
Journal of Computer Science 7 (7): 1060-1071, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Khaironi Yatim Sharif, Software Engineering Research Group, FSKTM, UPM Malaysia, Malaysia
1060

Open Source Programmers’ Information Seeking
During Software Maintenance

1Khaironi Yatim Sharif, 2Mohd Rosmadi Mokhtar and 3Jim Buckley

1Software Engineering Research Group,
Fakulti S. Komputer and T. Maklumat,
University Putra Malaysia, Malaysia

2Centre of Computer Science FTSM, University Kebangsaan, Malaysia
3The Irish Software Engineering Research Centre (LERO),

University of Limerick, Ireland

Abstract: Problem statement: Several authors have proposed information seeking as an appropriate
case study for studying software maintenance and evolution that have provided empirical
classifications of information seeking in commercial software evolution settings. Approach: However,
there is minimal research in the literature describing the information seeking behavior of Open Source
programmers, even though Open Source contexts would seem to exacerbate the information seeking
problems to a certain extend; where team members are typically delocalized from each other and they
are often forced into asynchronous communication. Results: This study reports on an empirical study
that classifies Open-Source programmers’ information needs generated through open-coding of
questions that appear on developers’ mailing lists. Based on the generated Information Seeking
Schema (ISS), details of the information sought by programmers on 6 different mailing lists over
several years are analyzed and discussed. Conclusion/Recommendations: The result shows several
interesting findings that describe the programmers’ information needs across the mailing lists. Firstly,
there are a similar pattern of information artifact and attribute across all projects. Secondly, majority of
the programmers’ information seeking concentrated on the systems’ implementations. Thirdly, the OS
programmers have also shown to be team-oriented and they tended to rely on documentation more
than what have previously reported. These results suggest the applicability of the ISS in evaluating OS
programmers information seeking.

Key words: Information seeking, program comprehension, open source, software maintenance, probed

artifacts, theoretical review, theoretical harness, information seeking schema

INTRODUCTION

 Software maintenance has been part and parcel of a
software system’s lifecycle ever since the first
computer software was introduced more than half-
century ago. Lientz et al. (1978), defines software
maintenance as, “activities which keep systems
operational and meet user needs” while Boehm’s
(2007) defines the process of software maintenance as
“the process of modifying existing operational
software”. The software mantainance activities make
the software systems change over time. In this context
Belady and Lehman (1976), defines software evolution
as “the dynamic behavior of programming systems as
they are maintained and enhanced over their lifetimes.”
 Software maintenance and evolution are large
components of a software system’s lifecycle. The
amount of software lifecycle effort consumed during

this phase has been estimated to range between 60%
and 80% of the entire lifecycle effort (Lientz et al.,
1978; Mayrhauser and Vans, 1993; Pressman, 2004;
Zayour and Lethbridge, 2001). While the empirical
basis for such statements are dated and suggestions that
they should be revisited have been made (Kemerer and
Slaughter, 1999), the increasing scale and complexity
of newer software systems (Pressman, 2004;
Sommerville, 2008; Stein et al., 2005) implies that the
effort invested in maintenance of successful systems
can only have increased. Thus research in this area is
vital towards the discovery and evolution of supportive
methods or tools, which could aid maintainers in their
software maintenance efforts.
 Software maintenance can be divided into 2 general
stages: “Understanding the program and actually
performing the change” (Prechelt et al., 1998). The time
invested by the programmer in order to achieve an

J. Computer Sci., 7 (7): 1060-1071, 2011

1061

understanding before (and during) a successful
modification can consume a considerable portion of the
maintenance activity, with typical estimates of this effort
ranging from between 50% and 90% of the entire
maintenance effort (De Lucia et al., 1996).
 Kingrey (2002) defines Information-Seeking as the
searching, recognition, retrieval and application of
meaningful content. Information seeking has been
recognized as a core subtask in software comprehension
within software maintenance (Curtis et al., 1988;
Seaman, 2002; Singer, 1998; Singer and Lethbridge,
1998; Sim, 1998; O’Brien and Buckley, 2005). Sim
(1998) for example, refers to maintenance programmers
as task-oriented information seekers, focusing specifically
on getting the answers they need to complete a task using
a variety of information sources. Likewise, Singer and
Lethbridge (1998) in their case study of programmers’
maintenance activities in the telecommunications domain,
found that programmers perform more searching (i.e.,
grep-based navigation) than any other activity. A more
recent study by Cleary (Cleary et al., 2008; Cleary and
Exton, 2007) suggests that information seeking was a very
credible model for describing the goal orientated,
opportunistic software comprehension strategies
employed by software engineers.
 The nature of Open Source (OS) software
development could make it as a very important context
in which to study information seeking in software
maintenance. The Open Source Software (OSS)
development process generally involves (or has the
potential to involve) large, globally distributed
communities of developers collaborating primarily
through the internet (Feller and Fitzgerald, 2001;
Fitzgerald, 2004; Iskandarani, 2008). Internet is seen as
successful collaborative environment (Sullabi and
Shukur, 2008). However, in OS context, the typical
widely distributed, asynchronous development would
seem to make information seeking more difficult (Sharif
and Buckley, 2009a; Gutwin et al., 2004). But open
source programmers seem to manage to deal with large
scale code with high-code complexity (Daniel et al.,
2009). However, to date, there is little research to inform
on information seeking among OS programmers.
 In addressing this issue, this research aims to
characterize information seeking in open source
software projects in term of the information artifact
probed by programmers and the information sought
within the probed artifacts, henceforth referred to as the
information attributes in this article. In this context,
information artifact can be described as the entity that
the programmer seeks information about: the focus of
information or the object of the programmers’
information seeking attention. On the other hand, the
information attribute refers to the features of the
information been sought. For example, when a
programmer ask about the location of particular

