design classes, coupling and inheritance (briefly 
explained above). The applications involved in the 
study were two consecutive releases of a commercial 
word processing program written in Java. Data were 
collected on faults reported by users of both versions so 
that classes could be identified as either faulty or not. 
Design metrics were applied to all classes in both 
versions to find the relationships between measures of 
coupling and inheritance and fault-proneness of the 
classes (Xu et al., 2008).  
 A study by L. F. Capretz, 2004 (Pennington et al., 
1995) took a different approach to investigating 
characteristics of OO designs, specifically design 
documents utilizing UML. The independent variable in 
this study is the type of reading technique used by 
individuals to detect defects in UML design documents 
for OO systems. The idea is for knowledgeable 
individuals to read design documents to detect defects 
prior to implementation of the designs. Results indicate 
that PBR is much more effective and efficient for UML 
documents of OO systems than CBR. This study 
contrasts a manual, human approach to defect detection 
at an early stage of design to an automated approach 
using metrics at a late stage of design.  
 

RESULTS AND DISCUSSION 
 
 A total of 12 empirical studies representing some 
of the best available in the field of OOAD have been 
presented. In nearly every instance where studies were 
favorable to OOAD, higher quality and productivity 
were cited as primary benefits. On the other hand, 
nearly every negative result focused on the difficulty of 
learning OOAD or the inherent complexity of OO 
designs. These results are consistent with the anecdotal 
OO literature. In any event, the results suggest that 
while OOAD may be somewhat more difficult to learn 
than conventional methods, the effort spent in education 
and training may ultimately pay off in increased quality 
and productivity. Some studies discussed above present 
mixed results on other important OOAD issues. For 
example, the OO paradigm was found to be more 
natural for developers (Vijay and Manoharan, 2009) 
although the logical derivation of this conclusion from 
the data is highly suspect.  
 The conclusion that OOAD enhances 
communication (Muruganantham et al., 2010) may 
actually highlight a potential disadvantage of OOAD, 

i.e., the OOSD may be more confusing, thus causing an 
increased level of communication. Nearly all studies 
where only negative results were obtained stemmed 
from the use of inexperienced students as subjects. This 
suggests that learning can play a tremendous role in the 
effectiveness of OOAD. Students given only a few 
hours or weeks of training in OOAD should not be 
expected to perform OO tasks particularly well, 
especially given that OOAD may be somewhat difficult 
to learn. The conventional wisdom is that proficiency in 
OOAD may require six to 18 months of fulltime 
experience (Capretz, 2004). Thus, many of the negative 
results could be attributed to the types of subjects 
chosen and the amount of training provided.  
 

CONCLUSION 
 
 Generally, studies often use inexperienced students 
as subjects. Such practices may be acceptable when the 
purpose of the research is to explore the difficulty of 
learning OOAD, but not when research questions focus 
on the quality and productivity of models or completed 
systems. Also, the question of learning OOAD may be 
even more critical to experienced procedural developers 
who may be forced by management to make the 
transition to OO, but no studies were found that 
specifically address this group. Another potential 
problem exists with studies that attempt to quickly train 
novice students in OOAD. Instructors at universities 
where such studies are conducted are likely to be 
significantly less experienced in the new OO 
methodologies than the more established procedural 
methodologies. This condition could result in less than 
optimum conditions for effectively and efficiently 
transferring complex OO knowledge, making it even 
more difficult for students to adequately learn OO. An 
ideal situation would be to collect detailed data on 
experienced individual developers or development 
teams who create identical complete real-world systems 
(perhaps of varying complexity) using both 
conventional and OO methods. Regardless of the 
particular research question involved, better 
experimental designs with tighter controls and larger 
samples could enhance validity. The obvious dilemma 
in this type of research is obtaining the cooperation of 
sufficiently large numbers of qualified subjects for 
laboratory or field studies. However, without adequate 
experimental designs, a quick resolution to the OO 
controversy will remain elusive.  
 

REFERENCES 
 
Agarwal, R., A.P. Sinha and M. Tanniru, 1996. 

Cognitive fit in requirements modeling: A study of 
object and process methodologies. J. Manage. 
Inform. Syst., 13: 137-162.  



J. Computer Sci., 7 (2): 143-147, 2011 
 

147 

Aleksy, M., L. Köblitz and M. Schader, 2006. 
MEDiator: A tool for automatic management of 
event domains. J. Comput. Sci., 2: 535-541. DOI: 
10.3844/jcssp.2006.535.541 

Boehm-Davis, D. and L. Ross, 1992. Program design 
methodologies and the software development 
process. Int. J. Man Mach. Stud., 36: 1-19. DOI: 
10.1016/0020-7373(92)90050-U 

Booch, G., 1993. Object-Oriented Analysis and Design 
with Applications, 2nd Edn., Addison-Wesley 
Professional, Boston, ISBN-10: 0805353402, pp: 608. 

