
Journal of Computer Science 7 (1): 101-107, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Poonam Saini, Research Scholar, Department of Computer Engg, National Institute of Technology,
Kurukshetra-136119. Haryana, INDIA. nit.sainipoonam@gmail.com

101

Proactive and Reactive View Change for Fault Tolerant

Byzantine Agreement

Poonam Saini and Awadhesh Kumar Singh
Department of Computer Engineering, National Institute of Technology,

Kurukshetra, 136119, India

Abstract: Problem statement: Dealing with arbitrary failures effectively, while reaching agreement,
remains a major operational challenge in distributed transactions. In the contemporary literature, standard
protocols such as Byzantine Fault Tolerant Distributed Commit and Practical Byzantine Fault Tolerance
handles the problem to a greater extent. However, the limitation with these protocols is that they incur
increased message overhead as well as large latency. Approach: To improve the failure resiliency with
minimum execution overhead, we propose two new protocols based on proactive view change and reactive
view change. Also, both approaches have been analyzed and compared. Results: Our dynamic analysis
reflects that, in a faulty scenario, the proactive approach is computationally more efficient with reduced
latency as compared to reactive one. Conclusion/Recommendations: Moreover, unlike PBFT and
BFTDC, our agreement protocol runs in two phases, which leads to reduced message overhead and total
execution time.

Key words: Distributed transactions, Two-phase commit, Byzantine agreement, Proactive view change,

Reactive view change, dynamic analysis

INTRODUCTION

 A distributed system is a collection of
independent computers, which are capable of
collaborating on a task (Swaroop and Singh, 2007).
Distributed Computing Systems (DCS) provide an
efficient way to achieve fault-tolerance and share
system resources such as processing elements,
memory modules, data files, and so on. A successful
execution of a distributed program usually requires
one or more of the resources that reside on multiple
hosts at different geographic sites of the DCS (Xing
and Shrestha, 2010). It is possible that some faults of
hosts or communication links may not be adequately
detected. This can be categorized under Byzantine
i.e., arbitrary faults.
 Transaction processing is a basic application of
distributed computing. Like other applications, fault
tolerance is a major concern in transaction processing
also. Moreover, the transaction handling protocols
should maintain atomicity, i.e., either all operations
of the transaction commit, or none of the operations
is carried out, i.e. the transaction aborts. The standard
commit protocol for distributed transaction is two-
phase commit protocol, popularly referred as 2PC
(Silberschatz et al., 1991), which study correctly in
presence of benign faults only. The present study
aims at designing an efficient agreement algorithm
that successfully handles Byzantine faults (El Emary
and Al Rabia, 2005). In addition, it significantly
reduces the time taken to complete the transaction.
Two protocols, one based on proactive and the other

on reactive approach, have been presented and
analyzed. Both the protocols achieve increased
system availability and enhanced throughput.
 Traditional Byzantine fault tolerant protocols
such as BFTDC (Zhao, 2007), PBFT (Castro and
Liskov, 2002) and Zyzzyva (Kotla et al., 2007) deal
with failures in a reactive manner, i.e., they rely on
the specification of the faults to initiate view change.
In a particular view, one of the replicas is chosen as
primary and other replicas study as backups. In the
middle of agreement, if time out occurs for current
view because of delay in message propagation or the
primary is found faulty then view change occurs. The
proactive approach (Saini and Singh, 2010), on
contrary, is designed to minimize the transaction
discontinuity and latency while ensuring stability as
well as availability of replicas through failure
notifications in advance. Failures may be caused by
power exhaustion as well as due to malicious security
attacks (Sundararajan and Shanmugam, 2010) like
message replication, passing wrong information,
fluctuating status of replicas etc. The proactive
protocols maintain the state information in advance
while, on contrary, the reactive one reduces the
impact of frequent failures whenever the fault in the
system is notified by the active participating replicas
in the system (Vijayaragvan et al., 2009).
 Towards this goal, we build a system model to
analyze the failure resiliency of our protocol under
both reactive and proactive approaches.

