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Abstract: Problem statement: Recently, new Koch curves have been generated by dividing the 
initiator into three unequal parts. There is no formal rewriting system to generate such kind of curves. 
Approach: It is required to measure the new changed geometrical properties. Generalized rewriting 
systems for the new Koch curves have been developed. Results: New formulas have been given to 
measure their geometrical properties. Conclusion/Recommendations: The geometrical properties of 
new Koch curves make them more suitable as antennas in wireless communication than the 
conventional Koch curve. 
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INTRODUCTION 

 
 The classical Koch curve is, mathematically, 
continuous everywhere but differentiable nowhere. It is 
an example of bounded curve of infinite length 
(Schroeder, 2009; Falconer, 2003). Koch snowflake 
curve is used as a fractal antenna. Nathan (2005) 
described the importance of fractal antennas explicitly 
for wireless technologies with emphasis to military 
services. For a detailed study on Koch fractal antenna 
and related various new findings, one may refer to 
(Elkamchouchi and Nasr, 2007; Ghatak et al., 2009; 
Kordzadeh and Kashani, 2009; Krishna et al., 2009; 
Mirzapour and Hassani, 2009; Song et al., 2008; 
Werner and Suman, 2003; Zhang and Kishk, 2006) and 
several cross references thereof. McClure (2008) has 
discussed the vibration modes of a drum shaped like a 
Koch snowflake. Epstien and Adeeb (2008) derived 
stiffness of the Koch curve. Jibrael et al. (2008) 
simulated quadratic Koch antenna and explored its 
antenna properties. Further, Vinoy et al. (2002) 
presented a new way of generation of variants of a 
Koch curve  by  varying  indentation  angle  and gave 
a formula to calculate their fractal dimension and 
studied the impact of fractal dimension in the design 
of multi-resonant fractal antennas (Vinoy et al., 2004). 
Generated new Koch curves as new examples of 
superior fractals by dividing the initiator into three 
unequal parts. A comprehensive review of literature on 

superior fractals, which are constructed using superior 
iterates, is given by Singh et al. (2011).  
 The purpose of this study is to develop rewriting 
rules for superior Koch curves and suggest formulas 
for calculation of their fundamental mathematical 
properties. 
 
Preliminaries: Construction of the Koch curve (Fig. 1) 
is well known. It can be expressed by following rewrite 
system (L-system) 
(http://en.wikipedia.org/wiki/Koch_curve): 
 
Alphabet : F

Cons tan t : ,

Axiom : F

Production rule : F F F F F

+ −

→ + − − +

  (1) 

 
 Here, F means "draw forward", + means "turn left 
60°" and - means "turn right 60°". 
To draw a Koch snowflake curve, the Prod. Rule 1 is 
applied on axiom “F - - F - - F”. 
 
Rewriting system for koch curves: In this section, 
we develop general production rules to draw superior 
Koch curves. We divide the production rules for 
Koch curves at different scaling factors into two 
parts. All the symbols used in the following rewriting 
systems carry similar meanings as in that of Koch 
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curve. We use the same initiator, as shown in Fig. 1a, 
in all the generations. 

 Case 1: Koch curves at scaling factor 1
S

n
= , where 

n is an odd number. 

Let 1
S

5
= , then one of the possible Koch curves is 

shown in Fig. 2. The following is the rewriting system 
for such a Koch curve: 
 Figure 2 Koch middle one-fifth curve for (r1, r2, 
r3) = (2/5, 1/5, 2/5) with its initiator: 
 
Scaling factor :Alphabet : F

Cons tan t : ,

Axiom : F

Production rule : F FF F F FF

+ −

→ + − − +

   (2) 

 

 At 
1

S
7

= , rewriting system for Koch middle one-

seventh curve is as follows: 
 
Scaling factor :Alphabet : F

Cons tan t : ,

Axiom : F

Production rule : F FFF F F FFF

+ −

→ + − − +

         (3) 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 1: Iterative construction of koch curve 

 The general rewriting system for Koch curves at 
S=1/n, where n = 3, 5, 7, 9, …, which can be derived 
from Prod. Rule 1, 2 and 3 is as follows: 

 Scaling factor 
1

S
n

= , where n is an odd natural 

number and n ≥ 3: 
 
Alphabet : F

Cons tan t : ,

Axiom : F

Production rule : F ((n 1) / 2)F F F ((n 1) / 2)F

+ −

→ − + − − + −

 (4) 

 
Case 2: Koch curves at scaling factor S=1/n, where n is 
an even number. 
 Let the scaling factor be ¼, then rewriting system 
for the two possible Koch middle one-fourth curves 
(see the generators in Fig. 3) is given below. 
 

