
Journal of Computer Science 7 (9): 1375-1385, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Kamal Z. Zamli, Software Engineering Group, School of Electrical and Electronic Engineering,
University Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia

1375

A Review of Covering Arrays and Their Application to Software Testing

Bestoun S. Ahmed and Kamal Z. Zamli

Software Engineering Group, School of Electrical and Electronic Engineering,
University Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan,

Pulau Pinang, Malaysia

Abstract: Problem statement: As a complex logic system, software may suffer from different source
of faults. Those faults can be avoided by applying different testing processes. It appears recently that
the interaction among the system factors represents a common source of faults. Software function
properly, all input factors and their interactions of the software need to be tested i.e., exhaustive
testing. Random testing, in another hand, doesn’t guarantee the coverage of all factors interaction.
Approach: Covering Arrays (CAs) are mathematical objects used as platform or structure to represent
the interactions of factors for a given system. The uses of CAs become important to reduce the test
cases by covering all t-interactions of the system factors at least one time. Results: This study focuses
exclusively on the applications of the CAs in software interaction testing. We provide an overview of
CAs notations, types and construction methods. Conclusion: We reviewed the recent applications of
CAs to software testing and discuss the future possible directions of the research. The research in this
area seems to be an active research direction for the coming years.

Key words: Covering array, mixed covering array, interaction testing, testing processes, software

testing, software system, parameters’ values, construction methods, meta-heuristics

INTRODUCTION

 Nowadays, our dependencies on software are
straightforward and increasing, as many kinds of
software have become a part of our daily lives. Unlike
the old days, the development lifecycle of these
software systems passes through several stages and
comprehends different activities that need to harmonize
carefully to meet the required user’s specifications.
Generally, those activities can be classified as two
important activities, which are: activities to construct
the software product and activities to check the quality
of the produced software (Baresi and Pezze, 2006).
 Although the construction of the product is
important, however, checking the quality, which called
the “quality process”, represents the most important part
of the software development lifecycle as it is spans
through the whole cycle. The quality process gained
importance because each development stage may suffer
from different errors and faults, which must be detected
as early as possible in order to prevent its
propagation in the whole software and reduce the cost of
verification. To regulate and show knowledge of the
quality process, different levels of testing are used by
the quality engineers during the software development
lifecycle. This testing process helps to provide a realistic
and practical way to analyze and understand the

behavior of the produced software under test and to
manage or mitigate the faults, risk and failure of the
system (Agarwal et al., 2010). This can be tiresome, as
when a computer game doesn’t work properly, or it can
be disastrous, resulting in the loss of life.
 Unexpected Interactions among software system
components represent a common source of software
fault (Williams and Probert, 2001; Zamli and Isa, 2008).
This risk is increasing when the numbers of software
components are increased tremendously. To reduce this
risk and ensure the quality of such software, the
manufacture may need to test all the interaction among
the components. For example, a complex software
system with P components, each of which having two
values, the manufacture needs 2P test cases to test the
software exhaustively. This in turn infeasible in practice
due to different factors, including time, cost and
resource constrains (Cohen et al., 2007; Williams and
Probert, 2002). To this end, it is desirable to have a
subset of all possible test interactions that have a high
potential to uncover faults. Covering Arrays (CAs)
recently appeared as an alternative to exhaustive testing
by representing all the interactions of the components in
a minimized array, which can be used as a test suite. In
fact, by using this effective property of CAs, several
applications in different areas of research have been
introduced in the literature not only in software testing.

J. Computer Sci., 7 (9): 1375-1385, 2011

1376

However, in this study, we address the use of CAs in
software testing exclusively because it is the wider
research area in this direction.
 The rest of this study is organized as follows. We
give the definitions and mathematical notation first.
Then we discuss the methods used in literature to
construct the CAs. In addition, we declare the recent
use of CAs in different software testing applications.
Finally, we discuss the possible future directions of the
research then we present the conclusions of the study.

Definitions and Preliminaries: Consider a software
system with P parameters (components or factors),
where P = {P1, P2, ….. Pj}. Each parameter Pj can take
one of the possible values of V, where V= {v1, v2, ….. ,
vi}. To test such a system, test cases could be
constructed by assigning values to parameters then
apply on the system. For example, the test case [v(1,1),
v(1,2), v(2,3)], considers three parameters of the system
(P1, P2, P3), by taking the first value v1 of the first
parameter, the first value v1 for the second parameter
and the second value v2 for the third parameter.
 An interaction “I” of the parameters is a set of
values assigned to distinct parameters, considering the
strength of interaction (t) among the parameters’ values.
We say that I=t-way if all the t-interactions of the
parameters’ values are taken. For example, if the system
consists of three parameters P1, P2 and P3, then the 2-
way interaction (or pairwise) of the parameters is the
representative values of {(P1.P2), (P1,P3), (P2,P3)}. To
represent these interactions systematically, Orthogonal
Array is introduced in an early stage.

Definition 1: An Orthogonal Array, denoted by OAλ
(N; t, p, v), is an array of size N and p components on
v values and strength t, in which for every N×t sub-
array, the t-interaction elements occur exactly λ times,
where λ=N/vt (Ronneseth and Colbourn, 2009; Cheng,
1980; Beizer, 1990).
 OA is often too restrictive because it requires the
parameters’ values to be uniform. In other words, it is
required the same number of vi for all the Pj parameters,
to occur in the OA exactly one time, which is difficult
when the parameters are growing. In addition, most of
the time in practice, the values of the parameters are not
uniform. To overcome these limitations, the covering
array is emerged.

