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Abstract: Problem statement: As a complex logic system, software may suffer from different source 
of faults. Those faults can be avoided by applying different testing processes. It appears recently that 
the interaction among the system factors represents a common source of faults. Software function 
properly, all input factors and their interactions of the software need to be tested i.e., exhaustive 
testing. Random testing, in another hand, doesn’t guarantee the coverage of all factors interaction. 
Approach: Covering Arrays (CAs) are mathematical objects used as platform or structure to represent 
the interactions of factors for a given system. The uses of CAs become important to reduce the test 
cases by covering all t-interactions of the system factors at least one time. Results: This study focuses 
exclusively on the applications of the CAs in software interaction testing. We provide an overview of 
CAs notations, types and construction methods. Conclusion: We reviewed the recent applications of 
CAs to software testing and discuss the future possible directions of the research. The research in this 
area seems to be an active research direction for the coming years. 
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INTRODUCTION 
 
 Nowadays, our dependencies on software are 
straightforward and increasing, as many kinds of 
software have become a part of our daily lives. Unlike 
the old days, the development lifecycle of these 
software systems passes through several stages and 
comprehends different activities that need to harmonize 
carefully to meet the required user’s specifications. 
Generally, those activities can be classified as two 
important activities, which are: activities to construct 
the software product and activities to check the quality 
of the produced software (Baresi and Pezze, 2006). 
 Although the construction of the product is 
important, however, checking the quality, which called 
the “quality process”, represents the most important part 
of the software development lifecycle as it is spans 
through the whole cycle. The quality process gained 
importance because each development stage may suffer 
from different errors and faults, which must be detected 
as early as possible in order to prevent its 
propagation in the whole software and reduce the cost of 
verification. To regulate and show knowledge of the 
quality process, different levels of testing are used by 
the quality engineers during the software development 
lifecycle. This testing process helps to provide a realistic 
and practical way to analyze and understand the 

behavior of the produced software under test and to 
manage or mitigate the faults, risk and failure of the 
system (Agarwal et al., 2010). This can be tiresome, as 
when a computer game doesn’t work properly, or it can 
be disastrous, resulting in the loss of life. 
 Unexpected Interactions among software system 
components represent a common source of software 
fault (Williams and Probert, 2001; Zamli and Isa, 2008). 
This risk is increasing when the numbers of software 
components are increased tremendously. To reduce this 
risk and ensure the quality of such software, the 
manufacture may need to test all the interaction among 
the components. For example, a complex software 
system with P components, each of which having two 
values, the manufacture needs 2P test cases to test the 
software exhaustively. This in turn infeasible in practice 
due to different factors, including time, cost and 
resource constrains (Cohen et al., 2007; Williams and 
Probert, 2002). To this end, it is desirable to have a 
subset of all possible test interactions that have a high 
potential to uncover faults. Covering Arrays (CAs) 
recently appeared as an alternative to exhaustive testing 
by representing all the interactions of the components in 
a minimized array, which can be used as a test suite. In 
fact, by using this effective property of CAs, several 
applications in different areas of research have been 
introduced in the literature not only in software testing. 
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However, in this study, we address the use of CAs in 
software testing exclusively because it is the wider 
research area in this direction. 
 The rest of this study is organized as follows. We 
give the definitions and mathematical notation first. 
Then we discuss the methods used in literature to 
construct the CAs. In addition, we declare the recent 
use of CAs in different software testing applications. 
Finally, we discuss the possible future directions of the 
research then we present the conclusions of the study. 
  
Definitions and Preliminaries: Consider a software 
system with P parameters (components or factors), 
where P = {P1, P2, ….. Pj}. Each parameter Pj can take 
one of the possible values of V, where V= {v1, v2, ….. , 
vi}. To test such a system, test cases could be 
constructed by assigning values to parameters then 
apply on the system. For example, the test case [v(1,1), 
v(1,2), v(2,3)], considers three parameters of the system 
(P1, P2, P3), by taking the first value v1 of the first 
parameter, the first value v1 for the second parameter  
and the second value v2 for the third parameter.  
 An interaction “I” of the parameters is a set of 
values assigned to distinct parameters, considering the 
strength of interaction (t) among the parameters’ values. 
We say that I=t-way if all the t-interactions of the 
parameters’ values are taken. For example, if the system 
consists of three parameters P1, P2 and P3, then the 2-
way interaction (or pairwise) of the parameters is the 
representative values of {(P1.P2), (P1,P3), (P2,P3)}. To 
represent these interactions systematically, Orthogonal 
Array is introduced in an early stage. 
 