Motivation: In most of the contemporary study, the
protocol replaces the replica from the system when it

J. Computer Sci., 7 (1): 101-107, 2011

102

is diagnosed as faulty. This leads to increased
message overhead for the overall execution of the
protocol. Although, the protocols produce desired
result, they incur latency in order to initiate the view
change mechanism which results in short-lived (i.e.,
transient) halts during the transaction processing. We
have attempted to devise a technique which is able to
detect, in advance, the tentative fault in the system.
The protocol fulfills all the requirements that are
agreement, validity, and termination. We use a
Transaction Manager, which itself is assumed to be
trusted and fault free.

Contribution of paper: As the large scale
distributed computing systems are more prone to
failures, our protocol runs agreement on every
request without involving the clients. It makes the
protocol faster in the presence of increased number of
faults and makes it more useful for large networks.
 Agreement-based protocols, such as BFTDC
(Zhao, 2007), run a three phase agreement protocol
among replicas before it executes a request.
However, in our proposed system model, the
agreement process finishes in two phases, namely
ready-to-commit and set-commit. Thus, the protocol
has reduced message overhead and it broadcasts the
right decision to all clients. The protocol has been
shown to be computationally more efficient.

System model: We assume client/server architecture
between the coordinator replicas and the participants.
The protocol is started for a transaction when a
commit/abort request is received from the initiator.
To ensure safety and liveness properties, certain
synchrony has been assumed among the replicas. As
Byzantine faults are considered, only at the
coordinator site, participants are not replicated. There
are 3f +1 coordinator replicas, among which at most f
can be faulty during a transaction. We assume a
Transaction Manager TM, which itself is trusted and
possesses the power to diagnose and replace the
faulty coordinator as well as the faulty replicas. Each
coordinator replica is assigned a unique id i, where i
varies from 0 to 3f. The id is required to identify the
primary in a particular view and also for verification
of the replica during message transmission. Fig. 1
illustrates the schematic view change architecture
where the replica labeled P is primary and replicas
labeled R are backups. The rounded-corner rectangle
represents the semantic view of Transaction
Manager, TM.
The agreement for initial transaction request starts
from view 0. After the first phase (prepare), the
coordinator and replicas execute the agreement
protocol. Subsequently they send their decision to

Fig. 1: The schematic view change architecture

coordinator replica and enter into the second phase
(commit). Our view change mechanism is run by the
Transaction Manager under both, reactive and
proactive, approaches. Thus, agreement and view
change protocols run in the interleaved manner.

Problem definition: Consider a protocol wherein a
primary replica, say P, is activated for a particular
transaction request by receiving a commit/abort
message from among the population of clients. The
message is propagated to rest 3f replicas for their
proposed decision. Now, the agreement protocol
among the replicas is run. Three basic properties that
an agreement protocol must satisfy are:

Agreement: Any two non-faulty replicas that decide
on a value (commit/abort) for a particular id, i, must
decide on the same value. More specifically, a faulty
replica, if any, is computationally infeasible to alter
the decision of two non-faulty replicas.

Validity: If all non-faulty replicas have been
activated on a given id, i, with the same initial value,
then all non-faulty replicas that decide must decide
on this value.

Termination: All non-faulty replicas eventually
decide.
 At the end of agreement protocol, all the replicas
send their decision to the clients. This starts the
commit phase. A client waits for f+1 matching
messages before taking commit decision on
transaction. After receiving the required number of
matching replies, the client commits the transaction.