document, the document is the artifact, while the
location (i.e., where) is the attribute of the information.
 To contextualize this, we first discuss the related
information-seeking work by illustrating how the work
reported here differs from the existing body of work in
the area. Then, the next section provides discussion on
software maintenance in OSS, presenting the
characteristic of OS that could makes different its
software development and maintenance nature. In the
following section, the process of generating the
information-seeking categories employed in this study
is presented and the fully documented classification
schema is described. Then, the following section
reports on the results of the empirical study carried out,
before we finally conclude this paper in the last section.

Related works: Within this research area O’Brien and
Buckley (2005) has studied the information-seeking
processes of programmers during the maintenance of
commercial software systems. In complimentary
research, Singer (1998) and Seaman (2002), have
studied the information sources that programmers use
when seeking information, also in commercial
scenarios. The work reported in this thesis extends this
research by focusing on delocalized OSS development,
in the tradition of O’Shea (2006), where the developer
mailing lists of OS projects are analyzed to inform on
the programmer’s comprehension efforts.
 There have been several empirical studies that aim
to inform on the types of information sought by
programmers in the context of software comprehension,
such as Singer (1998); Ko et al. (2007); Letovsky
(1987); Pennington (1987); Good (1999); Wiedenback
and Corritore (1991); O’Shea (2006) and Buckley et al.
(2004). These studies focus on the information that
programmers’ might obtain and the information that
they find difficult to obtain during software
maintenance, thus potentially informing the design of
software tools.
 However, most of these studies are derived from an
existing ‘information-types’ schema developed by
Pennington (1987). As this schema was developed
through a theoretical review of the information available
to individuals in small segments of code, it is possible
that it ignores other artifacts produced by a development
team and that it ignores some information seeking
requirements specific to larger code-bases (Sharif and
Buckley, 2009a). An illustrative example is the ‘location’
information type identified. O’Shea empirically
established that programmers sought the location of a
specific piece of code within the software system, in her
Ph.D. research. While this finding was in line with
feature and concept location work, O’Shea attributed the
lateness of this finding to her adoption of Pennington’s
schema. This ‘theoretical harness’ thus potentially
constrained O’Shea’s work and has the same potentially
constraining possibilities for this entire body of research.

J. Computer Sci., 7 (7): 1060-1071, 2011

1062

 In contrast, Ko et al. (2007), observed
programmers while they were working in-vivo with
proprietary or commercial software development teams
and he identified the information that they sought
through his observations, in an open-coding fashion.
The work reported here mirrors this approach in that it
relies on a schema derived from observations of the
information types that programmers seek in-vivo. This
frees it from any potentially constraining theoretical
harnesses. Instead it places no restrictions on the
information source to derive a holistic information
seeking schema. However, as stated above, this study
will focus on OS programmers.

Software mantenance for OSS development: The
public availability of source code for OSS makes a
difference in its software development and maintenance
nature. In an open source setting, for example, anyone
can amend the code and contribute change to the
software. With the source code available to all OS
developers, they tend to work in parallel (Feller and
Fitzgerald, 2001), with different individuals or groups
working on the system simultaneously. Several other
characteristics of generic OSS development process
have been suggested (Feller and Fitzgerald, 2001;
Gacek and Arief, 2004) that might impact on the
software maintenance process, such as the involvement
of large global communities, parallel development,
independent review, prompt feedback, motivated
developers and users, as well as rapid release schedule.
 These characteristics can be seen as factors that
will give impact on OS programmers’ information
seeking activities. For example the large and global
communities could impact the information seeking
activities among OS programmers. The extremely
delocalized OS programmers might cause them to
actively looking for information to organize their task.
Likewise, availability of source code to all members in
the communities is possibly make them inquiry about
code’s version, questions about code comprehension.
This also could lead them to ask question about design
decision that has made for particular sets of codes. At
the same time, the huge number of community’s
members might contribute in active response for
information request from the community. ‘Parallel
development’ possibly makes OS programmers seek
more information to coordinate their task-such as other
programmers’ job status, software activities and related
source code process.

MATERIALS AND METHODS

Schema developement: Early investigations showed
that considerable number (estimated at 20%) of
questions in programmers’ emails were asked without
explicit indicators like question marks or signaling

words such as “what” and “where” (Sharif and
Buckley, 2008a; 2009a). As a result, all the datasets
used in this study-the questions in the mailing list had
to be extracted manually. Later, all of the questions
were individually isolated in a spreadsheet, ready for
analysis. This is a prerequisite for data preparation
when analyzing textual data in this fashion (Good, J.,
1999; Sharif and Buckley, 2009b).

The researcher carried out a detailed analysis of this
data, naming and categorizing each question asked by
the programmers. This open-coding procedure is
carried out without the aid of a coding manual or
schema, the coder effectively creates the categories
from scratch. Accordingly, the researcher immersed
himself in the transcript data, seeking to gain as many
insights as possible into the information-seeking
behavior of the programmers, and began to produce
categories based on the contents of portions of the
transcripts being examined as suggested by O’Brien et
al. (2001) and Pandit (1996).