Definition 1: An Orthogonal Array, denoted by OAλ 
(N; t, p, v), is an array of size N and p components on 
v values and strength t, in which for every N×t sub-
array, the t-interaction elements occur exactly λ times, 
where λ=N/vt (Ronneseth and Colbourn, 2009; Cheng, 
1980; Beizer, 1990). 
 OA is often too restrictive because it requires the 
parameters’ values to be uniform. In other words, it is 
required the same number of vi for all the Pj parameters, 
to occur in the OA exactly one time, which is difficult 
when the parameters are growing. In addition, most of 
the time in practice, the values of the parameters are not 
uniform. To overcome these limitations, the covering 
array is emerged. 
 
Definition 2: A Covering Array, denoted by CAλ 
(N;t,p,v), represents an array of size N on v values, 
such that every N×t sub-array contains all ordered 
subsets from the v values of size t at least λ times  and 
p is the number of components (Colbourn, 2008; 
Yilmaz et al., 2004a). 

 
 (a) (b) 
  
Fig. 1: The Representation of CA and MCA 
 
 Based on the CA construction, each column j 
(corresponding to a parameter P), contain all values of 
the corresponding parameters and every possible t-way 
interaction of the parameters’ values is covered at least 
one time by a row. Hence, λ=1 and the notation becomes 
CA (N;t,k,v), because it is normally sufficient for each t-
interaction to occur once in the CA. Figure 1a represents 
a CA with the notation CA (9; 3, 24) of size nine (i.e. 
nine rows) for a system with four parameters, each of 
which having two values. 
 Similar to the OA, in the CA all the parameters 
contain the same number of values, but the t-interactions 
in CA can occur more than one time. However, when 
the number of parameters’ values varies, this can be 
handled by Mixed Covering Array (MCA), denoted by 
MCA (N;t,p,(v1,v2,…vp)) (Colbourn et al., 2006). The 
notation can also be represented by MCA (N;t,p,vk). 
Figure 1b represents a MCA with the notation MCA (12; 
3, 23 31) of size 12 for a four parameters system, with a 
combination of four parameters having three values and 
five parameters having four values, to cover the four-way 
interactions. Building from CA and MCA notations, the 
variable-strength Covering Array is emerged.  
 
Definition 3: A Variable-strength Covering Array, 
denoted by VSCA (N; t,p, (v1, v2, …, vp) , C) represents 
an N×p mixed level covering array of strength t 
containing C, a vector of covering arrays  and a subset 
of the p columns each of strength >t (Yilmaz et al., 
2004b; Cohen, 2004). 
 Throughout this study, we use the term “main-
strength” to describe the strength of VSCA and “sub-
strength” to describe the strength of C. Here for 
example, VSCA (12; 2, 23 32, {CA (3, 2231)}) represents 
a test suite of size 12 for a system of pair-wise 
interactions of five parameters in the main configuration 
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with a combination of three parameters having two 
values and two parameters having three values. In 
addition, a strength three sub-configuration of three 
parameters is available, with a combination of one 
parameter having three values and two parameters 
having two values. 
 As noted, despite the existence of MCA and VSCA 
in different constructions from the CA, but both are 
based on the CA. Hence, throughout this study, we refer 
to them as “CAs”, unless there is a need to mention 
about a specific type of them. 
 