J. Computer Sci., 7 (1): 101-107, 2011

103

MATERIALS AND METHODS

The proactive approach: In this approach, in a
particular view, one of the replicas is chosen as
primary and other replicas study as backups. During
the initial phase of registration, all replicas register
themselves to the Transaction Manager, TM with
their unique id’s. Following this, the TM assigns the
responsibility of the coordinator to the lowest id
replica and designates it as primary, P. The current
view message that contains the current view number
v, primary replica P and transaction id i, is then
broadcast to each participating replica. Finally, if 3f
+1 replicas respond with an acknowledgement of
current view, the TM sends a begin-transaction
message to primary P in order to start the transaction
processing.
 The proactive approach depends mainly on two
entities, namely ping_time and status_flag. The
ping_time has been used to implement, essentially, a
time out mechanism. It is an additional message that
is attached only in the message field of the primary
(coordinator) replica. Now, the coordinator replica is
bound to declare its status to the TM within
ping_time. It works as a failure detector in order to
detect crash failure with the required level of
accuracy. Although, for byzantine faulty replica, the
failure detector has to know the semantic of the
protocol as it may send some spurious messages to
other replicas. However, the ping_time corresponds
to failure detector that helps to ensure completeness
in the protocol rather than accuracy. This would help
to detect if primary P would be able to successfully
participate in further transaction processing.
 Each of the backup replicas has a special state
variable status_flag, which represents the status of
the replica. If the replica is non-faulty then it would
set its status_flag as alive. However, any other value
assumed by status_flag is considered to be don’t care
value. Initially, all replicas’ status_flag value has
been assumed to be alive. After the completion of
each transaction round, the backup replicas inform
their status to the TM. The transaction proceeds
further, only, if the status of backup replica is alive;
otherwise, it is suspected as a faulty. A call for new
view change is initiated and the faulty replica is
removed at an early stage. Otherwise, the faulty
replica would have been detected after executing
some rounds. The pseudo code for view change
approach is shown in the following Fig. 2.
 To this end, both of the above entities play key
role in detecting proactively, in a transaction
processing system.

Fig. 2: Proactive View Change Approach

The reactive approach: In this approach, a faulty
replica is treated only when it is identified and
informed using time out mechanism. In a sense, this

J. Computer Sci., 7 (1): 101-107, 2011

104

approach restricts the faulty replica to deviate from the
specified behavior as any message, further, passed by
faulty replica is not accepted by other nodes.
 The reactive approach works as follows.
Initially, all participating replicas register themselves
to the Transaction Manager, TM with their id’s.
Afterwards, one of the replicas, the replica with
lowest id, is selected to serve as the primary, say P.
The current view is then broadcasted to everyone
involved in the transaction processing. The message
format of current view contains the current view
number v, primary P, transaction id i, and with a
predefined timeout T to run the protocol. If TM
receives the acknowledgement, in response to the
current view message, from 3f +1 replicas, it allows
primary P to begin transaction processing. While
running agreement, if timeout occurs for current view
because of delay in message propagation or the
primary is found faulty then view change occurs. If f
+ 1 replicas inform to TM that the view change is due
to fault in primary then the TM decides the new
timeout to be T (i.e., timeout for previous view), 2T
otherwise. Thus, it keeps same timeout for each view
change in case of primary being suspected as faulty.
Now, the transaction proceeds to reach an atomic
decision commit or abort. For reactive view change,
the pseudo code is given in the Fig. 3.
 Both of the view change approaches, proactive
and reactive, are designed to minimize the
discontinuity in the transaction processing. The
comparative analysis of the performance of both
mechanisms brings out the potential benefits of
proactive over reactive in terms of latency, message
overhead, and throughput.

The optimized agreement: The system handles one
transaction request at a time. The initiator is
responsible for initializing a transaction. During the
prepare phase, the primary sends a prepare
request to every participant in the transaction. The
prepare request is piggybacked with a prepare
certificate, which contains the commit request sent by
the initiator.
 After the prepare phase, the replicas engage in
the agreement round for the transaction. The
agreement protocol works in two phases namely,
ready-to-vote and set-commit. During the first phase,
the primary p sends an awake-to-vote message and its
decision to all other replicas. The message has the
format <awake-to-vote, v, t, o, C, Ati>, where v is the
current view number, t is the transaction id, o is the
proposed transaction outcome (i.e., commit or abort),
C is the decision certificate and Ati is the predefined

Fig. 3: Reactive View Change Approach

upper bound in order to reach agreement. There is
one decision certificate corresponding to each
participant. The transaction id is included in each
registration and vote record so that the final outcome
given by correct participants is atomic. A backup
replica suspects, the primary P to be faulty, on
following basis: if awake-to-vote message does not
fall into the same view number v, and the same
transaction id t that has not been executed earlier. If
the primary replica fails the above verification then
the backup replica initiates a view change