The open-coding procedure was done iteratively,
each iteration marked by a discussion review with
another researcher where a random sample, was
categorized by both the first author and this other
researcher. The results were compared and ver time, a
number of provisional categories began to emerge by
consensus. Those categories were then applied to other
question datasets and refined by means of reflection,
dual review, discussion, merging and renaming. Finally,
a set of categories seemed increasingly resistant to
change and these became the final schema.

In refining the schema the following datasets were
employed:

• A random dataset (a comparatively small dataset as

initial dataset during pilot study)
• Datasets from different stages of software evolution
• A larger, time-scaled dataset
• A dataset that reflected successful OSS projects as

per the characterization presented by Daniel et al.
(2009)

As a result, the schema employed in this study was

developed through open coding (Krippendorff, 2004)
and content analysis of the questions contained in
dataset that consisting of 17 (yearly) archives taken
from 6 OSS projects. This dataset resulted in 2104
email communications from which 708 questions were
extracted. Table 1 describes the 6 OSS projects and the
different dataset used in this study.

Initially, the archive from BSF 2007 and JDT 2003
were used in modeling the preliminary Information
Seeking Schema (ISS). Then all the archives were used in
refining this schema with respect to modeling information
seeking in maintenance over time and further analysis on
these initial findings. The process of schema creation and
refinement were discussed earlier in our previous work
(Sharif and Buckley, 2008a; 2008b; 2009a).

J. Computer Sci., 7 (7): 1060-1071, 2011

1063

Table 1: Description for OSS projects used in this study
OSS project Description Dataset used year # of emails # of questions
The Java Bean BSF is an OS project concerned with allowing 2003 284 73
Scripting Java applications to contain embedded 2004 107 18
 Framework (BSF) languages, through an API to scripting engines. 2007 275 85
Java Development JDT is an OS project concerned with 2002 81 43
Tool (JDT) enabling Eclipse for Java development. 2003 147 90
 2004 100 61
The Element ECS is an OS project to create Java APIs for 2001 162 37
Construction Set (ECS) generating elements for various markup 2002 39 17
 languages that allows user to use Java Objects 2003 131 11
 to generate markup code. 2004 21 2
 2005 17 5
 2006 6 4
 2007 2 1
 2008 20 2
Eboard User-friendly chess interface for Internet Chess Servers (ICS) 2001 182 45
SwingWT Implementation of the Java Swing and AWT APIs 2004 302 107
Resiprocate Dedicated to maintaining a complete, correct and 2009 228 107
 commercially usable implementation of
 Session Initiation Protocol (SIP)
Total 17 2104 708

Table 2: Description for information artifact categories
Information artifact Definition and example
System documentation Questions referring to the documentation: Example: “Is there any Apache official guidelines on this?”
Changes Questions that refer to changes that programmer has made. .
 Example: “Here is a patch for the changes I had to do…. Please look into it, I may have broken many
 exception handling policies here”.
Tool/Technology Questions that refer to technology or tools. Example: “Can we use JIRA for bug reporting for
 this issue instead….”
Protocols adhered to Questions about the protocol to follow. Example : “Did you got the approval to contribute your work to BSF”?
Support required Questions that ask another programmer to take on responsibility or tasks.
 Example: “There are 2 non-filed open issues….. Are there any taker? “
System Implementation-Enhancement Questions that aim to understand the code in order to make change. Example : “…but I need to understand the
 refactoring currently in Eclipse now. Can anyone suggest me where about in the code is a good starting point in
 understanding how the component works “
System Implementation-Debug Questions that aim to understand the code in order to trace a bug.
 Example : “(Given a situation..)I have no idea why this is happening. Please help me solve this problem”
System design Question referring to the system’s design.
 Example : “Is jdt.core.jdom built on top of jdt.core.dom?”
File configuration Question about configuration management.
 Example: “What is the distribution directory in the src zip/tgz?”
Owner Question about the relevant person for some task.
 Example: “Who is the team / person in charge for documentation?”
Task-Testing Question related to testing.
 Example: “Can I invoke all junit test cases in one or more source folders in one movement without testsuites”
Task-Implementation Question about tasks that are related to Implementation. Note that this is not about comprehending the code b
 ut more directed at the task to be undertaken.
 Example :”Maybe you need to post more code, or maybe you need to update ecs-1.4.1?
Stage/Completion Question about completion of a certain task or stage.
 Example: “Has jakarta-ecs seen substantial dev work in that time? Ie is ecs2 still effectively the latest work?”

Resultant schema: Through the series of iterative
refinements mentioned above, where 2 independent
coders applied the developing classification schema to
samples of these datasets, a coding schema was distilled
where every question identified in programmers’ emails
was categorized with respect to information artifact and
information attribute.

Information artifact: Information artifact refers to the
external representation that the information search
refers to. There were 13 individual foci identified.

Table 2 contains a definition for each of these and
examples taken from the dataset captured.
 Please note that while these seem to bear similarity
to the ‘information source’ research carried out by
Singer (1998); Seaman (2002) and Sousa et al. (1998),
they differ, as the focus in this research is the artifact
the programmer is looking for information about, not
the source through which they choose to acquire the
information. In this research the source through which
they choose to acquire the information is always the
mailing list.