CAs construction methods: As the CAs are used in 
testing processes, the first point to be considered in any 
construction method is the size minimization. It is 
desirable for any construction method to construct CAs 
to cover all the required t-interactions with a minimum 
number of rows. However, mathematically, the 
construction of optimum CAs is an NP-complete 
problem. Hence, it is difficult to find a unified 
construction method to construct optimum CAs all the 
time (Lei and Tai, 1998). Therefore, it is normal to 
find a method that can achieve minimum CAs sizes 
for some interactions, parameters, or values, while it 
cannot achieve that for others. To this end, it has been 
appeared that it is desirable for a method to construct 
minimum sizes with reasonable time in most cases. 
This in turn leads to the developments of different 
methods for construction.  
 Generally, CAs are constructed computationally to 
ensure minimization in terms of size and time. Mostly, 
the construction methods are called strategies because 
they are combination of different algorithms. We can 
classify the developed strategies under two general 
categories: (a) one-parameter-at-a-time strategies and 
(b) one-row-at-a-time strategies (Grindal et al., 2005). In 
case of one-parameter-at-a-time, the strategy constructs 
the array by adding one parameter’s value to the array 
and check for the coverage of t-interactions “greedily”. 
The greedy algorithm chooses the parameters’ values 
that can cover more t-interactions. In-Parameter-Order-
General (IPOG) (Lei et al., 2007) and its improvements, 
IPO-s (Calvagna and Gargantini, 2009), IPOG-F and 
IPOG-D (Lei et al., 2008) are the most recent strategies 
that adopt this construction method. Recently, Klaib et 
al. (2010) also proposed a tree based strategy for one-
parameter-at-a-time test generation method.   
 Whereas, in case of one-row-at-a-time, in addition 
of using the greedy algorithm the strategy constructs one 
row and check for its coverage. The rows that are cover 
more t-interactions are chosen to form the final array. 
The Automatic Efficient Test Generator (AETG) 
(Cohen et al., 1997), mAETG (Cohen, 2004), Pairwise 
Independent Combinatorial Testing (PICT) (Czerwonka, 

2006), Deterministic Density Algorithm (DDA) (Bryce 
and Colbourn, 2007; 2009), Classification-Tree Editor 
eXtended Logics (CTE-XL) (Lehmann and Wegener, 
2000; Yu et al., 2003), Test Vector Generator (TVG) 
(Tung and Aldiwan, 2000)  and Jenkins (2010) represent 
the most well-known strategies using this construction 
method.  
 Recently, the construction of CAs viewed as an 
optimization problem. As part of one-row-at-a-time 
construction method, meta-heuristics are used to achieve 
optimum number of rows. Different optimization 
methods are used in strategies for construction. From 
the published results, it has been appeared that these 
strategies can achieve better sizes in most cases but 
with longer construction time than other strategies 
(Afzal et al., 2009). So far, Simulated Annealing (SA) 
(Cohen, 2004; Stardom, 2001), Genetic Algorithm 
(GA) (Shiba et al., 2004), Ant Colony Algorithm 
(ACA) (Shiba et al., 2004) and Tabu Search (TS) 
(Nurmela, 2004), have been successfully implemented 
for small-scale interaction strength. We have also 
implemented Particle Swarm Optimization recently in 
a strategy named Particle Swarm Test Generator 
(PSTG) (Ahmed and Zamli, 2010).  
 Most of the strategies support the construction of 
CA and MCA. However, few strategies support the 
construction of VSCA. A number of the aforementioned 
strategies have started to support VSCA construction 
(e.g., PICT, IPOG, TVG, CTE-XL and SA). In addition 
to these strategies, a number of new strategies emerged 
to particularly construct VSCA using the published 
techniques. Wang et al. (2008) adopted the DDA 
algorithm for a strategy called Density to construct 
VSCA. Wang et al. (2008) also adopted the IPOG 
algorithm for a strategy called ParaOrder. Moreover, 
Chen et al. (2009) adopt the ACA algorithm for a 
strategy called Ant Colony System (ACS) to construct 
VSCA. Compared with CA and MCA, VSCA covers 
more t-interactions because of the sub-strength used in 
addition to the main-strength. Hence, the time of 
construction normally is more than CA and MCA in all 
the strategies. However, here also those strategies used 
meta-heuristics achieved better sizes most of the times 
(Afzal et al., 2009).  
 
Applications: CAs have been used recently in different 
areas of research. In addition to its use in software 
testing, it has been used in hardware testing (Borodai 
and Grunskii, 1992), gene expression regulation (Shasha 
et al., 2001), advance material testing (Cawse, 2003), 
performance evaluation of communication systems 
(Hoskins et al., 2005) and many other research areas. 
Each area contains different applications. Software 
testing represents the wider area of research for CAs 
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application. The aim of using CAs in the form of 
interaction testing is to find faults in the application 
under test. Here, we review four main areas, which 
are: components interaction testing, GUI interaction 
testing, test case prioritization and regression testing 
as well as fault characterization. 
 
