
Journal of Computer Science 6 (1): 87-91, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Silvano Martello, DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
87

A Free Educational Java Framework for Graph Algorithms

Gianluca Costa, Claudia D'Ambrosio and Silvano Martello

Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna,
Viale Risorgimento 2, 40136 Bologna, Italy

Abstract: Problem statement: In the teaching of graph theory algorithms it is important that students
can experiment them on numerical instances in order to fully understand their logical meaning and to
learn how they can be implemented. Approach: We developed an open source Java framework to help
students in their approach to the study of graph algorithms. The framework was implemented so as to
be portable and easy to use. In addition, we included a library that anyone can easily use to develop
custom algorithms. Results: The framework, which is currently in use at the University of Bologna,
and is available on-line, presently includes four basic algorithms in graph theory, for the solution the
following problems: shortest spanning tree, shortest paths, maximum flow, and critical path. It includes
an intuitive graphical user interface, and gives the users the possibility of performing a "step-by-step"
execution. Conclusions: The presented Java framework constitutes a first step towards the
implementation of didactical instruments for the teaching of graph theory. Future developments will
also include a new major release and an implementation targeting the Microsoft. NET framework.

Key words: Computer-aided education, visualization, graph theory, algorithms

INTRODUCTION

 The official birth date of graph theory is 1736,
when Leonard Euler (Euler, 1736) solved the famous
problem of the seven bridges of Königsberg through a
graph model. For many years the use of this discipline
was mainly limited to recreational mathematics like,
e.g., the Icosian Game, invented in 1857 by the Irish
mathematician William Rowan Hamilton: This puzzle
required finding a particular path, later known as the
Hamiltonian circuit, in a graph defined by the edges of
a dodecahedron. In the mid Nineteenth century
however, graph theory also began being used for the
solution of practical problems: In 1845 physicist Gustav
Kirchhoff (1845) employed it to calculate the currents
in electrical networks. Later, Arthur Cayley, James J.
Sylvester and George Polya used graph theory concepts
to enumerate chemical molecules. In the Twentieth
century, the development of many algorithms for a
huge number of problems arising on graphs greatly
increased its use in the solution of optimization
problems arising in many fields. Today graph theory is
a recognized powerful tool and the great majority of
courses in operations research include it.
 In the teaching of graph theory algorithms it is
important that students can experiment them on
numerical instances in order to fully understand their
logical meaning and to learn how they can be

implemented. GraphsJ, the Java framework described in
this study, was developed to help students in their
approach to the study of graph algorithms. Several
graph-oriented applications exist nowadays(Lau, 2006;
Sedgewick, 2003; Wu, 2005), but it is rare to find a
number of important general features in one program.
Indeed, in our opinion, a useful educational application
should be:

• Portable: It should run on most operating systems
• Easily extendable: Even non-experienced

programmers should be able to quickly create and
run a new algorithm

• Easy to use: It should enable students to enjoy their
learning experience

• Open source

 GraphsJ provides a standalone application and a
library that anyone can use to develop custom
algorithms: A new algorithm can be created by just
inheriting from few abstract classes. Its graphical user
interface, the possibility of performing a "step-by-step"
execution and the detailed output information it
provides proved to help the students in their learning of
basic graph algorithms. At the home page
http://www.or.deis.unibo.it/staff_pages/martello/Graphs
J/GraphsJ.html the user can either execute GraphsJ
without installing it via Java Web Start (JWS) or

J. Computer Sci., 6 (1): 87-91, 2010

88

download its Software Development Kit (SDK).

MATERIALS AND METHODS

Algorithms: The following algorithms were
implemented in GraphsJ, for the solution of four basic
graph theory problems arising in different graph
families:

• Shortest spanning tree: Given an undirected graph

G = (V,E), with vertex set V ={v1, ..., vn}, edge set
E⊆{(v i ,vj): vi, vj∈V and i<j} and integer weight
w(vi ,vj) associated with each edge (vi ,vj)∈E, find
a spanning tree G' = (V, E') of G such that
∑(vi ,vj)∈E' w(vi ,vj) is a minimum. Implemented
algorithm (Prim, 1957)

• Shortest paths: Given a directed graph G = (V,A),
with vertex set V = {v1, ...,vn}, arc set A⊆{(v i,vj):
vi , vj∈V} and non-negative integer length w(vi,vj)
associated with each arc (vi ,vj)∈A, find the shortest
paths from a specified vertex s ∈ V to all vertices of
V. Implemented algorithm (Dijkstra, 1959)