J. Computer Sci., 7 (7): 1060-1071, 2011

1064

Table 3: Description for information attribute categories
Information attributes Definition and example
What Questions which ask what the does (the source code or software tools). When referring to source code, these questions
 represent the bottom-up program comprehension strategy employed by programmers (Letovsky, 1986).
 Example: “What is the .rep file?”
How Questions which attempt to identify how an information artifact achieves its goal, how some information artifact
 is employed or how to proceed. When applied to source code, it often refers to a top-down comprehension strategy
 (O'Brien et al.,2004) Example: “Does anyone know how I can fix this?
Why Asking for a purpose/explanation of the information artifact. When directed at code, this also represents bottom-up
 program comprehension by programmers (Letovsky, 1986). Example: “I am getting an exception being thrown
 when trying to create new java class and I was wondering if anyone could shed any light on why?”
Who Asking for the relevant persons. Example: “Are there any takers?”
Where Asking about the location of something within the information artifact or about the location of an information
 artifact. For example:”Where I can find the sources for plug in so I can create a patch?”
Permission Permission to do something. This strategy is normally related with the Protocol information artifact.
 Example:”BTW, can we use JIRA for bug reporting for this project instead ...”
Confirmation Questions that confirm certain information/actions/tasks.
 Example : “… will it be incorporated into the latest version of BSF?”
Instruction Question that are asking a community member to do something
 Example: “Would you consider donating your patch to Apache?”

Table 4: Relationship between information artifact categories and information attribute categories
Info. Focus and
Quest. Strategy What How Why Who Where Permission Confirmation Instruction
Changes 2 4 1 0 1 4 3 4
File Config. 2 7 2 1 5 1 1 7
Legality and Protocol 1 4 2 0 1 1 1 13
SI-Debug. 15 16 6 33 4 0 0 20
SI-Enhance. 25 12 3 10 3 5 0 27
Stage/Completion 4 11 2 1 0 3 1 15
Support required 2 1 29 1 0 2 0 3
System design 4 13 2 7 1 0 0 38
System document 0 11 5 0 18 3 0 11
Task-Impl. 28 16 23 2 1 2 5 34
Task-Testing 3 4 2 1 0 0 0 5
Tool/Tech. 46 15 10 9 4 5 1 49
Owner 0 0 9 0 0 1 0 0

Information attribute: Information attribute refers
specifically to the aspect of information sought by the
programmer based on the information artifact. 10
information attributes were derived by open coding of
the OS programmers’ email communication. These
attributes are presented in Table 3. Note that the
examples shown in Table 2 and 3 are the actual
questions found in the dataset.

RESULTS

The empirical studies: The empirical results described
in this section are based on the schema presented above.
The schema was used to examine the entire dataset that
was used in creating the schema. That is, when the
schema was finalized the entire data set was revisited
for analysis. When all 708 questions were extracted,
they were individually isolated in spreadsheet cells to
facilitate categorization with respect to the schema. We
then applied content analysis to this dataset,
categorizing each question asked by the programmers
with the aid of the current schema. We then separated
the results of the analysis into different tables. The

relationship between information artifact categories and
information attribute categories is presented in Table 4.
Discussions on these results are presented as follow.

DISCUSSION

Information artifact : The graph in Fig. 1 visualizes
result that we gathered for information artifact across
all mailing lists across all years of the dataset. Based on
this, it shows a similar trend of information artifact
across all projects. The essential pattern seems to hold
with small emphases in different system. This suggest a
high reliability of the schema in characterizing OS
programmers’ information seeking, The different
results for different data sets most probably because of
different characteristic among the projects that impact
on the result. However the similar trend over all project
suggest the reliability of the schema.
 Figure 1 suggests that OS programmers’ information
seeking is very implementation centric where Tools and
technology, System Implementation-Enhancement,
System Implementation-Debug and Task Implementation
gained high requests across all projects in the dataset.

J. Computer Sci., 7 (7): 1060-1071, 2011

1065

Fig. 1: Patern for information artifact request

Table 5: Ranking for information artifact categories
Information artifact %
1 Tool/Technology 19.21
2 Task-implementation 14.55
3 System implementation-debug 13.42
4 System implementation-enhancement 12.43
5 System design 9.18
6 System documentation 6.64
7 Support required 5.37
8 Stage/Completion 5.37
9 Legality/Protocol 3.39
10 File configuration 3.39
11 Changes 2.97
12 Task-testing 2.12
13 Owner 1.55

This graph also suggests a lesser emphasis on
Documentation, System Design and Stage Completion
and Protocol across all projects in the dataset. This also
suggest that behavior of OS programmers’ information
seeking seems to less related to information seeking
rather than physical artifact seeking such request for
helps or seek a person to do a job.

Likewise, when we refer to Table 5 that presents the
ranking of these information artifact categories, the result
shows emphasis on Tool/Technology (19.21%), Task-
Implementation (14.55%), System Implementation-Debug
(13.42%) and System Implementation-Enhancement
(12.43%). Hence, as suggested in our previous work and
in line with other research (Sousa et al 1998, Singer et al
1998), much of the programmers’ information seeking
was directed at the systems’ implementations. Taking
‘System Implementation-Enhancement’, ‘System

Implementation-Debug’ and ‘Task-Implementation’ as
reflecting a focus on the code base 40.4% of all questions
were directed at the code base.