Components interaction testing: In the old days, the 
trend by the software industries was to produce small 
software to achieve a specific aim. Nowadays, this 
phenomenon has been changed. The trend now is to 
produce software systems, in which they consist of 
individual programs working on individual components 
and connect these components together to collaborate. 
This collaboration leads to achieve a unified software 
system to serve different needs by the users, for example 
communications systems, storage systems, or e-
commerce systems. Testing the components and 
programs of these systems individually is desirable and 
may leads to find different faults. However, it has been 
appeared that a common source of fault in the whole 
system comes from the unexpected interaction among 
the individual components of the system itself (Williams 
and Probert, 2001). As an example, we consider a 
software system based on the Internet in Table 1. 
 The system in Table 1 contains four components or 
parameters. The system may use different payment 
server, web server, user browser and business database. 
In order to test the system, it is required to test all the 
combinations or interactions among the components, but 
the tester may need 24 test cases for test. For this system, 
this number of test cases seems to be reasonable. 
However, if we have similar system but with 8 
components, each of which having 4 variables, the test 
may need to test 48 =65,536 test cases, which seems to 
be infeasible for testing, due to time, cost  and resources 
limitations. Using CA with 2-way, 3-way or above 
interaction seems to be a compromise method to 
guarantee the coverage of all interactions possibilities 
with minimum number of test cases. For example, all 
the 2-way interactions of the components for the system 
in Table 1 can be represented by a CA with size six as in 
Table 2. In additions, the 2-way interaction for the 
example 48 can be covered by a CA with size 27.  
 Different research proposed this solution. Williams 
and Probert (2001) proposed this solution formally and 
studied the coverage of interactions for a particular 
interaction strength. In another research (Williams and 
Probert, 1996), they proposed this solution for testing 
network interface using 2-way interaction. Although 
these researches proposed this solution, it was not 
applied practically on a real software system.  

Table 1: A software system based on internet 
Payment server Web server User browser Business database 
Master card iPlanet Chrome SQL 
Visa card Apache Mozilla Oracle 

 
Table 2: 2-way Interaction for the System in Table 1 
Payment server Web server User browser Business database 
Master card iPlanet Mozilla SQL 
Visa card Apache Chrome Oracle 
Master card iplanet chrome oracle 
Visa card Apache Mozilla SQL 
Visa card iPlanet Mozilla Oracle 
Master card Apache Chrome SQL 

 
 Hoskins et al. (2005) applied CAs on a four 
categorical factors software system. The aim was to use 
CAs to measure the effect of type of database 
management system, platform, programmatic interface  
and type of indexing on the cache hit rate, number of 
page outs per second  and number of physical reads per 
second. The results were compared with full factorial 
data and D-optimal designs construction. From the 
achieved results, CAs outperforms D-optimal designs 
and exhibit lower variance. The results support the 
contention that a CA whose strength is one less than the 
number of factors can be expected to outperform D-
optimal designs. 
 
GUI interaction testing: Graphical User Interface 
(GUI) has become practically the means of user 
interaction with any software. GUI testing is a process of 
software testing to test the GUI of software to ensure that 
it meets the required user specification (Memon, 2002). 
Most of the techniques used for GUI testing are 
incomplete and used ad hoc or manual testing. However, 
to formalize these kind of testing, recently, there are 
three main directions of research, which are using finite 
state machines (Robinson and White, 2008), pre and 
post-conditions (Li et al., 2007) and directed graph 
models (Memon and Xie, 2005) techniques. CAs have 
been used with graph models to effectively test GUI. 
 Graph models used the Event-Flow Graph (EFG) 
to model all possible event sequences that may be 
executed on a GUI (Huang et al., 2010). In such a 
model, each event in the GUI is represented by a node 
N and the relationship among the events is represented 
by an edge. For example, the GUI in Fig. 2a has four 
events, which are: File, New, Open and Save; whereas, 
Fig. 2b is the representation of the GUI in node and edge 
form. For two nodes GUI nx and ny, the edge from nx to 
ny means that, along some execution path the event 
represented by ny may be performed immediately after 
the event represented by nx (Huang et al., 2010). This 
relationship is called follows. Hence the directed edges in 
the EFG are represented by a set E of ordered pairs (ex, 
ey), where {ex, ey} ⊆ N and (ex, ey) ∈ E if ey follows ex. 
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  (a) (b) 
 
