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Abstract: Problem statement: Human ping-pong players determine the stroke trajectory according to 
their experience before the ball enters their court. However, to enable a humanoid robot to select the 
appropriate stroke motion based on skills learned from 3D motion, important patterns must be 
generated to simplify the complex 3D motion. Approach: This study developed an effective strategy 
for teaching ping-pong skills to a humanoid robot. An optical/inertial motion-capture system that 
retrieves the stroke motion was constructed, along with the retrieved stroke motion trajectories 
analyzed to obtain the desired stroke patterns of the robot. Results: A motion capture system was 
implemented mainly to orient the robot on the stroke motion trajectory. This system was applied 
directly to a ping-pong game between a human player and a pitching machine to enable the robot to 
learn backhand strokes through human demonstration. The ball was continuously struck to the 
opponent so that it hit the anticipated region on the opposite side of the court while the pitching 
machine served the ball. The data were then classified using the proposed stopping detector and then 
processed by Principal Components Analysis (PCA) to generate the stroke patterns after collecting 50 
datasets for stroke trajectories. Conclusion: The right arm of the humanoid robot was successfully 
instructed to perform the actual ping-pong stroke using the generated trajectory. 
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INTRODUCTION 

 
 In the recent decade, robot technology has 
extended from manufacturing to daily life activities. For 
instance, robots that assist humans in everyday 
environments such as offices, homes and hospitals are 
highly desired. To meet these demands, wheeled 
humanoid service robots have been developed in recent 
years. However, demand for multi-functional humanoid 
robots is also increasing. This study attempts to equip a 
humanoid robot with the ability to determine the 
appropriate stroke motion trajectory in a robotic ping-
pong game. 
 An important work in robotic ping-pong 
application studies is Acosta et al. (2003), who devised 
a ping-pong playing robot with 5 Degrees Of Freedom 
(DOF). The robot drives two paddles using RC servos 
to strike the ball; the ball is located by a camera in 
conjunction with an algorithm based on the detection of 
the ball and the shadow it projects on the table. 
However, the system is limited in low response and the 
inability to apply it directly to a standard ping-pong 
table. Matsushima et al. (2005) later constructed a 

planar robot with 4 DOF and mounted it on a ping-pong 
table. The robot could learn from practice and could 
continuously increase its skill by applying locally 
weighted regression. However, the robot shape differs 
from that of a human and the system could not be 
taught directly by human skills. Humans decide which 
posture is the most effective for striking before the ball 
arrives. Given the difficulty in developing a feasible 
algorithm for achieving such behavior, exactly how 
humans play ping-pong must be understood before 
teaching a robot. Bentivegna and Atkeson (2003) 
proposed a method allowing a robot to learn task 
primitives from observations and applied it to a DB 
robot in air hockey and marble maze environments. The 
method orients the robot to generate the corresponding 
planar motion according to the planar environment. 
However, enabling a humanoid robot to select the 
appropriate stroke motion based on skills learned from 
3D motion requires generating important patterns to 
simplify the complex 3D motion. 
 Motion capture systems employ several available 
tracking technologies, including mechanical, 
electromagnetic, acoustic, optical and inertial/magnetic 
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tracking (Aggarwal and Cai, 1999; Wang et al., 2003). 
For ping-pong paddle tracking, researchers have applied 
optical tracking in virtual-reality games (Kim et al., 
2007; Rusdorf et al., 2007) and have acquired smooth 
motion trajectories using commercial motion capture 
devices, e.g., Vicon. However, such devices are 
prohibitively expensive and have some limitations 
during implementation. 
 Based on the above discussion, this study develops 
a device to directly teach ping-pong skills to a 
humanoid robot since the anthropomorphic nature of 
the robot enables direct orientation using human skills. 
This study presents a novel optical/inertial motion-
capture system that integrates inertial tracking with 
inexpensive optical tracking to retrieve motion data and 
to elucidate human ping-pong motions. The data are 
then filtered/modified using a fusion mechanism 
proposed by Roetenberg et al. (2007). To analyze the 
data, a stopping detector based on Gaussian probability 
density functions (pdfs) is developed to segment the 
motion data and to acquire important trajectory features 
through Principal Components Analysis (PCA). Finally, 
the stroke motion is performed directly using the 
obtained motion pattern in conjunction with the flight 
condition of the ball observed by the robot. 
  