 
(a) 

 

 
(b) 
 

Fig. 2: Koch middle one-fifth curve for (r1, r2, r3) = 
(2/5, 1/5, 2/5) with its initiator 

 

 
(a) 
 

 
(b) 
 

Fig. 3: Generators of two possible Koch middle one-fourth 
curves (a) Generator at (r1, r2, r3) = (1/4, 1/4, 1/2) 
(b) Generator at (r1, r2, r3) = (1/2, 1/4, 1/4) 
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(a) 

 

 
(b) 

 
Fig. 4: Koch middle one-sixth curve (a) At generator 

(r1, r2, r3) = (1/3, 1/6, 1/2) (b)At generator (r1, 
r2, r3) = (1/2, 1/6, 1/3) 

 

 Scaling factor: 
1

S
4

= Alphabet: F:  

 
Cons tan t : ,

Axiom : F

Production rule : F F F F FF

or F FF F F F

+ −

→ + − − +
→ + − − +

     (5) 

 

 At the scaling factor 1
S

6
= , rewriting system for 

two possible Koch middle one-sixth curve (Fig. 4) is as 
follows: 

 
Scaling factor :

Alphabet :F

Cons tan t : ,

Axiom : F

Production rule : F FF F F FFF

or F FFF F F FF

+ −

→ + − − +
→ + − − +

   (6) 

 
 The general rewriting system for Koch curves at 

1
S

n
= , where n = 4, 6, 8, 10, …, which can be derived 

from Prod. Rule 5 and 6 is as follows: 

 Scaling factor: 
1

S
n

= , where n is an even natural 

number and n ≥ 4: 

Alphabet : F

Cons tan t : ,

Axiom : F

Production rule : F (n / 2 1)F F F ((n / 2)F

Or F (n / 2 1)F F F ((n / 2)F

+ −

→ − + − − +
→ − + − − +

     (7) 

 
Applications to fractal antenna: Authors have 
generated superior Koch curves at scaling factors s = 
1/n, for n≥4. Koch loop can be generated by applying 
Prod. Rule 4 or 7 on the axiom “F - - F - - F”.  
Following are some of the geometric features of a Koch 
loop. Here, r denotes the radius of the circle which 
accommodates the Koch loop. 
 The general formula to calculate the area of a Koch 
loop is given by: 

 

KochLoop
2

2

3 3 3
Area r (1 ),n Nandn 3

4 n 4
= + ∈ ≥

−
 (8) 

 
Therefore: 
 

 
KochLoop

2
n 2

2

3 3 3
Area lim r (1 )

4 n 4

3 3
r

4

→∞= +
−

=
    

        
 Thus smaller the scaling factor, lesser the area of 
the Koch loops. 
 The general formula to calculate the perimeter of a 
Koch loop is given by: 
 

KochLoop

m

9 3
Perimeter 3 3r r

n
((4 / 3) 1),m,n Nand n 3

= +

− ∈ ≥
  (9) 

 
 Where m is the total number of iterations.  
 
Considering: 
 

m
m

9 3
lim 3 3r r((4 / 3) 1)

n→∞ −   

 
 We see that  KochLoopPerimeter = ∞  

 
 Theoretically, a Koch loop can accommodate wire 
of infinite length. However, with the reducing scaling 
factor, growth rate of the perimeter decreases. 
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 The general formula to calculate the dimension of a 
Koch curve is given by: 
 

Kochcurve

log(n 1)
Dimension ,n Nandn 3

log n

+= ∈ ≥   (10) 

 
 From (10), it can be calculated that the dimension 
of Koch curves at n = 4, 5 and 6 is approximately 
1.16, 1.113 and 1.086 respectively. According to 
(Vinoy et al., 2004; Song et al., 2008), since fractal 
antennas having smaller dimensions show better multi-

band characteristics, Koch antennas at 
1

S
n

= , for n ≥ 4, 

shall exhibit better multiband characteristics. 
 Theoretically, superior Koch loops, generated at 

1
S

n
= , for n ≥ 4, are more suitable as antennas than the 

Koch antenna at 
1

S
3

= , as they are more compact in 

size (cf. (8)) and can accommodate long length of wire 
(cf. (9)) and therefore will have better multiband 
characteristics due to smaller fractal dimension (cf. (10)). 

 
CONCLUSION 

 
 Following formulas have been derived in this study: 
 Rewriting system for superior Koch curves                                                                                                                                                    
at. 

 
Scaling factor: s = 1/n, where n is an odd natural 
number and n ≥ 3: 
 
Alphabet : F

Cons tan t : ,

Axiom : F

Production rule : F ((n 1) / 2F F F ((n 1) / 2)F

+ −

→ − + − − + −

 

 
Scaling factor: s= 1/n, where n is an even natural 
number and n ≥ 4: 
 
Alphabet : F

Cons tan t : ,

Axiom : F

Production rule : F (n / 2 1)F F F (n / 2)F

or F (n / 2)F F F (n / 2 1)F

+ −

→ − + − − +
→ + − − + −

 

 
 Geometrical properties of a superior Koch loop is 
given by: 

KochLoop

2
2

3 3 3
Area r (1 ), n Nand n 3;)

4 n 4
= + ∀ ∈ ≥

−
  

 

KochLoop
m9 3

Permiter 3 3r r((4 / 3) 1),
n

m,n Nand n 3;

= + −

∀ ∈ ≥
  

  

KochLoop

log(n 1)
Dimension , n N,n 3;

log n

+= ∀ ∈ ≥   

 

 Here, 
1

n
 is the scaling factor and r is the radius of 

the circle which accommodates the Koch loop. 
 Fractal antenna is preferred over circular antenna 
because it is compact and has multiband characteristics. 
Theoretically, a superior Koch antenna, generated at 

1
S

n
= , n ≥ 4, are more suitable as an antenna than the 

Koch antenna at
1

S
3

= , as they are more compact 

(Result 2(i)), can accommodate long length of wire 
(Result 2(ii)) and will have better multiband 
characteristic due to smaller fractal dimension (Result 
2(iii)). 
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