Definition 2: A Covering Array, denoted by CAλ
(N;t,p,v), represents an array of size N on v values,
such that every N×t sub-array contains all ordered
subsets from the v values of size t at least λ times and
p is the number of components (Colbourn, 2008;
Yilmaz et al., 2004a).

 (a) (b)

Fig. 1: The Representation of CA and MCA

 Based on the CA construction, each column j
(corresponding to a parameter P), contain all values of
the corresponding parameters and every possible t-way
interaction of the parameters’ values is covered at least
one time by a row. Hence, λ=1 and the notation becomes
CA (N;t,k,v), because it is normally sufficient for each t-
interaction to occur once in the CA. Figure 1a represents
a CA with the notation CA (9; 3, 24) of size nine (i.e.
nine rows) for a system with four parameters, each of
which having two values.
 Similar to the OA, in the CA all the parameters
contain the same number of values, but the t-interactions
in CA can occur more than one time. However, when
the number of parameters’ values varies, this can be
handled by Mixed Covering Array (MCA), denoted by
MCA (N;t,p,(v1,v2,…vp)) (Colbourn et al., 2006). The
notation can also be represented by MCA (N;t,p,vk).
Figure 1b represents a MCA with the notation MCA (12;
3, 23 31) of size 12 for a four parameters system, with a
combination of four parameters having three values and
five parameters having four values, to cover the four-way
interactions. Building from CA and MCA notations, the
variable-strength Covering Array is emerged.

Definition 3: A Variable-strength Covering Array,
denoted by VSCA (N; t,p, (v1, v2, …, vp) , C) represents
an N×p mixed level covering array of strength t
containing C, a vector of covering arrays and a subset
of the p columns each of strength >t (Yilmaz et al.,
2004b; Cohen, 2004).
 Throughout this study, we use the term “main-
strength” to describe the strength of VSCA and “sub-
strength” to describe the strength of C. Here for
example, VSCA (12; 2, 23 32, {CA (3, 2231)}) represents
a test suite of size 12 for a system of pair-wise
interactions of five parameters in the main configuration

J. Computer Sci., 7 (9): 1375-1385, 2011

1377

with a combination of three parameters having two
values and two parameters having three values. In
addition, a strength three sub-configuration of three
parameters is available, with a combination of one
parameter having three values and two parameters
having two values.
 As noted, despite the existence of MCA and VSCA
in different constructions from the CA, but both are
based on the CA. Hence, throughout this study, we refer
to them as “CAs”, unless there is a need to mention
about a specific type of them.

CAs construction methods: As the CAs are used in
testing processes, the first point to be considered in any
construction method is the size minimization. It is
desirable for any construction method to construct CAs
to cover all the required t-interactions with a minimum
number of rows. However, mathematically, the
construction of optimum CAs is an NP-complete
problem. Hence, it is difficult to find a unified
construction method to construct optimum CAs all the
time (Lei and Tai, 1998). Therefore, it is normal to
find a method that can achieve minimum CAs sizes
for some interactions, parameters, or values, while it
cannot achieve that for others. To this end, it has been
appeared that it is desirable for a method to construct
minimum sizes with reasonable time in most cases.
This in turn leads to the developments of different
methods for construction.
 Generally, CAs are constructed computationally to
ensure minimization in terms of size and time. Mostly,
the construction methods are called strategies because
they are combination of different algorithms. We can
classify the developed strategies under two general
categories: (a) one-parameter-at-a-time strategies and
(b) one-row-at-a-time strategies (Grindal et al., 2005). In
case of one-parameter-at-a-time, the strategy constructs
the array by adding one parameter’s value to the array
and check for the coverage of t-interactions “greedily”.
The greedy algorithm chooses the parameters’ values
that can cover more t-interactions. In-Parameter-Order-
General (IPOG) (Lei et al., 2007) and its improvements,
IPO-s (Calvagna and Gargantini, 2009), IPOG-F and
IPOG-D (Lei et al., 2008) are the most recent strategies
that adopt this construction method. Recently, Klaib et
al. (2010) also proposed a tree based strategy for one-
parameter-at-a-time test generation method.
 Whereas, in case of one-row-at-a-time, in addition
of using the greedy algorithm the strategy constructs one
row and check for its coverage. The rows that are cover
more t-interactions are chosen to form the final array.
The Automatic Efficient Test Generator (AETG)
(Cohen et al., 1997), mAETG (Cohen, 2004), Pairwise
Independent Combinatorial Testing (PICT) (Czerwonka,

2006), Deterministic Density Algorithm (DDA) (Bryce
and Colbourn, 2007; 2009), Classification-Tree Editor
eXtended Logics (CTE-XL) (Lehmann and Wegener,
2000; Yu et al., 2003), Test Vector Generator (TVG)
(Tung and Aldiwan, 2000) and Jenkins (2010) represent
the most well-known strategies using this construction
method.
 Recently, the construction of CAs viewed as an
optimization problem. As part of one-row-at-a-time
construction method, meta-heuristics are used to achieve
optimum number of rows. Different optimization
methods are used in strategies for construction. From
the published results, it has been appeared that these
strategies can achieve better sizes in most cases but
with longer construction time than other strategies
(Afzal et al., 2009). So far, Simulated Annealing (SA)
(Cohen, 2004; Stardom, 2001), Genetic Algorithm
(GA) (Shiba et al., 2004), Ant Colony Algorithm
(ACA) (Shiba et al., 2004) and Tabu Search (TS)
(Nurmela, 2004), have been successfully implemented
for small-scale interaction strength. We have also
implemented Particle Swarm Optimization recently in
a strategy named Particle Swarm Test Generator
(PSTG) (Ahmed and Zamli, 2010).
 Most of the strategies support the construction of
CA and MCA. However, few strategies support the
construction of VSCA. A number of the aforementioned
strategies have started to support VSCA construction
(e.g., PICT, IPOG, TVG, CTE-XL and SA). In addition
to these strategies, a number of new strategies emerged
to particularly construct VSCA using the published
techniques. Wang et al. (2008) adopted the DDA
algorithm for a strategy called Density to construct
VSCA. Wang et al. (2008) also adopted the IPOG
algorithm for a strategy called ParaOrder. Moreover,
Chen et al. (2009) adopt the ACA algorithm for a
strategy called Ant Colony System (ACS) to construct
VSCA. Compared with CA and MCA, VSCA covers
more t-interactions because of the sub-strength used in
addition to the main-strength. Hence, the time of
construction normally is more than CA and MCA in all
the strategies. However, here also those strategies used
meta-heuristics achieved better sizes most of the times
(Afzal et al., 2009).