MATERIALS AND METHODS 
  
Humanoid robotic ping-pong player: Figure 1 shows 
the developed humanoid robot and its stand-alone real-
time control system (Tsay James and Lai, 2008). The 
robot consists of a head, arms, hands and a mobile base. 
The robot is equipped with a 7 DOF robotic binocular 
head, two 7 DOF arms and two 7 DOF hands in order 
to imitate the visual and ambidextrous behavior of a 
human. The hardware architecture of the real-time 
control system employs four image processing boards 
to process images acquired by four color cameras, eight 
motor boards and eight driver boards for controlling 40 
servomotors and four processor boards for applying 
control strategies such as calculating robot dynamics. 
All data are transmitted quickly through the DP-SRAM.  
 

 
 
Fig. 1: Developed humanoid robot and hardware 

architecture of its real-time control system 

Based on the distributed allocation of computations for 
all algorithms, the sampling time for the servo 
controller is 0.005 sec while the sampling rate for 
image processing is 60 Hz for each video stream.  
 Human ping-pong players must determine the 
stroke trajectory and forehand/backhand stroke 
according to their experience before the ball enters their 
court. The ball speed in a human ping-pong game is 
generally 4-5 m sec−1 and a smash can obtain ball 
speeds of 15-20 m sec−1. Despite its anthropomorphic 
nature, the developed humanoid robot is not as 
dexterous or as fast as a human and cannot perform 
smashes. Therefore, the ball speed in this study is 
limited to 4-5 m sec−1 and the robot generates a paddle 
speed of 0.5 m sec−1 to return the ball, as analyzed 
using motion capture system developed in this study. 
Given that the robot cannot quickly switch between 
forehand and backhand strokes, only the backhand 
stroke motion and teaching are considered. 
 
Stroke motion capture of human and robot behavior 
teaching: 
Motion capture system: This study constructs an 
optical/inertial motion-capture system for acquiring the 
central position/orientation of the paddle during play in 
order to acquire the stroke motion trajectory of the 
paddle and to correctly orient the robot to perform the 
stroke motion in real time. An inertial measurement 
unit provides sensor data for 3-axis linear accelerations 
and 3-axis angular velocities. The optical tracking 
system minimizes the effects of ambient light by using 
infrared illuminators as active markers. Figure 2 shows 
the system architecture and coordinate relationships, in 
which the relationship between the robot and the 
motion capture system is elucidated based on the 
calibration pattern. In the proposed application, the 
motion capture system enables the robot to determine 
the appropriate stroke motion trajectory, allowing it to 
align the trajectory with the stereo-vision coordinate 
frame of the robot through the calibration pattern.  
 Infrared illuminators installed in the center of the 
paddle surface must affect the touch between the ball and 
the paddle surface. Therefore, in this study, three infrared 
illuminators are installed in a circumferential 
arrangement with the center of the paddle surface to 
obtain its actual motion trajectory without influencing 
play. Figure 2 shows that points o1, o2 and o3 are the 
installed positions of the active illuminated markers. The 
inertial measurement unit is then installed on the back of 
the paddle surface. Therefore, the correct 
position/orientation of the paddle center is obtained using 
a fusion filter (Roetenberg et al., 2007). The proposed 
architecture consists of the inertial measurement unit 
with a high sampling rate and the optical tracking system 
with a low sampling rate, as Fig. 3 shows. 



J. Computer Sci., 6 (8): 946-954, 2010 
 

948 

 
 

Fig. 2: Hardware architecture and coordinate relations of motion capture system 
 

 
 

Fig. 3: Architecture of fusion filter for motion capture system 
 
 For inertial measurements, angular velocity ωS 
acquired from rate gyroscopes is integrated over time to 
obtain the change in orientation with respect to an 
initially known orientation (Bortz, 1971):  

 

z y
P,I P,I S S

S z x

y x

0

Θ Θ ,      0

0

 −ω ω
 

 = ω × ω × = ω −ω  
 −ω ω 

&  (1) 

 
where, P,I

SΘ  is the rotation matrix with respect to the 

base coordinate frame (P). Linear accelerometers are 

also used to measure acceleration as and gravitational 
acceleration gs with respect to the sensor coordinate 
frame (S), which can be transformed to acceleration aP,I 
and gravitational acceleration gP,I with respect to the 
inertial base coordinate frame (I) by rotation matrix 

P
SΘ : 

 
P,I P,I P S S

Sa g Θ (a g )− = −  (2) 
 