In addition, closer examination of the
‘Tool/Technology’ focus showed that 89% of the
questions aimed at this focus related to working with
the code (editing code, submitting changes, debugging
and settings). As ‘Tool/Technology’ was the biggest
information artifact, this makes in total, 57.7% of
request in the dataset was focused on the code based.
Hence, this suggests a strong code focus for the all the
OSS projects that we have studied.

Such high request for information in
‘Tool/Technology’ might reflect the rapid changes in
tools that used by OS programmers. For example, a
version of Java Development Kit namely Java SE 6,
had 6 updates released within 11 months in 2010
(Wikipedia, 2010). This rapid change is likely to give
impact on the programmers’ works such as coding and
debugging. This is suggested by examples such as: “Do
you remember what version of RELOAD was current,
the time you dealt with it?”

Another possible rationale for the high request for
‘Tool/Technology’ is that many tools available for OS
projects. OS programmers might be asking a lot of
questions to choose a tool that suitable for them: “Can
we use JIRA for bug reporting for this issue instead….”
The high request for this type of question also might be
related with request of software document. For
example, there is question in the dataset asking about
user manual for specific tool in use: “Is there any
Apache official guidelines on this?”

J. Computer Sci., 7 (7): 1060-1071, 2011

1066

Fig. 2: Patern for information attribute request

 The higher figures for Tool/Technology, Task-
Implementation, System Implementation-Debug and
System Implementation-Enhancement with respect to
System Design might reflect the OSS Development
Life Cycle. According to Feller and Fitzgerald (2001),
in OSS development, planning, analysis and design
stages are concatenated and performed typically by a
single developer or small core group. Design decisions
are generally made in advance, before the larger pool
developers starts to contribute. Hence, most of OS
programmer’s contribution is directed at the systems’
implementations. However, since the design decisions
were made in advance, it also possible that OS
programmers looking for information about system
design as they were not involved in making the design
decision. This could be the reason for the considerable
proportion for System Design question (9%) in the
maintenance phases of these projects. This also may
also be reflected in the high proportion of
implementation-based queries, although this theme is
consistent of studies of commercial programmers
(O’Shea, 2006; Ko et al., 2007).
 We have also previously reported an unanticipated
finding (Sharif and Buckley, 2008a; 2008b; 2009a;
2009b) with regards to programmers’ ‘System
Documentation’ requests. Specifically we noted that
documentation seemed to play an important part in OS
programmers’ information requests. This was unusual
because other ‘information source’ literature suggested
that programmers distrusted documentation (Singer
1998; Seaman, 2002; Sousa et al., 1998).
 The data shown in Table 5 reinforces this findings
but with smaller emphasize, System Documentation was

ranked the 6th most requested artifacts across all projects
in the dataset. Over all years of all projects, almost 7% of
the questions were ‘System Documentation’ questions.
Given the large number of total questions (708 questions
from 2104 emails) in the dataset, it suggests that
documentation is regarded as an important issue for
programmers (55 questions). The delocalized nature of
OS programmers might be the reason for a higher than
expected reliance on this documentation.
 As OS programmers cannot rely on informal
communication with their team, they are more likely to
need reference material in hand while doing their job.
In addition, It is possible that due to the delocalized
context of programmers in this study. OS programmers
may be motivated to produce better documentation
because of this delocalization, and therefore perhaps
trust documentation more than in the traditional case.

Information attribute: As with the information
artifact, the result that we obtained in Fig. 2, presents a
similar pattern of information attribute across all
projects with the essential pattern seems to hold with
small emphases in different system. Such pattern
indicates the high reliability of the schema. This also
means that the overall trend of OS programmers’
information seeking behavior is team oriented in nature.
Such trends imply that OS programmers are often
asking for confirmation for their sought information
and want to know who is relevant for that particular
information. Both are expected in a delocalized
environment. This graph also align closely with the
findings by Letovskys (1987); where lots of what and
how questions and a lesser number of why questions.

J. Computer Sci., 7 (7): 1060-1071, 2011

1067

Fig. 3: Relationship between information artifact and

information attribute

Table 6: Ranking for information attribute categories
Rank Information attribute %
1 Confirmation 31.64
2 How 19.35
3 What 16.24
4 Who 12.29
5 Why 9.04
6 Where 5.37
7 Instruction 3.67
8 Permission 1.41

 Table 6 present the ranks of information attribute
employed in the information request in the dataset. The
5 most frequent information attribute traced in the
dataset were Confirmation (32%), How (19%), what
(16%), Who (12%) and Why (9%). In addition, the 6th
ranking strategy of ‘Where’ questions with 5% request
rate were also considered as significant. This is in
accordance with our previous studies that suggest that
there is strong team-orientation among programmers,
and the existence of Location type queries among
programmers.

Team orientation question: Upon closer analysis, the
data presented in Table 6 is in line with Sullabi and
Shukur (2008) and in keeping with another of our
preliminary finding (Sharif and Buckley, 2008a; 2008b;
2009a; 2009b), as there is a strong emphasis on, the
‘Confirmation’ questions and the ‘Who’ questions.
‘Confirmation’ questions accounted for approximately
31.64% of all questions, and were the most frequently
asked type of question. Likewise ‘Who’ type of
questions was also popular, accounting for 12.29% of
all questions. This emphasis on confirmation and who
questions may reflect the effort to maintain awareness
among delocalized programmers reported by Gutwin et
al. (2004). The Confirmation questions also reflect the

Pre-Commit Testing stage (Jorgensen, 2001) in OSS
life cycle for changes. Pre-Commit Testing test is done
before the new code is integrated with the other codes
in project’s repository or released to other developers to
prevent the new code from breaking the other tested
code. In this context, it is understandable if OS
programmers need to confirm their changes with the
community members.
 With regard to the high percentage for who
question (12.29%) in the mailing list, given Ko et al.
(2007) findings; this is not an entirely unexpected
result. This is because, if co-located programmers need
to ascertain their team-mates, and their roles, then it is
likely that delocalized programmers will also have
increased information needs in this regard.