Briand,  L.,   E.   Arisholm,   S.    Counsell,  F.  Houdek 
and P. Thevenod-Fosse, 1999. Empirical studies of 
object-oriented artifacts, methods and processes: 
State of the art and future directions. Empirical 
Software Eng., 4: 387-404. DOI: 
10.1023/A:1009825923070 

Briand, L., W. Daly and J. Wust, 2000. Exploring the 
relationship between design measures and software 
quality in object-oriented systems. J. Syst. 
Software, 51: 245-273. DOI: 10.1016/S0164-
1212(99)00102-8 

Coad, P. and E. Yourdon, 1991. Object-oriented 
Analysis. 2nd Edn., University of Minnesota, New 
York, ISBN: 0136299814, pp: 233. 

Coleman, D., 1994. Object-oriented Development: The 
Fusion Method. 1st Edn., The University of 
Michigan, USA., ISBN: 0133388239, pp: 313. 

DeMarco, T., 1979. Structured Analysis and System 
Specification. 1st Edn., The University of 
Michigan, USA., ISBN: 0138543801, pp: 352. 

Gao, Q., L.J. Brown and L.F. Capretz, 2004. Extending 
UML-RT for control system modeling. Am. J. 
Applied Sci., 1: 338-347. DOI: 
10.3844/ajassp.2004.338.347 

Garceau, L., E. Jancura and J. Kneiss, 1993. Object-
oriented analysis and design: A new approach to 
systems development. J. Syst. Manag., 44: 25-33.  

Hardgrave, B. and N. Dalal, 1995. Comparing Object-
oriented and extended-entity-relationship data 
models. J. Database Manag., 6: 15-22.  

Herbsleb, J., H. Klein, G. Olson, H. Brunner and J. 
Olson et al., 1995. Object-oriented analysis and 
design in software project teams. Human Comput. 
Interaction, 10: 249-292. DOI: 
10.1207/s15327051hci1002&3_4 

Ishrat, R., R. Parveen and S.I. Ahson, 2010. Pattern 
trees for fault-proneness detection in object-
oriented software. J. Comput. Sci., 6: 1078-1082. 
DOI: 10.3844/jcssp.2010.1078.1082 

Jacobson, I., G. Booch and J. Rumbaugh, 1999. The 
Unified Software Development Process. 1st Edn., 
Dorling Kindersley, India, ISBN: 978-81-7758-
315-1, pp: 512. 

Lin, J., 2007. Mapping UML component specifications 
to jee implementations. J. Comput. Sci., 3: 780-785. 
DOI: 10.3844/jcssp.2007.780.785 

Mehta, B. and S.K. Muttoo, 2006. JBOOM: Java based 
object oriented model of software configuration 
management. J. Comput. Sci., 2: 29-32. DOI: 
10.3844/jcssp.2006.29.32 

Muruganantham, S., P.K. Srivastha and Khanaa, 2010. 
Object based middleware for grid computing. J. 
Comput. Sci., 6: 336-340. DOI: 
10.3844/jcssp.2010.336.340. 

Pancake, C.M., 1995. The promise and the cost of 
object technology: a five-year forecast. Communi. 
ACM, 38: 33-49. DOI: 10.1145/226239.226247 

Pennington, N., A.Y. Lee and B. Rehder, 1995. 
Cognitive activities and levels of abstraction in 
procedural and object-oriented design. Human 
Comput. Interaction, 10: 171-226. DOI: 
10.1207/s15327051hci1002&3_2  

Rumbaugh, J., G. Booch and I. Jacobson, 1999. The 
Unified Modeling Language Reference Manual. 1st 
Edn., Addison-Wesley Professional, Boston, 
ISBN-10: 020130998X, pp: 576. 

Shlaer, S.,1988. Object-Oriented Systems Analysis: 
Modeling the World in Data. 1st Edn., Prentice 
Hall, USA., ISBN-10: 013629023X, pp: 144. 

Smeda, A., T. Khammaci and M. Oussalah, 2005. Meta 
architecting: Toward a new generation of 
architecture description languages. J. Comput. Sci., 
1: 454-460. DOI: 10.3844/jcssp.2005.454.460 

Srivastava, N.P.S. and S. Sabharwal, 2006. The 
classification framework for model transformation. 
J. Comput. Sci., 2: 166-170. DOI: 
10.3844/jcssp.2006.166.170 

Vijay, J.F. and C. Manoharan, 2009. Initial hybrid 
method for analyzing software estimation, 
benchmarking and risk assessment using design of 
software. J. Comput. Sci., 5: 717-724. DOI: 
10.3844/jcssp.2009.717.724 

Xu, J., D. Ho and L.F. Capretz, 2008. An empirical 
validation of object-oriented design metrics for 
fault prediction. J. Comput. Sci., 4: 571-577. DOI: 
10.3844/jcssp.2008.571.577 

Wirfs-Brock, R.J. and R.E. Johnson, 1990. Surveying 
current research in object-oriented design. 
Communi. ACM, 33: 104-124. DOI: 
10.1145/83880.84526 