 The integral of the acceleration aP,I gives the 
velocity VP,I- and the double integral gives the position 
PP,I- with respect to the base coordinate frame (P) after 
removing the gravity component: 
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where V0 and P0 are known values. 
 For optical tracking, the feature points 
( j j[u ,v ];    j 1, ,6= L ) of the three active illuminated 

markers in the image plane of the two infrared cameras 
are located and the 3D position (O O O

1 2 3p ,p ,p ) of three 

active illuminated markers is then reconstructed by 
stereo triangulation. Next, the position/orientation 
( P,O P,OP ,Θ− − ) of the paddle center is calculated using 
geometric relationships. Finally, the measurement 
information is calibrated using the Kalman filter 
(Grewal and Andrews, 1993) to obtain an accurate 
position/orientation (P ,Θ+ + ) of the paddle center. 
Otherwise, the calibrated linear/angular velocity 
( V ,Θ+ +& ) of the paddle center is also applied in the 
stopping detector. 
 
Teaching the humanoid robot to play ping-pong: 
Given the difficulty in using mathematical equations to 
describe the desired stroke motion trajectory of the 
robot in space, the stroke motion trajectory must be 
obtained by using the motion capture system so that 
human motion can provide a reference for robot 
motion. However, only some stroke trajectories can be 
generated since it is impossible for humans to generate 
stroke trajectories for all possible stroke points. 
Consequently, the collected stroke trajectories for some 
stroke points cannot be directly applied to the robot 
because these stroke points may differ from those in an 
actual ping-pong game. Therefore, this study proposes a 
novel method of producing stroke patterns to orient the 
robot on the stroke motion.  
 First, a ball served by a pitching machine is struck 
continuously using a backhand stroke. The selected 
stroke points are in a region that the robot can strike. 
Given that all continuous stroke trajectories are 
recorded on the computer during play, the data are 
segmented and classified. Obtaining the breaking points 
in continuous data is extremely difficult due to the low 
but continuous velocity. Therefore, a stopping detector 
is used as a simple adaptive two-class classifier for 
segmenting the motion data into piece records. For the 
two-class classifier, a three dimensional feature vector 
is used, whose first component is the velocity 
magnitude at time t, second component is the velocity 
magnitude at time t-1 and third component is the 
magnitude difference between the velocity at time t and 
t-1: 

 2 2 2
x y zvelocity magnitude V V V= + +  (5) 

 
where, Vx, Vy and Vz refer to velocity values recorded 
on the X-, Y- and Z-axis, respectively. In this 
application, two Gaussian density functions 

1 2{ , }Φ Φ = Φ  are used to model the static situation and 

dynamic situation, respectively. A Gaussian classifier is 
a Bayes classifier where class-conditional probability 
density ip(x | )ω  for each class iω  is assumed to have a 

Gaussian distribution. 
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where, n denotes sample size. By assuming ip(x | )ω  is a 

multivariate Gaussian density, a discriminant function 
can be expressed as: 
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 Once the Gaussian discriminant functions are 
obtained (two in the present case, one for the static 
situation and one for the dynamic situation), the 
decision process simply assigns data x to class ωi if: 
 

i
i

j argmax d (x)=  (10) 

 
 The correct breaking points are obtained using the 
stopping detector with Gaussian pdfs. Each piece record 
is quantified to have the same quantity. All quantified 
data are then presented in the following form:  
 

1 1 1 1 1 1
i x y z x y z

n n n n n n
x y z x y z

traj {P ,P ,P , , , ,

           ,P ,P ,P , , , },i 1, ,k

= ϕ θ ψ

ϕ θ ψ =L L

 (11) 

 
Where: 
k = The number of piece records  
n = The point number of each piece record  
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 Finally, a PCA is performed on these data to obtain 
the important feature points of a stroke motion 
trajectory. In a ping-pong player application for a 
humanoid robot, these feature points are chosen as the 
knot points of the motion trajectory for spline curve 
fitting. To perform the stroke motion, the desired stroke 
trajectory is implemented using the spline curve fitting 
based on the stroke pose of the robot arm and motion 
interval, which are obtained from the flight condition of 
the ball.  
 