Fig. 2: A simple GUI example to represent the EFG 
 

 
 

Fig. 3: The representation of EIG model 
 

 
 

Fig. 4: Illustration of the GUI Constraints 
 
 To achieve more compact and efficient GUI model, 
Event-Interaction Graph (EIG) is emerged (Xie and 
Memon, 2008). In this model, the events to open or 
close menus, or open windows are not considered. 
Hence, menu-opening “File” event for the GUI in Fig. 
2a is neglected. To generate the EIG model from the 
EFG model in Fig. 2b it is required first to delete the 
“File” event because it is a menu-open event, then for 
all remaining events, the even after “File” is replaced 
by the “File” in the edge. In other words, each edge 
(ex,File) is replaced with the edge (ex, ey) for each 
occurrence of edge (File, ey)  and for all ey, delete all 
edges (File, ey). Figure 3 represents the EIG model for 
the GUI in Fig. 2a. 

 To derive test cases for the EIG model, a common 
technique is to derive a test case for each EIG edge, 
which is called “smoke test” (Memon and Xie, 2005; 
Yuan et al., 2010). For example, (Open,New), 
(Open,Save)  and (New,Save) represent three smoke 
test cases with strength 2 for the EIG in Fig. 3. When 
the length of the sequence grows, the numbers of smoke 
test cases will grow exponentially exactly like 
components interaction testing. Here CAs come to face 
to reduce these smoke test cases systematically. For 
example, if we have five locations in the GUI each of 
them has three events; we need 35 or 243 test cases to 
test the GUI exhaustively. However, using the CAs 
properties, we can systematically sample those events. 
Using 2-way interaction, for example, we can test by 
only 11 test cases and the notation will be 
CA(11;2,5,3).  
 To derive the events in any GUI, normally GUI 
Ripper is used. The use of GUI ripper helps to traverse 
a GUI under test automatically and extracts the events 
(Huang et al., 2010). The problem with this ripping 
process is that some parts of the retrieved information 
may be incomplete or incorrect, which leads to 
introduce some constraints (Yuan et al., 2010). For 
example, some event needs another event to be 
executed before it is enabled or sometimes two events 
cannot be executed consecutively. As in the case of 
Fig. 4, we cannot run the “Save” event without running 
the “Save As…” event first.  
 Most of the research efforts concentrate on the 
generation of the test cases and how to solve the 
constraint problem. Yuan and Memon (2007) developed 
a new feedback-based technique for GUI testing. The 
technique depends on creating and executing an initial 
seed test suite for the software under test. The EIG 
model of the GUI is used to generate the seed test suite  
and then automatic test case re-player is used to execute 
it. A feedback is used to supplement the test suite when 
it is executing, by generating additional test cases. The 
relationship between pairs of events is identified to 
capture how the events are related to each other (Yuan 
and Memon, 2007). The empirical study reveals to the 
fact that although using this method, there are still 
infeasible test cases cannot be run in the test suite.  
 In another research Memon tried to solve this 
problem by repairing the unusable test cases (Memon, 
2008). The study based on determining the usable and 
unusable test cases automatically from the test suite 
then determine the unusable test cases that can be 
repaired so that they can be executed. The repairing 
transformations are used to repair the test cases. 
Although useful and effective, from the results, it has 
been appeared that there are still many kinds of 
constraints that should be solved and dealt with.  
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 Huang et al. (2010) developed a method to 
automatically repair GUI test suites and generating new 
test cases that are feasible. The genetic algorithm is 
used in the research to evolve new test cases to increase 
the test suite’s coverage. The algorithm produces 
effective results for different types of constraints. The 
research showed that the genetic algorithm outperforms 
the random algorithm and trying to achieve the same 
goal in almost all cases. 
 More recently Yuan et al. (2010) used the 
aforementioned researches to define new criteria for 
GUI testing grounded in CAs in more detail. The 
research incorporated “context” into the criteria in 
terms of event combinations, sequence length and by 
including all possible positions for each event. The 
criteria are based on both the efficiency (measured by 
the size of the test suite) and the effectiveness (the 
ability of the test suites to detect faults). The study 
conducts more empirical studies than before using eight 
applications. The results of those studies showed that 
increasing the interaction strength t and by controlling 
the relative positions of events, large number of faults 
can be detected compared with earlier techniques. 
  