• Maximum flow: Given a network N = (V,A), with
vertex set V = {v1, ..., vn}, arc set A⊆{(v i,vj): vi ,
vj∈V} and non-negative integer capacity qij
associated with each arc (vi,vj) ∈ A, find the
maximum flow from a specified vertex s∈V to a
specified vertex t∈V. Implemented algorithm
(Ford and Fulkerson, 1962)

• Critical path: We are given a directed acyclic
activity graph G = (V,A), with vertex set V = {v1,
..., vn}, arc set A⊆{(v i,vj): vi, vj∈V} and non-
negative integer duration d(vi,vj) associated with
each arc (vi,vj)∈A. Arcs represent activities,
vertices represent the start and end of activities and
the graph itself represents precedence relations
among activities. The problem is to find the
starting time of each activity so that the makespan
between a specified starting vertex s ∈ V and a
specified ending vertex t∈V is a minimum.
Implemented algorithm: Critical Path Method
(CPM). (CPM was developed in the mid Fifties at
the DuPont Company at the same time that the
consultant firm of Booz, Allen and Hamilton
developed PERT for Lockheed Aircraft
Corporation (Siemens, 1971)

 A detailed pseudo-code statement of the algorithms
can be downloaded from GraphsJ home page. A
common characteristic of these algorithms is that they
all operate by associating labels to the vertices. In the
part devoted to the Java Implementation we detail how
they were handled.

Architecture: The choice of Java. The target platform
chosen for GraphsJ was the Java Virtual Machine,
because of several considerations:

• Unlike other excellent frameworks like Microsoft

.NET, Java can run almost flawlessly on several
operating systems and portability was one major
requirement for GraphsJ

• Java is object oriented: OOP (Object Oriented
Programming) is one of the most elegant and
productive development models nowadays, as it
allows, for instance, to naturally represent
interactions between the entities in the application
domain

• Java is a worldwide language, therefore a large
number of people already know it and are able to
develop their algorithms without having to learn a
new programming language

• Java is fairly easy, mature and with few subtleties:
Scientists who didn't previously study Java can
benefit of the gradual learning curve offered by the
language

RESULTS AND DISCUSSION

Framework architecture: Similarly to most well-
designed object-oriented frameworks, GraphsJ adopts
the MVC (Model/View/Controller) pattern (Fig. 1):
This means that the model (the data) and the view (what
is shown to the user) are kept separated, in our case by
using different classes and packages; the controller is
the subsystem which fills the gap between them. Strong
layer (and sub-layer) separation is a key factor of
software robustness and, even if not always perfectly
applicable, ensures a substantial benefit to the overall
architecture.

 To be more precise, GraphsJ:

• Fully implements the model, by introducing classes

and utilities related to the domain of graph theory.
They are mainly enclosed by package
graphsj.model and its subpackages, among which
the most important is graphsj.model.graphkeeper

• Realizes the view mainly via frames, dialogs and,
notably, via GraphCanvas, the component on
which users can draw their graphs. GraphCanvas
extends the JGraph component provided by
JGraph, a third-party library referenced by the
program (Alder, 2000). JGraph is a useful Swing
component which enables the program to present
the user with a graph canvas; GraphsJ implements
this feature by extending JGraph and adding
custom editing logic

J. Computer Sci., 6 (1): 87-91, 2010

89

Fig. 1: GraphsJ general architecture

• Implements the controller by introducing the

SafeAdapter class, which inherits from
JGraphModelAdapter, the controller exposed by
JGraphT (Sichi, 2003), which allows easy
integration of custom data with the JGraph library

 In the model layer, or between it and the controller
layer, lies the Extension subsystem, which is able to
read custom algorithm classes from external jars (that
could be not only local, but also remote files) and to
transparently execute them just like the algorithms
deployed with the program.

Java implementation:
Model: The model relies on Java generics so as to
obtain a coherent type system: Most classes have
generic type parameters, starting from the basic
GraphObject<V, E>, which models a generic graph
attachment and which is subclassed by both Vertex<V,
E> and Edge<V, E>. The mutual dependency between
Vertex and Edge imposed by their generic parameters
(<V, E>), although not mandatory from a theoretical
point of view, further enforces type coherence: One
cannot insert a wrong kind of vertex into a graph, nor
even associate it with an unsuitable kind of edge.