Applications: CAs have been used recently in different
areas of research. In addition to its use in software
testing, it has been used in hardware testing (Borodai
and Grunskii, 1992), gene expression regulation (Shasha
et al., 2001), advance material testing (Cawse, 2003),
performance evaluation of communication systems
(Hoskins et al., 2005) and many other research areas.
Each area contains different applications. Software
testing represents the wider area of research for CAs

J. Computer Sci., 7 (9): 1375-1385, 2011

1378

application. The aim of using CAs in the form of
interaction testing is to find faults in the application
under test. Here, we review four main areas, which
are: components interaction testing, GUI interaction
testing, test case prioritization and regression testing
as well as fault characterization.

Components interaction testing: In the old days, the
trend by the software industries was to produce small
software to achieve a specific aim. Nowadays, this
phenomenon has been changed. The trend now is to
produce software systems, in which they consist of
individual programs working on individual components
and connect these components together to collaborate.
This collaboration leads to achieve a unified software
system to serve different needs by the users, for example
communications systems, storage systems, or e-
commerce systems. Testing the components and
programs of these systems individually is desirable and
may leads to find different faults. However, it has been
appeared that a common source of fault in the whole
system comes from the unexpected interaction among
the individual components of the system itself (Williams
and Probert, 2001). As an example, we consider a
software system based on the Internet in Table 1.
 The system in Table 1 contains four components or
parameters. The system may use different payment
server, web server, user browser and business database.
In order to test the system, it is required to test all the
combinations or interactions among the components, but
the tester may need 24 test cases for test. For this system,
this number of test cases seems to be reasonable.
However, if we have similar system but with 8
components, each of which having 4 variables, the test
may need to test 48 =65,536 test cases, which seems to
be infeasible for testing, due to time, cost and resources
limitations. Using CA with 2-way, 3-way or above
interaction seems to be a compromise method to
guarantee the coverage of all interactions possibilities
with minimum number of test cases. For example, all
the 2-way interactions of the components for the system
in Table 1 can be represented by a CA with size six as in
Table 2. In additions, the 2-way interaction for the
example 48 can be covered by a CA with size 27.
 Different research proposed this solution. Williams
and Probert (2001) proposed this solution formally and
studied the coverage of interactions for a particular
interaction strength. In another research (Williams and
Probert, 1996), they proposed this solution for testing
network interface using 2-way interaction. Although
these researches proposed this solution, it was not
applied practically on a real software system.

Table 1: A software system based on internet
Payment server Web server User browser Business database
Master card iPlanet Chrome SQL
Visa card Apache Mozilla Oracle

Table 2: 2-way Interaction for the System in Table 1
Payment server Web server User browser Business database
Master card iPlanet Mozilla SQL
Visa card Apache Chrome Oracle
Master card iplanet chrome oracle
Visa card Apache Mozilla SQL
Visa card iPlanet Mozilla Oracle
Master card Apache Chrome SQL

 Hoskins et al. (2005) applied CAs on a four
categorical factors software system. The aim was to use
CAs to measure the effect of type of database
management system, platform, programmatic interface
and type of indexing on the cache hit rate, number of
page outs per second and number of physical reads per
second. The results were compared with full factorial
data and D-optimal designs construction. From the
achieved results, CAs outperforms D-optimal designs
and exhibit lower variance. The results support the
contention that a CA whose strength is one less than the
number of factors can be expected to outperform D-
optimal designs.

GUI interaction testing: Graphical User Interface
(GUI) has become practically the means of user
interaction with any software. GUI testing is a process of
software testing to test the GUI of software to ensure that
it meets the required user specification (Memon, 2002).
Most of the techniques used for GUI testing are
incomplete and used ad hoc or manual testing. However,
to formalize these kind of testing, recently, there are
three main directions of research, which are using finite
state machines (Robinson and White, 2008), pre and
post-conditions (Li et al., 2007) and directed graph
models (Memon and Xie, 2005) techniques. CAs have
been used with graph models to effectively test GUI.
 Graph models used the Event-Flow Graph (EFG)
to model all possible event sequences that may be
executed on a GUI (Huang et al., 2010). In such a
model, each event in the GUI is represented by a node
N and the relationship among the events is represented
by an edge. For example, the GUI in Fig. 2a has four
events, which are: File, New, Open and Save; whereas,
Fig. 2b is the representation of the GUI in node and edge
form. For two nodes GUI nx and ny, the edge from nx to
ny means that, along some execution path the event
represented by ny may be performed immediately after
the event represented by nx (Huang et al., 2010). This
relationship is called follows. Hence the directed edges in
the EFG are represented by a set E of ordered pairs (ex,
ey), where {ex, ey} ⊆ N and (ex, ey) ∈ E if ey follows ex.