Location type queries: On the other hand, the data in
Table 6 have also shown to correspond to our original
findings that exhibit the presence of ‘Location’ type
queries in the questions that we obtained. This finding
is in accordance with. Based on this, we manage to
identified 38 questions which were location oriented
(i.e., the ‘Where’ questions). This type of question
represents 5.37% of all questions asked, suggesting that
this is a significant information seeking type for OS
programmers maintaining large systems. Theses finding
add empirical credence to Marcus et al. (2005)
‘Concept Location’ work.

Relationship between information artifact and
information attribute: In order to further analyze
these results, we present a 2-dimensional relationship
between information artifact categories and information
attributes categories by number of request for both
dimensions in Fig. 3.
 The top 5 highest request in the dataset was
Confirmation on Tool/Technology (49 requests), How
questions on Tool/Technology (46 requests), Confirmation
on System Design (38 requests), Confirmation on Task-
Implementation (34 requests) and Why questions on
System Implementation-Debug (33 requests). This figure
reinforces our finding that OS programmers’ information
seeking is very implementation centric and they have
strong team-oriented nature.
 Task-Implementation and System Implementation-
Debug are reflecting focus on implementation. System
design wills not normally reflecting system
implementation. However, in closer view, the
Confirmation on System Design information is likely
asked to confirm certain design issues with intention to
do implementation task. Given the fact that in OS
settings system design is normally done by “small-

J. Computer Sci., 7 (7): 1060-1071, 2011

1068

core” group and the OS development is located
primarily at the implementation phase (Feller and
Fitzgerald, 2001), request for System Design is seems
to have the agenda of code implementation. The high
request for how (Tool/Technology) and why (System
Implementation-debug) aspect of information is also
reflecting the implementation focus in the questions.
 Likewise, most of the questions for
Tool/Technology (as shown in Fig. 4) in the
information artifact is around the How questions, which
suggests a strong implementation centric in the
questions. The other information attribute with highest
request in Tool/Technology category is the
Confirmation questions.
 Another interesting finding shown earlier in Fig. 3
is the request on System Documentation that is higher
than previously reported for non OS programmers.
Upon closer analysis, Fig. 4 shows that majority of
request for System Documentation is targeted on Where
aspect. This indicates the needs for a tool or webpage
that can point them to required document. Another high
request for this category was on What (11 requests) and
Confirmation (11 request). This suggesting OS
programmers tendencies to refer to document to get
confirmation on certain information and to know about
newly found (what) subject.
 Besides that, Fig. 3 also shows that OS
programmers often asked the Why questions for System
Implementation-Debug (33 requests), the How question
for System Implementation-Enhancement (25
questions) and the How question for Task-
Implementation (28 request). This is intuitively
understood. According to a popular definition,
debugging is a methodical process of finding and
reducing the number of bugs. Hence, it is understood
when programmers asking why to find cause of errors.
Likewise, how questions is likely asked to get guide or
suggestion to enhance particular piece of code or guide
in doing the enhancement (task).

Fig. 4: Information attributes for system documentation

CONCLUSION

 This study observed OS programmers information
seeking through questions found in OS projects mailing
list. All the extracted questions were analyzed based on
Information Seeking Schema employed from previous
studies. In doing this, we found results that reinforce
previous findings. Specifically, we found:

• A similar pattern of information artifact and

attribute across all projects
• Supporting evidence that OS programmers were

highly implementation centric when much of the
programmers’ information seeking was directed at
the systems’ implementations

• OS programmers have also shown to repeatedly
require location information and that they are quite
team-oriented

• OS programmers tended to rely on documentation
more than what have been previously reported for
non OS programmers

 These findings from different insights demonstrate
the applicability of the ISS of OS programmers. This
schema is an open schema allowing further evaluation
and refinement and can be replicated for future research
in this area (This schema is available from the first
author on request). By determining the information that
the programmers frequently seek, this research defines
the requirements for visualization tools that truly
support programmers in their maintenance of
‘information-seeking’ endeavors.

ACKNOWLEDGMENT

 This study was supported, in part, by Science
Foundation Ireland grant 03/CE/I303_1 to Lero-The
Irish Software Engineering Research Centre
(www.lero.ie).

REFERENCES

Belady, L.A. and M.M. Lehman, 1976. A model of
large program development. IBM Syst. J., 15: 225-
252. DOI: 10.1147/sj.153.0225

Boehm’s, B.W., 2007. Software Engineering
Economics, in Software Engineering: Barry W.
Boehm’s Lifetime Contributions to Software
Development, Management, and Research. 1st
Edn., Wiley-IEEE Computer Society Pr., ISBN-10:
047014873X, pp: 832.