J. Computer Sci., 7 (1): 101-107, 2011

105

immediately; otherwise, it accepts the awake-to-vote
message. It then logs the accepted message and
multicasts act-commit message with the same
decision o, which is in the awake-to-vote message.
This initiates the set-commit phase. The act-commit
message has the format <act-commit, v, t, o, D>,
where D is the digest of the decision certificate C and
other contents are same as awake-to-vote message. A
coordinator replica i.e., primary P accepts act-commit
message provided the backup replica is in the current
view v and the current transaction is t. Also, the
digest value on both sides must be same. The
following Fig. 4 represents the agreement algorithm.
 If a replica has collected 2f+1 matching awake-
to-vote messages from different replicas (including
the replica’s own, if it is backup), it executes act-
commit on transaction t. This marks the end of set-
commit phase and also the agreement protocol.
During agreement, if any conflict occurs and a non-
faulty replica i could not advance to set-commit state
till the timeout, it broadcast a view change message
to the TM as well as to all other replicas. If the
primary is found faulty, TM assigns to next lowest id
the responsibility of the coordinator replica i.e.,
primary, P. Otherwise, the transaction is reinitiated
from the agreement protocol with the previously
selected primary replica.
 Now, the agreement for incomplete transaction
request starts from the last consistent state. At the end
of agreement protocol, all the replicas send their
decision to the clients. This marks the beginning of
the commit phase. A client waits for f+1 matching
messages before taking commit decision on
transaction. After receiving required number of
matching replies, the client commits the transaction.

The idea of agreement phase removal: In literature,
PBFT (Castro and Liskov, 2002) is the first protocol
that employs a three-phase agreement between the
replicas. The protocol is designed for total ordering
of multiple transactions and runs in three-phase to
reach agreement. Our protocol handles one
transaction at a time and runs agreement to decide on
commit or abort for a particular transaction. The three
phases in BFTDC are ba-pre-prepare, ba-prepare
and ba-commit. In ba-pre-prepare phase, the
secondary replicas check for the validity of the
primary replica by comparing the messages they
received from the clients and messages received from
the primary. If the numbers of messages fail to
match, the replicas suspect the primary to be faulty
and request for a view change in order to select new
primary. However, in our protocol the faulty primary,

Fig. 4: The Optimized Agreement Protocol

if exists, is treated by the TM, in advance, before it
gets involved in further transaction processing. It
would result in the increased efficiency of the system
in terms of time overhead.
 Secondly, in both ba-prepare and ba-commit
phase, messages are exchanged. The number of
messages being compared at each replica is different
in both phases. In ba-prepare phase this number is 2f
while in ba-commit phase it is 2f + 1. By running the
protocol for different number of faulty replicas, it is
found that the ba-commit phase (with 2f +1
comparisons) also fulfills the minimum matching
criteria for ba-prepare phase (with 2f comparisons).
Therefore, one of the phases from the agreement
protocol can be avoided or merged with any of the
other phase while maintaining the minimum
conditions to reach an atomic decision.
 Our protocol reduces the three-phase agreement
in two-phases only while achieving the necessary and
minimum requirements to complete the protocol
execution. Thus, the message overhead of agreement
protocol reduces drastically. This also results in less
execution time overhead of the protocol. These
analytical inferences have also been substantiated by
the experimental results.

J. Computer Sci., 7 (1): 101-107, 2011

106

RESULTS

 We have conducted simulation in order to
evaluate the performance of reactive and proactive
view change mechanism on the execution time (i.e.,
latency). Also, the agreement protocol is run and
simulated to evaluate the performance of two-phase
agreement over the standard three-phase agreement.

Fig. 5: Latency-Throughput Curve

Fig. 6: Message overhead

Fig. 7: Time overhead

 We have used BFTSim (2008). It uses a back-
end simulator which is based on ns-2. The front-end
uses a declarative overlog language P2. The
experiment is carried out for queries with different
batch size in order to view the differences in message
overhead and time overhead involved in the
transaction query processing.
 The protocols are implemented based on the
pseudo code description. Figure 5 shows latency-
throughput curves for the protocols with proactive
and reactive view change mechanism.