J. Computer Sci., 7 (9): 1375-1385, 2011

1379

 (a) (b)

Fig. 2: A simple GUI example to represent the EFG

Fig. 3: The representation of EIG model

Fig. 4: Illustration of the GUI Constraints

 To achieve more compact and efficient GUI model,
Event-Interaction Graph (EIG) is emerged (Xie and
Memon, 2008). In this model, the events to open or
close menus, or open windows are not considered.
Hence, menu-opening “File” event for the GUI in Fig.
2a is neglected. To generate the EIG model from the
EFG model in Fig. 2b it is required first to delete the
“File” event because it is a menu-open event, then for
all remaining events, the even after “File” is replaced
by the “File” in the edge. In other words, each edge
(ex,File) is replaced with the edge (ex, ey) for each
occurrence of edge (File, ey) and for all ey, delete all
edges (File, ey). Figure 3 represents the EIG model for
the GUI in Fig. 2a.

 To derive test cases for the EIG model, a common
technique is to derive a test case for each EIG edge,
which is called “smoke test” (Memon and Xie, 2005;
Yuan et al., 2010). For example, (Open,New),
(Open,Save) and (New,Save) represent three smoke
test cases with strength 2 for the EIG in Fig. 3. When
the length of the sequence grows, the numbers of smoke
test cases will grow exponentially exactly like
components interaction testing. Here CAs come to face
to reduce these smoke test cases systematically. For
example, if we have five locations in the GUI each of
them has three events; we need 35 or 243 test cases to
test the GUI exhaustively. However, using the CAs
properties, we can systematically sample those events.
Using 2-way interaction, for example, we can test by
only 11 test cases and the notation will be
CA(11;2,5,3).
 To derive the events in any GUI, normally GUI
Ripper is used. The use of GUI ripper helps to traverse
a GUI under test automatically and extracts the events
(Huang et al., 2010). The problem with this ripping
process is that some parts of the retrieved information
may be incomplete or incorrect, which leads to
introduce some constraints (Yuan et al., 2010). For
example, some event needs another event to be
executed before it is enabled or sometimes two events
cannot be executed consecutively. As in the case of
Fig. 4, we cannot run the “Save” event without running
the “Save As…” event first.
 Most of the research efforts concentrate on the
generation of the test cases and how to solve the
constraint problem. Yuan and Memon (2007) developed
a new feedback-based technique for GUI testing. The
technique depends on creating and executing an initial
seed test suite for the software under test. The EIG
model of the GUI is used to generate the seed test suite
and then automatic test case re-player is used to execute
it. A feedback is used to supplement the test suite when
it is executing, by generating additional test cases. The
relationship between pairs of events is identified to
capture how the events are related to each other (Yuan
and Memon, 2007). The empirical study reveals to the
fact that although using this method, there are still
infeasible test cases cannot be run in the test suite.
 In another research Memon tried to solve this
problem by repairing the unusable test cases (Memon,
2008). The study based on determining the usable and
unusable test cases automatically from the test suite
then determine the unusable test cases that can be
repaired so that they can be executed. The repairing
transformations are used to repair the test cases.
Although useful and effective, from the results, it has
been appeared that there are still many kinds of
constraints that should be solved and dealt with.

J. Computer Sci., 7 (9): 1375-1385, 2011

1380

 Huang et al. (2010) developed a method to
automatically repair GUI test suites and generating new
test cases that are feasible. The genetic algorithm is
used in the research to evolve new test cases to increase
the test suite’s coverage. The algorithm produces
effective results for different types of constraints. The
research showed that the genetic algorithm outperforms
the random algorithm and trying to achieve the same
goal in almost all cases.
 More recently Yuan et al. (2010) used the
aforementioned researches to define new criteria for
GUI testing grounded in CAs in more detail. The
research incorporated “context” into the criteria in
terms of event combinations, sequence length and by
including all possible positions for each event. The
criteria are based on both the efficiency (measured by
the size of the test suite) and the effectiveness (the
ability of the test suites to detect faults). The study
conducts more empirical studies than before using eight
applications. The results of those studies showed that
increasing the interaction strength t and by controlling
the relative positions of events, large number of faults
can be detected compared with earlier techniques.

Test case prioritization and regression testing:
Regression testing is a type of software testing aims to
find uncovered new errors after changes have been
made to the software (Gu et al., 2010). This testing
process is based on the fact that as the software is
upgraded or developed, the occurrence of similar faults
is frequent. This in turn leads to keep those test cases
that detected faults in earlier version of the software to
re-executing them after developing a new version of the
same software. Using this method for testing helps to
verify that the changes of specific software have not
caused the software inadvertent side-effects and the
software still meets its requirements (Rothermel and
Harrold, 1996).
 Test case prioritization techniques, in another hand,
aimed to increase the effectiveness of test cases by
scheduling them for execution to increase the rate of
fault detection (Rothermel et al., 2001). This in turn
gives the estimation of how quickly faults are detected
in the testing process. Detecting the faults earlier during
the testing process provide faster feedback for the tester
and let him to begin correcting defects earlier than
might otherwise be possible (Rothermel et al., 2001).
 Most of the time, prioritization techniques are
associated with regression testing as the information
from previous execution of test cases can be used for
the ordering and sequencing processes (Rothermel et
al., 2001). Both of regression and prioritization are
dependent on the test suite selected for the process,