Graph: GraphsJ defines a GraphKeeper<V, E> class,
that stores a private instance of the
DefaultListenableGraph class provided by JGraphT,
which, in turn, could be seen as a graph with events;
GraphKeeper exposes the private graph's functionality

via public methods such as vertexSet(), edgeSet() and
getEdge(): This strong encapsulation guarantees a
correct use of the features provided by the graph itself,
because every public access to the graph is strictly
checked by GraphKeeper.

Vertices and edges: The graph constituents are
modelled by the abstract classes Vertex<V, E> and
Edge<V, E>: Their behavior is similar, because they
both inherit from GraphObject<V, E> and share a
common set of public methods to attach or detach them
from a graph. In addition, each class exposes public
methods that further expose the data of the internal
graph. For example:

• Vertex provides-among many others-

getIncomingEdges() and getOutcomingEdges()
• Edge provides getSource() and getTarget()

 It should be noted that the information provided by
these methods sums up global, graph-scoped data,
which would not be available to GraphObject instances
if the GraphKeeper didn't provide package-level access
to its private graph instance, by defining the protected
getter:

protected DefaultListenableGraph<V, E> getGraph() {
 return graph;
}

which, according to Java's visibility rules, can also be
called by classes in the same package (in particular,
Vertex and Edge).

Algorithm: The algorithm logic is implemented by the
Algorithm<V, E> class, whose abstract methods are
called by the RunController<V, E> class during
algorithm execution. Therefore, from the software
engineering viewpoint, Algorithm behaves as a strategy
for a RunController instance. Algorithm is a class with
very few facilities, useful only if one wants to develop
an unusual algorithm. For most cases,
StandardAlgorithm or StartStopAlgorithm are a far
better choice. The former supports the runtime label
mechanism we will discuss below. The latter inherits
from StandardAlgorithm and simplifies development by
asking both a source vertex and a target vertex at the
very beginning of the algorithm execution. It then
performs several checks on them. For example, the
source vertex must not have incoming edges, whereas
the target vertex must not have outcoming edges.

StandardAlgorithm and its protocol: Standard

J. Computer Sci., 6 (1): 87-91, 2010

90

Algorithm not only inherits from Algorithm, but also
narrows its generic constraints; its declaration is: public
abstract class Standard Algorithm<V extends Standard
Vertex<V, E>, E extends Edge<V, E> and Standard
Edge<V, E> extends Algorithm<V, E>> Standard
Vertex is declared as an abstract class, whereas
Standard Edge is an interface: This is due to the fact
that many Edge subclasses exist in the library and can
be chosen by the developer (Java does not support
multiple inheritance). On the other hand, Standard
Vertex directly inherits from the basic Vertex class and
is supposed to be the vertex base class of choice.
Anyway, they must be implemented by the concrete
Vertex and Edge subclasses (respectively) that one
wants to associate with a Standard Algorithm subclass.
A common trait is that they both require the
implementation of method void set Algorithm(Standard
Algorithm<V, E> algorithm), which is called by
Standard Algorithm at the beginning of every algorithm
execution so that every vertex and edge always has a
reference to the running algorithm. The advantage of
this choice becomes clear if we consider the following
code extract, from class Prim Vertex (which models a
vertex for Prim's shortest spanning tree algorithm):

if (getAlgorithm().getRunController().isVerboseRun())
{
 return String.format("%s {%s, %s}", getName(),

bestVertexName,
weightFromBestVertex.toString());

} else {
 return String.format("%s {%s}", getName(),

bestVertexName);
}

 As we can see, getAlgorithm() is used to retrieve
the RunController instance used to manage the current
algorithm execution and, consequently, the current run
options; in this case, isVerboseRun() returns true if the
user has chosen 'Verbose run' in the Run menu.