J. Computer Sci., 7 (7): 1060-1071, 2011

1069

Buckley, J., C. Exton and J. Good, 2004. Characterizing
programmers’ information-seeking during software
evolution. Proceedings of the in International
Workshop on Software Technology and
Engineering Practice, Sept. 17-19, Chicago, IL.,
pp: 7-29. DOI: 10.1109/STEP.2004.7

Cleary, B. and C. Exton, 2007. Assisting concept
location in software comprehension. Proceedings
of the 19th Annual Psychology of Programming
Interest Group Conference, Aug. 16, Joensu,
Finland. http://www.enterpriseresearch.ie/?p=251

Cleary, B., C. Exton, J. Buckley and M. English, 2008.
An empirical analysis of information retrieval
based concept location techniques in software
comprehension. Empirical Software Eng., 14: 93-
130. DOI: 10.1007/s10664-008-9095-3

Curtis, B., H. Krasner and N. Iscoe, 1988. A field study
of the software design process for large systems.
Commun. ACM, 31: 1268-1287. DOI:
10.1145/50087.50089

Daniel, S., K. Stewart and D. Darcy, 2009. Patterns of
evolution in open source projects: A Categorization
Schema and Implications.
http://misrc.umn.edu/workshops/2009/spring/Stew
art.pdf

De Lucia, A., A.R. Fasolino and M. Munro, 1996.
Understanding function behaviors through program
slicing. Proceedings of the 4th International
Workshop on Program Comprehension, Mar. 29-
31, IEEE, Berlin , Germany, pp: 9-18. DOI:
10.1109/WPC.1996.501116

Feller, J. and B. Fitzgerald, 2001. Understanding Open
Source Software Development. 1st Edn., Addison-
Wesley, Pearson Education Limited, ISBN-10:
0201734966, pp: 224.

Fitzgerald, B., 2004. A critical look at open source.
Computer, 37: 92-94. DOI: 10.1109/MC.2004.38

Gacek, C. and B. Arief, 2004. The many meanings of
open source. Software, IEEE, 21: 34-40. DOI:
10.1109/MS.2004.1259206

Good, J., 1999. Programming Paradigms, Information
Types and Graphical Representations: Empirical
Investigations of Novice Program Comprehension.
The University of Edinburgh: Edinburgh, UK.
http://www.dart-europe.eu/full.php?id=299441

Gutwin, C., R. Penner and K. Schneider, 2004. Group
awareness in distributed software development.
Proceedings of the 2004 ACM Conference on
Computer Supported Cooperative Work, Nov. 06-
10, ACM, Chicago, Illinois, USA., pp: 72-81. DOI:
10.1145/1031607.1031621

Iskandarani, M.Z., 2008. Effect of Information and
Communication Technologies (ICT) on non-

industrial countries-digital divide model. J.
Comput. Sci., 4: 315-319.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.165.8042&rep=rep1&type=pdf

Jorgensen, N., 2001. Putting it all in the trunk:
incremental software development in the FreeBSD
open source project. Inform. Syst. J., 11: 321-336.

DOI: 10.1046/j.1365-2575.2001.00113.x
Kemerer, C.F. and S. Slaughter, 1999. An empirical

approach to studying software evolution. Software
Eng., IEEE Trans., 25: 493-509. DOI:
10.1109/32.799945

Kingrey, K.P., 2002. Concepts of information seeking
and their presence in the practical library literature.
Library Philosophy Practice, 4: 1-8.
http://www.webpages.uidaho.edu/~mbolin/saunder
s.PDF

Ko, A.J., R. DeLine and G. Venolia, 2007. Information
needs in collocated software development teams.
Proceedings of the 29th International Conference
on Software Engineering, May 20-26, IEEE
Computer Society Washington, DC, USA., pp:
344-353. DOI: 10.1109/ICSE.2007.45

Krippendorff, K.H., 2004. Content Analysis: An
Introduction to its Methodology. 2nd Edn., Sage
Publications, , Inc., ISBN-10: 9780761915454, pp:
440.

Letovsky, S., 1987. Cognitive processes in program
comprehension. J. Syst. Software, 7: 325-339.
DOI: 10.1016/0164-1212(87)90032-X

Lientz, B.P., E.B. Swanson, and G.E. Tompkins, 1978.
Characteristics of application software
maintenance. Commun. ACM, 21: 466-471. DOI:
10.1145/359511.359522

Marcus, A., V. Rajlich, J. Buchta, M. Petrenko and A.
Sergeyev, 2005. Static techniques for concept
location in object-oriented code. Proceedings of the
13th International Workshop on Program
Comprehension, May 15-16, IEEE Computer
Society Washington, DC, USA., pp: 33-42. DOI:
10.1109/WPC.2005.33

Mayrhauser, A.V. and A.M. Vans, 1993. From code
understanding needs to reverse engineering tool
capabilities. Proceedings of the 6th International
Conference on Computer-Aided Software
Engineering, Jul. 19-23, IEEE, pp: 230-239. DOI:
10.1109/CASE.1993.634824

O’Brien, M.P. and J. Buckley, 2005. Evolving a model
of the information-seeking behavior of industrial
programmers-an empirical approach. Proceedings
of the 13th International Workshop Program
Comprehension, May 15-16, IEEE, pp: 125-134.
DOI: 10.1109/WPC.2005.24

J. Computer Sci., 7 (7): 1060-1071, 2011

1070

O’Brien, M.P., J. Buckley and T.M. Shaft, 2004.
Expectation-based, inference-based, and bottom-up
software comprehension. J. Software Maintenance
Evolut.: Res. Practice, 16: 363-447. DOI:

10.1002/smr.v16:6
O’Brien, M.P., T.M. Shaft and J. Buckley, 2001. An

open-source analysis schema for identifying
software comprehension processes. Proceedings of
the 13th Workshop of the Psychology of
Programming Interest Group (WPPIG’01),
Bournemouth UK, pp: 129-146.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.1.5397&rep=rep1&type=pdf

O’Shea, P.A., 2006. An Investigation of Views and
Abstractions Employed by Software Engineers
during Software Maintenance. 1st Edn., University
of Limerick, Limerick.