especially the initial test suite (Qu et al., 2007). CAs
have been used with this kind of testing effectively
because of optimized size. By using the generated CAs
as test suites, first, an extensive prioritization has been
applied to the test suite and then it is applied for the
regression testing.
 There are few researches introduced the
prioritization with CAs. Bryce and Colbourn (2006)
present an algorithm for prioritizing the test suites that
based on CAs. Although the research showed
impressive results for prioritization using interaction
coverage; however, the algorithm is not applied on real
software to illustrate its effectiveness. Qu et al. (2007)
used multiple versions of two software subjects to
examine the application and effectiveness of CAs for
finding faults with regression testing. Before applying
the test suites on the two subject software, the suites
have been prioritized. Several different algorithms and
methods used to control the prioritization. During the
empirical study, the interactions used are between t =2
and 5. The results of the empirical study showed that
the CAs are effective to reduce the test space and find
the faults. Using prioritization with CAs improves the
ability to detect faults early in certain subjects. The
results showed also that for the first subject software,
most of the faults are covered by t=3; however, for the
second subject software, most of the faults covered
when t=5.
 Later on, Qu et al. (2008) applied the prioritization
in regression testing with additional subjects. The
research study several versions of an open source text
editor. The results showed that using prioritization with
CAs can impact the fault finding ability of regression
test suites by as much as 70%.

Fault characterization: Fault characterization
(sometimes called failure diagnosis), is a mechanism or
method used to find and locate faults in given software.
With the increase of software complexity, some kinds of
faults appeared that could not diagnose by the traditional
methods. This is happened frequently when the system
configuration spaces are large and resources are limited.
For example, some systems like “Apache”, can have
hundreds of options that could not be tested extensively
because of the large software configuration space and
thus leads to the inability of characterizing some faults.
 Fault characterization helps to identify the cause
of a specific fault and save a great time by fixing the
fault quickly. In other words, fault characterization
process helps to determine which specific
configuration or setting of the system causing a
specific failure (Yilmaz et al., 2004a).

J. Computer Sci., 7 (9): 1375-1385, 2011

1381

 Yilmaz et al. (2004b) developed a distributed
continuous quality assurance process framework called
“Skoll” (Memon et al., 2004). The process is supported
by tools to leverage the widespread computing resources
of worldwide users automatically. The aim was to
incrementally, opportunistically and efficiently improve
the quality of software. Skoll divided the quality
assurance process into sub-tasks, then the tasks are
distributed around the world to different client machines
using the client-server communication. Each client
downloads the software under test from a central code
repository and uses a given configuration to test. To
complete the overall quality process, the results are
returned back to a central site that collects results and
fused together (Yilmaz et al., 2004a).
 One important implemented task in skoll is the fault
characterization. This characterization process of faults
is done by testing different configurations and features
of the software under test and feed the result of the
testing to a classification tree analysis. The output of
this classification tree analysis would be a model to
describe the options and setting that best forecast
failure (Yilmaz et al., 2004b). Here, CAs used for
generating the configurations’ models for skoll. In this
way, all the combinations of the options and are
appearing in the provided configurations and will
greatly reduce the cost of fault characterization,
without compromising its accuracy.
 Yilmaz et al. (2004a) evaluated the uniform CA
with interaction strength between 2 and 6. The results
showed that even low strength CA can achieve reliable
fault characterization compared with those achieved by
exhaustive testing. By increasing the interaction strength
of CA, the research reported more precise fault
characterization, but with more test suite sizes. The
research concludes that the fault characterization could
be improved in term of accuracy with low cost if the low
strength CA be used.
 Yilmaz et al. (2006) extend the above research to
include more empirical studies. For the first time, the
research reports the application of VSCA to tests the
effects of using it practically. The use of VSCA allows
testing stronger interactions for subspaces where they
are needed (i.e., in high-risk subspaces) and keeping a
lower strength of interaction across the entire space
(Yilmaz et al., 2006). The research reports the same
finding for the CA as in the case of the original
research. In addition, the research reported that the use
of VSCA reduces the cost of the fault characterization
process without compromising its accuracy. Moreover,
the research showed that use of VSCA improved that
accuracy of the fault characterization process with the
same cost of CA.

Future research directions: There are many researches
on CAs. Most of the researches are concentrating on the
CAs construction methods, algorithms, or strategies.
The researches for investigating the applications of CAs
in software testing are still in the beginning. As we can
see from the aforementioned applications, there are few
researches dealing with the application of CAs.
Although all the areas need further investigations and
assessments, there are new directions that can be
impressive for applications. Based on that, our
recommendations to the future research focus could be
in following two general directions mainly:

• Further assessments to the existing researches:

although the exiting researches are achieving good
results, different areas need more assessments and
improvements. One of those areas is the
components’ interaction testing. So far, the
effectiveness of using CAs in this area is not clear.
Although it is studied theoretically in many
researches, there is little evidence showing its
effectiveness. It seems to be encouraging area for
empirical studies. An interesting direction, for
example, is the use of CAs in e-commerce software
systems. It seems to be interesting if a research
study the effect of the component interactions on
some performance criteria practically. In addition,
the application of VSCA is an open research
direction also. We can note from the study, the
application of VSCA is not investigated clearly. So
far, from the literature, there is only one research
apply and investigate the effectiveness of the VSCA
practically. This could be also applied with e-
commence systems by taking stronger interaction
strength among some special related components in
the system, for example.

• Discovering new directions of software testing
applications: CAs could be applied in a different
way for software testing. There is a need to study
and investigate new software testing directions
using CAs. One important direction is to combine
the CAs features with other software testing
methods. As we mentioned previously, CAs have
been used with regression testing and test case
prioritization. It also could be useful if the CAs
features are used with fault localization techniques.
Recently, fault localization has become an active
research area. So far, the use of CAs not
investigated with fault localization. Wong et al.
(2010) investigate a new fault localization method
using code coverage heuristic. In other recently
researches, interaction testing using CAs have been

J. Computer Sci., 7 (9): 1375-1385, 2011

1382

effective for improving code coverage using some
empirical studies (Zamli et al., 2011; Klaib et al.,
2008). This in turn could be an important
motivation for using CAs with code coverage
heuristics to improve the fault localization as
conducted by Wong et al. (2010).