As we have used exponential distribution of
faults, when the number of faults is less, both
approaches deliver comparative performance in terms
of latency. However, with the increase in number of
faults, the latency gradient is significantly less in
proactive approach.
 In the next experiment, protocol has been
simulated to compare the message overhead of our
protocol with BFTDC (Silberschatz et al., 1991). The
output plot is shown in Fig. 6.
 For small-sized batch of transaction queries, the
message overhead is nearly same. However, as the
batch size of transaction query increases, the message
overhead increases with faster rate in case of BFTDC
(Silberschatz et al., 1991). This phenomenon leads to
reduction in total time consumed to complete the
transactions. This is evident in the plot shown above
in Fig. 7.

DISCUSSION

 The study evacuates the overhead involved in
terms of latency as well as message overhead to a
greater extent. Moreover, the optimized reactive view
change with the proposed novel idea of proactive
view change helped in designing a more failure-
resilient protocol.

CONCLUSION

 The major contribution of this study is the novel
solution to view change mechanism. Our method
uses a Transaction Manager, TM, to proactively
detect the crash of the primary as well as backup
replicas. To compare the performance, we also
presented a reactive approach to view change
mechanism. Both approaches have also been
analyzed and experimentally evaluated. The
proactive approach always exhibits the better
performance in a faulty scenario that makes it
suitable for long-lived applications. The proposed
approach dramatically reduces the latency of the

J. Computer Sci., 7 (1): 101-107, 2011

107

protocol and leads to enhanced throughput. The study
also presents an optimized Byzantine agreement
protocol which is able to reach agreement in two-
phases in comparison to widely used three-phase
like in BFTDC protocol. In the end, the
proposed agreement protocol reduces the overall
message overhead as well as total execution time to a
greater extent.

REFERENCES

BFTSim, 2008. BFTSim: A simulation framework

for comparing BFT protocols. http://bftsim.mpi-
sws.org/, April 2008

Castro, M. and B. Liskov, 2002. Practical byzantine
fault tolerance and proactive recovery. ACM
Trans Comput. Sys., 20: 398-461. DOI:
10.1145/571637.571640

El Emary, I.M.M. and A.I. Al Rabia, 2005. Fault
detection of computer communication networks
using an expert system. Am. J. Applied Sci., 2:
1407-1411. DOI: 10.3844/.2005.1407.1411

Kotla, R., L. Alvisi, M. Dahlin, A. Clement and E.
Wong, 2007. Zyzzyva: Speculative byzantine
fault tolerance. Proceeding of the 21st ACM
Symposium on Operating Systems Principles,
Oct 14-17, 2007, Stevenson, WA., pp: 45-48.

Saini, P. and A.K. Singh, 2010. An efficient
byzantine fault tolerant agreement. Proceeding
of the International Conference on Methods and
Models in Science and Technology, Nov. 6,
National Institute of Technology, India, pp: 162-165.
DOI: 10.1063/1.3526183

Silberschatz, A., H.F. Korth and E. Levy, 1991. An
optimistic commit protocol for distributed
transaction management. Proceeding of the 1991
ACM SIGMOD International Conference on
Management of Data, May 23-29, ACM New
York, NY, USA., pp: 88-97. ISBN: 0-89791-425-2

Sundararajan, T.V.P. and A. Shanmugam, 2010.
Novel intrusion detection system for wireless
body area network. J. Comput. Sci., 6: 1355-
1361. ISSN: 1549-3636

Swaroop, A. and A.K. Singh, 2007. A token-based
fair algorithm for group mutual exclusion in
distributed systems. J. Comput. Sci., 3: 829-835.
ISSN: 1549-3636

Vijayaragavan, S., K. Duraiswamy, B. Kalaavathi
and S. Madhavi, 2009. A performance study of
reactive multicast routing protocols in virtual
class room using mobile ad hoc network. J.
Comput. Sci., 5: 788-793. ISSN: 1549-3636

Xing, L. and A. Shrestha, 2010. Reliabilty evaluation
of distributed computer systems subject to
imperfect coverage and dependent common-
cause failures. J. Comput. Sci., 2: 473-479. DOI:
10.3844/jcssp.2006.473.479

Zhao, W., 2007. A byzantine fault tolerant distributed
commit protocol. Proceedings of 3rd IEEE
International Symposium on Dependable,
Autonomic and Secure Computing, Sep 25-27,
Cleveland State University Cleveland, Columbia,
pp: 37-46. ISBN: 978-0-7695-2985-1