Test case prioritization and regression testing: 
Regression testing is a type of software testing aims to 
find uncovered new errors after changes have been 
made to the software (Gu et al., 2010). This testing 
process is based on the fact that as the software is 
upgraded or developed, the occurrence of similar faults 
is frequent. This in turn leads to keep those test cases 
that detected faults in earlier version of the software to 
re-executing them after developing a new version of the 
same software. Using this method for testing helps to 
verify that the changes of specific software have not 
caused the software inadvertent side-effects and the 
software still meets its requirements (Rothermel and 
Harrold, 1996). 
 Test case prioritization techniques, in another hand, 
aimed to increase the effectiveness of test cases by 
scheduling them for execution to increase the rate of 
fault detection (Rothermel et al., 2001). This in turn 
gives the estimation of how quickly faults are detected 
in the testing process. Detecting the faults earlier during 
the testing process provide faster feedback for the tester 
and let him to begin correcting defects earlier than 
might otherwise be possible (Rothermel et al., 2001).  
 Most of the time, prioritization techniques are 
associated with regression testing as the information 
from previous execution of test cases can be used for 
the ordering and sequencing processes (Rothermel et 
al., 2001). Both of regression and prioritization are 
dependent on the test suite selected for the process, 

especially the initial test suite (Qu et al., 2007). CAs 
have been used with this kind of testing effectively 
because of optimized size. By using the generated CAs 
as test suites, first, an extensive prioritization has been 
applied to the test suite and then it is applied for the 
regression testing. 
 There are few researches introduced the 
prioritization with CAs. Bryce and Colbourn (2006) 
present an algorithm for prioritizing the test suites that 
based on CAs. Although the research showed 
impressive results for prioritization using interaction 
coverage; however, the algorithm is not applied on real 
software to illustrate its effectiveness. Qu et al. (2007) 
used multiple versions of two software subjects to 
examine the application and effectiveness of CAs for 
finding faults with regression testing. Before applying 
the test suites on the two subject software, the suites 
have been prioritized. Several different algorithms and 
methods used to control the prioritization. During the 
empirical study, the interactions used are between t =2 
and 5. The results of the empirical study showed that 
the CAs are effective to reduce the test space and find 
the faults. Using prioritization with CAs improves the 
ability to detect faults early in certain subjects. The 
results showed also that for the first subject software, 
most of the faults are covered by t=3; however, for the 
second subject software, most of the faults covered 
when t=5.  
 Later on, Qu et al. (2008) applied the prioritization 
in regression testing with additional subjects. The 
research study several versions of an open source text 
editor. The results showed that using prioritization with 
CAs can impact the fault finding ability of regression 
test suites by as much as 70%. 
 