CONCLUSION

 The applications of CAs and interaction testing
have been an active research area recently. In this
study, we aimed to demonstrate the CAs and report
their existing applications to software testing. To
understand the CAs use in the applications, we first
illustrate their types, notations and construction
methods. Then, we reviewed several recent applications
of CAs to software testing. We briefly mention some of
those applications and the achieved results to illustrate
the effectiveness of CAs in those applications. The
research in this area seems to be an active research
direction for the coming years. To this end, in this study
we also give different research directions for the future
and we also suggest some important ideas for the
coming researches.

ACKNOWLEDGEMENT

 This research is partially funded by the generous
grant (“Investigating T-Way Test Data Reduction
Strategy Using Particle Swarm Optimization
Technique”) from the Ministry of Higher Education
(MOHE) and the USM research university grants
(“Development of Variable-Strength Interaction Testing
Strategy for T-Way Test Data Generation”). The first
author, Bestoun S. Ahmed, is a recipient of the USM
fellowship.

REFERENCES

Afzal, W., R. Torkar and R. Feldt, 2009. A systematic
review of search-based testing for non-functional
system properties. Inf. Software Technol., 51:
957-976. DOI: 10.1016/J.INFSOF.2008.12.005

Agarwal, B.B., S.P. Tayal and M. Gupta, 2010.
Software Engineering and Testing: An
Introduction.1st Edn., Jones and Bartlett Learning,
Hingham, ISBN: 1934015555, pp: 515.

Ahmed, B.S. and K.Z. Zamli, 2010. PSTG: A t-way
strategy adopting particle swarm optimization.
Proceeding of 4th Asia International Conference
on Mathematical/Analytical Modelling and
Computer Simulation, May, 26-28, IEEE Xplore
Press, Kota Kinabalu, Malaysia, pp: 1-5. DOI:
10.1109/AMS.2010.14

Baresi, L. and M. Pezze, 2006. An introduction to
software testing. Elect. Notes Theo. Comput. Sci.,
148: 89-111. DOI: 10.1016/J.ENTCS.2005.12.014

Beizer, B., 1990. Software Testing Techniques. 2nd
Edn., Van Nostrand Reinhold, New York, ISBN:
0442206720, pp: 550.

Borodai, S.Y. and I.S. Grunskii, 1992. Recursive
generation of locally complete tests. Cybernet. Syst.
Anal., 28: 504-508. DOI: 10.1007/BF01124983

Bryce, R.C. and C.J. Colbourn, 2006. Prioritized
interaction testing for pair-wise coverage with
seeding and constraints. Inform. Software Technol.,
48: 960-970. DOI: 10.1016/J.INFSOF.2006.03.004

Bryce, R.C. and C.J. Colbourn, 2007. The density
algorithm for pairwise interaction testing. Software
Test. Verificat. Reliabil., 17: 159-182. DOI:
10.1002/STVR.365

Bryce, R.C. and C.J. Colbourn, 2009. A density-based
greedy algorithm for higher strength covering
arrays. Software Test. Verificat. Reliabil., 19: 37-
53. DOI: 10.1002/STVR.393

Calvagna, A. and A. Gargantini, 2009. IPO-s:
Incremental generation of combinatorial interaction
test data based on symmetries of covering arrays.
Proceedings of the IEEE International Conference
on Software Testing, Verification and Validation
Workshops, April. 1-4, IEEE Xplore Press, Denver,
CO, pp: 10-18. DOI: 10.1109/ICSTW.2009.7

Cawse, J.N., 2003. Experimental Design for
Combinatorial and High Throughput Materials
Development. 1st Edn., Wiley-Interscience,
Hoboken, ISBN: 0471203432, pp: 317.

Chen, X., Q. Gu, A. Li and D. Chen, 2009. Variable
strength interaction testing with an ant colony
system approach. Proceedings of the Asia-Pacific
Software Engineering Conference. Dec. 1-3, IEEE
Xplore Press, Penang, pp: 160-167. DOI:
10.1109/APSEC.2009.18

Cheng, C.S., 1980. Orthogonal arrays with variable
numbers of symbols. Ann. Statist., 8: 447-453.
DOI: 10.1214/AOS/1176344964

Cohen, D.M., S.R. Dalal, M.L. Fredman and G.C.
Patton, 1997. The AETG system: an approach to
testing based on combinatorial design. IEEE Trans.
Software Eng., 23: 437-444. DOI:
10.1109/32.605761

Cohen, M.B., 2004. Designing Test Suites for Software
Interaction Testing. 1st Edn., Computer Science-
University of Auckland, New Zealand, pp: 171.

J. Computer Sci., 7 (9): 1375-1385, 2011

1383

Cohen, M.B., M.B. Dwyer and J. Shi, 2007. Interaction
testing of highly-configurable systems in the
presence of constraints. Proceedings of the 2007
International Symposium on Software Testing and
Analysis, (ISSTA ‘07), ACM, New York, pp: 129-
139. DOI: 10.1145/1273463.1273482

Colbourn, C.J., 2008. Strength two covering arrays:
Existence tables and projection. Discrete Math.,
308: 772-786. DOI: 10.1016/J.DISC.2007.07.050

Colbourn, C.J., S.S. Martirosyan, G.L. Mullen, D.
Shasha and G.B. Sherwood et al., 2006. Products of
mixed covering arrays of strength two. J. Combinat.
Designs, 14: 124-138. DOI: 10.1002/JCD.20065

Czerwonka, J., 2006. Pairwise testing in real world
practical extensions to test case generator.
Microsoft Research.