Pandit, N.R., 1996. The creation of theory: A recent
application of the grounded theory method.
Qualitative Report, 2: 1-20.
https://ueaeprints.uea.ac.uk/28591/

Pennington, N., 1987. Comprehension strategies in
programming. Proceedings of the 2nd Workshop in
Empirical Studies of Programmers (WESP’87),
Ablex Publishing Corp, NJ, USA. ISBN: 0-89391-
461-4

Prechelt, L., B. Unger, M. Philippsen and W. Tichy,
1998. Re-evaluating inheritance depth on the
maintainability of object-oriented software. Int. J.
Empirical Software Eng., 1-16.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.48.7652&rep=rep1&type=pdf

Pressman, R., 2004. Software Engineering: A
Practitioner’s Approach. 6th Edn., McGraw-Hill
Science/Engineering/Math, England, ISBN-10:
007301933X, pp: 880.

Seaman, C.B., 2002. The information gathering
strategies of software maintainers. Proceedings of
the 8th International Conference on Software
Maintenance, Oct. 3-6, Montreal, Quebec, Canada,
pp: 0141.
http://doi.ieeecomputersociety.org/10.1109/ICSM.
2002.1167761

Sharif, K.Y. and J. Buckley, 2008a. Developing
schema for open source programmers’ information-
seeking. Proceedings of the International
Symposium on Information Technology, Aug. 26-
28, IEEE, Kuala Lumpur, pp: 1-9. DOI:
10.1109/ITSIM.2008.4631611

Sharif, K.Y. and J. Buckley, 2008b. Observing open
source programmers’ information seeking.
Proceedings of the 20th Annual Psychology of
Programming Interest Group Conference

(APIGC’08), Lancaster University, Lancaster,
United Kingdom, pp: 1-10.
http://www.ppig.org/papers/20th-sharif.pdf

Sharif, K.Y. and J. Buckley, 2009a. Further
Observation of Open Source Programmers’
Information Seeking. Psychology of Programming
Interest Group, University of Limerick, Ireland, pp:
1-12. http://www.ppig.org/papers/21st-sharif.pdf

Sharif, K.Y. and J. Buckley, 2009b. Observation of
open source programmers’ information seeking.
Proceedings of the IEEE 17th International
Conference Program Comprehension, May 17-19,
IEEE Computer Society, Vancouver, British
Columbia, Canada, pp: 307-308. DOI:
10.1109/ICPC.2009.5090071

Sim, S.E., 1998. Supporting Multiple Program
Comprehension Strategies during Software
Maintenance. A thesis submitted in conformity
with the requirements for the degree of Master of
Science Graduate, Department of Computer
Science, University of Toronto.
http://www.ics.uci.edu/~ses/msc/thesis.pdf

Singer, J. and T. Lethbridge, 1998. Studying work
practices to assist tool design in software
engineering. Proceedings of the 6th International
Workshop on Program Comprehension, Jun. 24-26,
IEEE, Ischia, Italy, pp: 173-179. DOI:
10.1109/WPC.1998.693348

Singer, J., 1998. Work practices of software
maintenance engineers. Proceedings of the 4th
International Conference on Software Maintenance
Mar. 16-19, Bethesda, Maryland, pp: 139.
http://www.computer.org/portal/web/csdl/doi/10.11
09/ICSM.1998.738502

Sommerville, I., 2008. Software Engineering. 7th Edn.,
Pearson Education India, ISBN: 8131724611, pp:
864.

Sousa, M.J. Castro and H.M. Moreira, 1998. A survey
on the software maintenance process. Proceedings
of the International Conference on Software
Maintenance, IEEE Computer Society Washington,
DC, USA., pp: 265-274. ISBN: 0-8186-8779-7

Stein, C., G. Cox and L. Etzkorn, 2005. Exploring the
relationship between cohesion and complexity. J.
Comput. Sci., 1: 137-144.
http://www.doaj.org/doaj?func=abstract&id=11622
0

Sullabi, M.A. and Z. Shukur, 2008. CSCW for
preparing formal software specifications: issues
and implementation. J. Comput. Sci., 4: 333-340.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.165.8548&rep=rep1&type=pdf

J. Computer Sci., 7 (7): 1060-1071, 2011

1071

Wiedenback, S. and C.L. Corritore, 1991. What do
novices learn during program comprehension? Int.
J. Hum.-Comput. Interact., 3: 199-222. DOI:
10.1080/10447319109526004

Wikipedia, 2010. Java version history.
http://en.wikipedia.org/wiki/Java_version_history

Zayour, I. and T.C. Lethbridge, 2001. Adoption of
reverse engineering tools: A cognitive perspective
and methodology. Proceedings of the 9th
International Workshop on Program
Comprehension, May 12-13, IEEE, Toronto, Ont.,
Canada, pp: 245-255. DOI:
10.1109/WPC.2001.921735