Fault characterization: Fault characterization 
(sometimes called failure diagnosis), is a mechanism or 
method used to find and locate faults in given software. 
With the increase of software complexity, some kinds of 
faults appeared that could not diagnose by the traditional 
methods. This is happened frequently when the system 
configuration spaces are large and resources are limited. 
For example, some systems like “Apache”, can have 
hundreds of options that could not be tested extensively 
because of the large software configuration space and 
thus leads to the inability of characterizing some faults.  
 Fault characterization helps to identify the cause 
of a specific fault and save a great time by fixing the 
fault quickly. In other words, fault characterization 
process helps to determine which specific 
configuration or setting of the system causing a 
specific failure (Yilmaz et al., 2004a).  
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 Yilmaz et al. (2004b) developed a distributed 
continuous quality assurance process framework called 
“Skoll” (Memon et al., 2004). The process is supported 
by tools to leverage the widespread computing resources 
of worldwide users automatically. The aim was to 
incrementally, opportunistically  and efficiently improve 
the quality of software. Skoll divided the quality 
assurance process into sub-tasks, then the tasks are 
distributed around the world to different client machines 
using the client-server communication. Each client 
downloads the software under test from a central code 
repository and uses a given configuration to test. To 
complete the overall quality process, the results are 
returned back to a central site that collects results and 
fused together (Yilmaz et al., 2004a). 
 One important implemented task in skoll is the fault 
characterization. This characterization process of faults 
is done by testing different configurations and features 
of the software under test and feed the result of the 
testing to a classification tree analysis. The output of 
this classification tree analysis would be a model to 
describe the options and setting that best forecast 
failure (Yilmaz et al., 2004b). Here, CAs used for 
generating the configurations’ models for skoll. In this 
way, all the combinations of the options and are 
appearing in the provided configurations and will 
greatly reduce the cost of fault characterization, 
without compromising its accuracy.  
 Yilmaz et al. (2004a) evaluated the uniform CA 
with interaction strength between 2 and 6. The results 
showed that even low strength CA can achieve reliable 
fault characterization compared with those achieved by 
exhaustive testing. By increasing the interaction strength 
of CA, the research reported more precise fault 
characterization, but with more test suite sizes. The 
research concludes that the fault characterization could 
be improved in term of accuracy with low cost if the low 
strength CA be used.  
 Yilmaz et al. (2006) extend the above research to 
include more empirical studies. For the first time, the 
research reports the application of VSCA to tests the 
effects of using it practically. The use of VSCA allows 
testing stronger interactions for subspaces where they 
are needed (i.e., in high-risk subspaces) and keeping a 
lower strength of interaction across the entire space 
(Yilmaz et al., 2006). The research reports the same 
finding for the CA as in the case of the original 
research. In addition, the research reported that the use 
of VSCA reduces the cost of the fault characterization 
process without compromising its accuracy. Moreover, 
the research showed that use of VSCA improved that 
accuracy of the fault characterization process with the 
same cost of CA. 

Future research directions: There are many researches 
on CAs. Most of the researches are concentrating on the 
CAs construction methods, algorithms, or strategies. 
The researches for investigating the applications of CAs 
in software testing are still in the beginning. As we can 
see from the aforementioned applications, there are few 
researches dealing with the application of CAs. 
Although all the areas need further investigations and 
assessments, there are new directions that can be 
impressive for applications. Based on that, our 
recommendations to the future research focus could be 
in following two general directions mainly: 
 
• Further assessments to the existing researches: 

although the exiting researches are achieving good 
results, different areas need more assessments and 
improvements. One of those areas is the 
components’ interaction testing. So far, the 
effectiveness of using CAs in this area is not clear. 
Although it is studied theoretically in many 
researches, there is little evidence showing its 
effectiveness. It seems to be encouraging area for 
empirical studies. An interesting direction, for 
example, is the use of CAs in e-commerce software 
systems. It seems to be interesting if a research 
study the effect of the component interactions on 
some performance criteria practically. In addition, 
the application of VSCA is an open research 
direction also. We can note from the study, the 
application of VSCA is not investigated clearly. So 
far, from the literature, there is only one research 
apply and investigate the effectiveness of the VSCA 
practically. This could be also applied with e-
commence systems by taking stronger interaction 
strength among some special related components in 
the system, for example.  

• Discovering new directions of software testing 
applications: CAs could be applied in a different 
way for software testing. There is a need to study 
and investigate new software testing directions 
using CAs. One important direction is to combine 
the CAs features with other software testing 
methods. As we mentioned previously, CAs have 
been used with regression testing and test case 
prioritization. It also could be useful if the CAs 
features are used with fault localization techniques. 
Recently, fault localization has become an active 
research area. So far, the use of CAs not 
investigated with fault localization. Wong et al. 
(2010) investigate a new fault localization method 
using code coverage heuristic. In other recently 
researches, interaction testing using CAs have been 
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effective for improving code coverage using some 
empirical studies (Zamli et al., 2011; Klaib et al., 
2008). This in turn could be an important 
motivation for using CAs with code coverage 
heuristics to improve the fault localization as 
conducted by Wong et al. (2010). 

 
CONCLUSION 

 
 The applications of CAs and interaction testing 
have been an active research area recently. In this 
study, we aimed to demonstrate the CAs and report 
their existing applications to software testing. To 
understand the CAs use in the applications, we first 
illustrate their types, notations and construction 
methods. Then, we reviewed several recent applications 
of CAs to software testing. We briefly mention some of 
those applications and the achieved results to illustrate 
the effectiveness of CAs in those applications. The 
research in this area seems to be an active research 
direction for the coming years. To this end, in this study 
we also give different research directions for the future 
and we also suggest some important ideas for the 
coming researches. 
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