Grindal, M., J. Offutt and S.F. Andler, 2005.
Combination testing strategies: A survey. Software
Test. Verificat. Reliabil., 15: 167-199. DOI:
10.1002/STVR.319

Gu, Q., B. Tang and D. Chen, 2010. Optimal regression
testing based on selective coverage of test
requirements. Proceedings of the International
Symposium on Parallel and Distributed Processing
with Applications, Sep. 6-9, IEEE Xplore Press,
Taipei, pp: 419-426. DOI: 10.1109/ISPA.2010.62

Hoskins, D.S., C.J. Colbourn and D.C. Montgomery,
2005. Software performance testing using covering
arrays: Efficient screening designs with categorical
factors. Proceedings of the 5th International
Workshop on Software and Performance, (WOSP
‘05), ACM, New York, pp: 131-136 DOI:
10.1145/1071021.1071034.

Huang, S., M.B. Cohen and A.M. Memon, 2010.
Repairing GUI test suites using a genetic algorithm.
Proceedings of the 3rd IEEE International
Conference on Software Testing, Verification and
Validation, April, 6-10, IEEE Xplore Press, Paris,
245-254. DOI: 10.1109/ICST.2010.39

Jenkins, B., 2010. Jenny Download Web Page.
http://burtleburtle.net/bob/math/jenny.html

Klaib, M.F.J., K.Z. Zamli, N.A.M. Isa, M.I. Younis and
R. Abdullah, 2008. G2Way a backtracking strategy
for pairwise test data generation. Proceedings of the
2008 15th Asia-Pacific Software Engineering
Conference, Dec. 3-5, IEEE Xplore Press, Beijing,
pp: 463-470.DOI: 10.1109/APSEC.2008.49

Klaib, M.F.J., S. Muthuraman, N. Ahmad and R. Sidek,
2010. Tree based test case generation and cost
calculation strategy for uniform parametric pairwise
testing. J. Comput. Sci. 6: 542-547. DOI:
10.3844/JCSSP.2010.542.547

Lehmann, E. and J. Wegener, 2000. Test case design by
means of the CTE XL. Proceeding of the 8th
European International Conference on Software
Testing, Analysis and Review, (STAR’00),
Citeseer, Kopenhagen Denmark, pp:

Lei, Y. and K.C. Tai, 1998. In-Parameter-Order: A Test
Generation Strategy for Pairwise Testing.
Proceedings of the 3rd IEEE International
Symposium on High-Assurance Systems
Engineering, Nov. 13-14, IEEE Xplore Press,
Washington, DC, USA, pp: 254-261. DOI:
10.1109/HASE.1998.731623

Lei, Y., R. Kacker, D.R. Kuhn, V. Okun and J.
Lawrence, 2007. IPOG: A general strategy for t-
way software testing. Proceedings of the 14th
Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based
Systems, March, 26-29, IEEE Xplore Press,
Tucson, AZ, pp. 549-556. DOI:
10.1109/ECBS.2007.47

Lei, Y., R. Kacker, D.R. Kuhn, V. Okun and J.
Lawrence, 2008. IPOG/IPOG-D: efficient test
generation for multi-way combinatorial testing.
Software Test. Verificat. Reliabil., 18: 125-148.
DOI: 10.1002/STVR.381

Li, P., T. Huynh, M. Reformat and J. Miller, 2007. A
practical approach to testing GUI systems. Emp.
Software Eng., 12: 331-357. DOI: 10.1007/S10664-
006-9031-3

Memon, A., A. Porter, C. Yilmaz, A. Nagarajan and D.
Schmidt et al., 2004. Skoll: Distributed continuous
quality assurance. Proceedings of the 26th
International Conference on Software Engineering,
IEEE Computer Society, Washington, DC., pp:
459-468.

Memon, A.M. and Q. Xie, 2005. Studying the fault-
detection effectiveness of GUI test cases for rapidly
evolving software. IEEE Trans. Software Eng., 31:
884-896. DOI: 10.1109/TSE.2005.117

Memon, A.M., 2002. GUI testing: pitfalls and process.
Computer, 35: 87-88. DOI:
10.1109/MC.2002.1023795

Memon, A.M., 2008. Automatically repairing event
sequence-based GUI test suites for regression
testing. ACM Trans. Software Eng. Methodol. DOI:
10.1145/1416563.1416564

Nurmela, K.J., 2004. Upper bounds for covering
arrays by tabu search. Discrete Applied Math.,
138: 143-152. DOI: 10.1016/S0166-
218x(03)00291-9

J. Computer Sci., 7 (9): 1375-1385, 2011

1384

Qu, X., M.B. Cohen and G. Rothermel, 2008.
Configuration-aware regression testing: an
empirical study of sampling and prioritization.
Proceedings of the 2008 International Symposium
on Software Testing and Analysis, ACM, New
York, pp: 75-86. DOI: 10.1145/1390630.1390641

Qu, X., M.B. Cohen and K.M. Woolf, 2007.
Combinatorial interaction regression testing: a
study of test case generation and prioritization.
Proceedings of the IEEE International Conference
on Software Maintenance, Oct. 2-5, IEEE Xplore
Press, Paris, pp: 255-264. DOI:
10.1109/ICSM.2007.4362638

Robinson, B. and L. White, 2008. Testing of user-
configurable software systems using firewalls.
Proceedings of the 19th International Symposium
on Software Reliability Engineering, Nov. 10-14,
IEEE Xplore Press, Seattle, WA, pp: 177-186. DOI:
10.1109/ISSRE.2008.46

Ronneseth, A.H. and C.J. Colbourn, 2009. Merging
covering arrays and compressing multiple
sequence alignments. Discrete Applied Math.,
157: 2177-2190. DOI:
10.1016/J.DAM.2007.09.024