RESULTS AND DISCUSSION 
 
Experimental verification: Figure 4 illustrates the 
constructed ping-pong paddle motion-capture system and 
the ping-pong environment, where a pitching machine 
was placed opposite the ping-pong player to serve the 
ball to the player. The motion capture system included 
two infrared cameras mounted on the ceiling for active 
marker capture; three infrared illuminators were installed 
around the paddle surface to serve as an active marker 
device. A gyro/accelerometer device attached to the back 
of the paddle surface provided inertial tracking. To verify 
the effectiveness of the constructed motion capture 
system, a human player holding the ping-pong paddle 
performed a backhand shadow stroke. Figure 5 
summarizes the measurement results of the 
optical/inertial motion-capture system for a one-stroke 
motion trajectory. Despite the significant noise 
interference in the measurement results for the optical 
tracking and inertial tracking, a smooth low-noise motion 
trajectory was obtained using a Kalman filter. 
 In the learning stage, the motion capture system 
was applied directly to a ping-pong game between a 
human player and a pitching machine such that the 
robot could be trained to strike with backhand strokes 
through human demonstration. The ball was struck 
continuously so that it hit the anticipated region of the 
court on the opposing side while the pitching machine 
served the ball (Fig. 6). The data were then classified 
using the proposed stopping detector after collecting data 
for 50 stroke trajectories. The trivariate Gaussian 
distributions of the stopping detector could not be plotted 
since they required a fourth dimension. Figure 7 shows 
three univariate Gaussian distributions computed as parts 
of the trivariate Gaussian distribution for the static 
situation class and dynamic situation class. In Fig. 8, four 
groups of consecutive raw data show the variation in 
motion trajectory of the center of the paddle surface for 
four consecutive strokes. The four peaks in Fig. 8 
reveal that each stroke motion persisted for 1-2 sec. The 
left of Fig. 9 depicts the paddle trajectories in 3D space, 
which were obtained from raw capture data for the four 
consecutive strokes. 

 Each group of raw data captured from one stroke 
motion was first compacted according to the stroke 
trajectory curvature. All reduced training data were then 
processed through PCA to achieve the feature points of 
a stroke motion. Finally, these feature points were 
selected as the knot points of each paddle trajectory for 
spline curve fitting according to the initial and final 
poses of the paddle in order to generate the stroke 
pattern for each stroke motion. The right of Fig. 9 
shows the stroke patterns obtained for the four 
consecutive strokes. 
 In the application stage, the feature points obtained 
for the stroke motion were applied to the developed 
humanoid robot for the ping-pong stroke motion. A 
regular ping-pong paddle was mounted directly on the 
wrist of the robotic right arm. The right arm of the 
developed humanoid robot was then instructed to 
perform the actual ping-pong stroke using the generated 
trajectory based on the initial and stroke poses of the 
paddle and motion interval. The developed robot arm 
has a 7 DOF redundant structure. In this study, a 
Lagrangian network (Wang et al., 1999) was utilized to 
solve the inverse kinematics problem of this redundant 
arm with a modified weighting matrix, in which 
elements were adjusted based on the performance 
criteria for preventing joint limits and collision 
avoidance with robotic body. Figure 10 shows stills 
from a stroke motion video when a ball was served by a 
pitching machine. 
 This study on ping-pong stroke learning in 
humanoid robots provided the preliminary data needed 
to develop humanoid robots that can play ping-pong 
with a human opponent. The proposed motion capture 
system obtained a smooth low-noise motion trajectory 
from raw captured data using a Kalman filter, despite 
the significant noise interference in the measurement 
results for the optical tracking and inertial tracking. 
However, raw captured data from one stroke motion 
could be compacted according to the stroke trajectory 
curvature in order to reduce the computation time 
needed for the following PCA.  
 

    
 
Fig. 4: Ping-pong environment and the constructed 

ping-pong paddle motion-capture system
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Fig. 5: Measurement results of the optical/inertial motion-capture system 
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Fig. 6: Consecutive strokes for ball served by a pitching machine 
 

 
 

Fig. 7: Gaussian probability density functions for the static/dynamic situation classes 
 

 
 

 
 

 
 

Fig. 8: Paddle trajectories for four consecutive strokes 
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Fig. 9: Raw paddle trajectories in 3D space for four consecutive strokes (left) and final patterns (right) 
 

 
 

Fig. 10: Stills from a stroke motion video 
 

CONCLUSION 
 
 This study presented a motion capture system for 
teaching ping-pong skills to a humanoid robotic player. 
The anthropomorphic nature of the humanoid robot 
enabled direct orientation using human skills. Finally, a 
stroke pattern method was proposed to orient the robot 
on how to perform the actual ping-pong stroke in real 
time. As for future research, efforts are underway to 
develop an appropriate intelligent learning strategy for 

enhancing robotic skills by self learning. The ultimate 
objective is developing a humanoid robotic ping-pong 
player that can interact realistically with human players. 
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