Rothermel, G. and M.J. Harrold, 1996. Analyzing
regression test selection techniques. IEEE Trans.
Software Eng., 22: 529-551. DOI:
10.1109/32.536955

Rothermel, G., R.H. Untch and C. Chu, 2001.
Prioritizing test cases for regression testing. IEEE
Trans. Software Eng., 27: 929-948. DOI:
10.1109/32.962562

Shasha, D.E., A.Y. Kouranov, L.V. Lejay, M.F. Chou
and G.M. Coruzzi, 2001. Using combinatorial
design to study regulation by multiple input signals.
a tool for parsimony in the post-genomics era. Plant
Physiol., 127: 1590-1594. DOI: 10.1104/PP.010683
PMid: 11743103 PMCid:1540192

Shiba, T., T. Tsuchiya and T. Kikuno, 2004. Using
artificial life techniques to generate test cases for
combinatorial testing. Proceedings of the 28th
Annual International Computer Software and
Applications Conference, Sep. 28-30, IEEE Xplore
Press, Hong Kong, pp: 72-77. DOI:
10.1109/CMPSAC.2004.1342808

Stardom, J., 2001. Metaheuristics and the Search for
Covering and Packing Array Department of
Mathematics. M.Sc, Thesis, Simon Fraser
University.

Tung, Y.W. and W.S. Aldiwan, 2000. Automating test
case generation for the new generation mission
software system. Proceedings of the IEEE
Aerospace Conference, Mar. 18-25, IEEE Xplore
Press, Big Sky, MT , USA, pp: 431-437. DOI:
10.1109/AERO.2000.879426

Wang, Z., B. Xu and C. Nie, 2008. Greedy heuristic
algorithms to generate variable strength
combinatorial test suite. Proceedings of The Eighth
International Conference on Quality Software,
Aug. 13-13, IEEE Xplore Press, Oxford, pp: 155-
160. DOI: 10.1109/QSIC.2008.52

Williams, A.W. and R.L. Probert, 1996. A practical
strategy for testing pair-wise coverage of network
interfaces. Proceedings of the the 7th International
Symposium on Software Reliability Engineering,
Oct. 30-Nov, 2, IEEE Xplore Press, White Plains,
NY, USA, pp: 246-254. DOI:
10.1109/ISSRE.1996.558835

Williams, A.W. and R.L. Probert, 2001. A measure for
component interaction test coverage. Proceedings of
the ACS/IEEE International Conference on
Computer Systems and Applications, June, 25-29,
IEEE Xplore Press, Beirut , Lebanon, pp: 304-311.
DOI: 10.1109/AICCSA.2001.934001

Williams, A.W. and R.L. Probert, 2002. Formulation of
the interaction test coverage problem as an integer
program. Proceedings of the IFIP 14th International
Conference on Testing Communicating Systems
XIV, Kluwer, B.V. Deventer, The Netherlands,
The Netherlands, pp: 283-283.
http://portal.acm.org/citation.cfm?id=748164

Wong, W.E., V. Debroy and B. Choi, 2010. A family of
code coverage-based heuristics for effective fault
localization. J. Syst. Software, 83: 188-208. DOI:
10.1016/J.JSS.2009.09.037

Xie, Q. and A.M. Memon, 2008. Using a pilot study to
derive a GUI model for automated testing. ACM
Trans. Software Eng. Methodol., 18: 1-35. DOI:
10.1145/1416563.1416567

Yilmaz, C., M.B. Cohen and A. Porter, 2004a. Covering
arrays for efficient fault characterization in complex
configuration spaces. ACM SIGSOFT Software
Eng. Notes, 29: 45-54. DOI:
10.1145/1013886.1007519

Yilmaz, C., M.B. Cohen and A.A. Porter, 2004b.
Covering arrays for efficient fault characterization
in complex configuration spaces. Proceedings of the
2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis, ACM, New York,
pp: 45-54. DOI: 10.1145/1007512.1007519

Yilmaz, C., M.B. Cohen and A.A. Porter, 2006.
Covering arrays for efficient fault characterization
in complex configuration spaces. IEEE Trans.
Software Eng., 32: 20-34. DOI:
10.1109/TSE.2006.8

J. Computer Sci., 7 (9): 1375-1385, 2011

1385

Yu, Y.T., S.P. Ng and E.Y.K. Chan, 2003. Generating,
selecting and prioritizing test cases from
specifications with tool support. Proceedings of the
3rd International Conference on Quality Software.
Nov. 6-7, IEEE Xplore Press, USA., pp: 83-90.
DOI: 10.1109/QSIC.2003.1319089

Yuan, X. and A.M. Memon, 2007. Using GUI run-time
state as feedback to generate test cases. Proceedings
of the 29th International Conference on Software
Engineering, May, 20-26, IEEE Xplore Press,
Minneapolis, MN, pp: 396-405. DOI:
10.1109/ICSE.2007.94

Yuan, X., M. Cohen and A. Memon, 2010. GUI
interaction testing: incorporating event context.
IEEE Trans. Software Eng., pp: 1-1.DOI:
10.1109/TSE.2010.50

Zamli, K.Z., Isa, N.A.M., 2008. JTst - An automated
unit testing tool for java program. Am. J. Applied
Sci. 5, 77-82. DOI: 10.3844/AJASSP.2008.77.82

Zamli, K.Z., M.F.J. Klaib, M.I. Younis, N.A.M. Isa and
R. Abdullah, 2011. Design and implementation of a
t-way test data generation strategy with automated
execution tool support. Inform. Sci. 181: 1741-1758
DOI: 10.1016/J.INS.2011.01.002