Algorithm labels: As we stated before, all the
implemented algorithms rely on labels not only to
process their data, but also to show their current state to
the user. The combination of JGraph and JGraphT
shows, for both vertices and edges, the return value of
the toString() method. During the development of
GraphsJ, a problem arose: When designing the graph,
vertices must only show their name (for example, 'V1'),
whereas at run-time they must show their full label (that
is, the name with additional algorithm-related data).
The chosen solution was to override toString() in
StandardVertex as follows:

@Override
public String toString() {
 if (algorithm != null) {
 return getRunningLabel();
 } else {
 return super.toString();
 }
}

where getRunningLabel() is an abstract methods whose
signature is:

Protected abstract String getRunningLabel();

 In other words, at design-time just the vertex name-
provided by the base class-is shown to the user,
whereas at run-time the label text is left to the concrete
subclass implementation. For what concerns edges, no
particular run-time behavior has been provided - but it
should easily be implemented by custom subclasses
through using the setAlgorithm() hook method, always
called when the execution of a Standard Algorithm
begins. It should also be noted that there is no method
called when algorithm execution ends. The reason is
quite simple. When the user runs an algorithm, the
input graph, drawn on the main Graph Canvas, is
copied and the new graph is assigned to another Graph
Canvas, which is the one shown during algorithm
execution. This means that the algorithm works on a
copy of the original graph, leaving the input untouched.
When the algorithm ends, the graph used during its
execution is no more used and can be removed by the
garbage collector.

Controller: The controller is mainly realized by the
SafeAdapter<V, E> class, which inherits from
JGraphModelAdapter, a class provided by JGraphT
whose duty is basically to watch the graph, draw it on a
JGraph component and react to changes in the model by
updating the view. SafeAdapter adds some useful
methods to ease the management of fonts and colors:
for example, setVertexFontSize() and
setEdgeFontSize() enable the developer to
programmatically set the font size for vertices and
edges; makeUpEdge() can change both the line width
and the color of an edge.

View: The most important feature of the view is the
GraphCanvas component, which enables users to draw
graphs in a simple and intuitive way. It inherits from
the third-party component JGraph and adds significant
custom logic, in particular object editing support: when
the user double clicks a vertex or an edge, the

J. Computer Sci., 6 (1): 87-91, 2010

91

underlying GraphObject's edit() method is called; if the
algorithm creator overrides the related methods exposed
by Vertex and Edge, it is possible to customize the
editing process in order to ask for custom data. Many
more classes compose the view, starting from
MessageProvider, which provides a unified, singleton
source of predefined message dialogs: It can be used,
for example, to show a 'warning box' or an 'error box' to
the user without having to deal with the details of
Swing's JOptionPane class.

How to develop a custom algorithm: What follows is
a very simple task list useful to briefly introduce the
steps required in order to create a custom algorithm
pluggable in GraphsJ. For a more complete and detailed
description, the reader is referred to Chapter 9 in
(Costa, 2009):

• Create the source files to translate the concepts and

logic of the problem into software. In particular,
one must:
• Extend the abstract class

graphsj.model.graphkeeper.Vertex<V, E> to
model the algorithm vertices

• Extend the abstract class
graphsj.model.graphkeeper.Edge<V, E> to
model the algorithm edges

• Inherit from the abstract class
graphsj.model.graphkeeper.GraphKeeper<V,
E> to join the two classes above in one
wrapper containing the graph instance itself

• Subclass the abstract class
graphsj.model.graphkeeper.Algorithm<V, E>
to implement the algorithm logic

• Compile the source files with the Java compiler,
remembering to reference both the GraphsJ library
(GraphsJ.jar) and the two Java libraries on which it
depends, namely lib/jgraph.jar and lib/jgrapht-
jdk1.6.jar

• Pack all the compiled files in one jar. (This and the
steps above can be easily accomplished by using an
IDE)

• Run GraphsJ, click on Graph/New... and choose to
run a custom algorithm. Then specify the jar's URL
(which could be any jar file URL, not necessarily a
local file URL) and the fully-qualified class name

• Click OK and begin drawing the graph using the
vertices and edges provided by the algorithm

CONCLUSION

 We have described GraphsJ, an open source
educational Java framework that also provides a library

anyone can easily use to develop custom algorithms.
We are currently working on a new major release of
GraphsJ and on an implementation targeting the
Microsoft. NET framework.

REFERENCES

Alder, G., 2000. JGraph. http://www.jgraph.com
Costa, G., 2009. Didactic java software for graph

algorithms. Bachelor’s Thesis, University of
Bologna.

Dijkstra, E.W., 1959. A note on two problems in
connection with graphs. Numerische Mathematik,
1: 269-271.

 http://shortestpath.wordpress.com/2009/02/23/a-
note-on-two-problems-in-connection-with-graphs-
dijkstra-1959/

Euler, L., 1736. Solution of a problem relating to the
geometry of position. Commentarii academiae
scientiarum imperialis. Petropolitanae, 8: 128-140.
http://math.dartmouth.edu/~euler/docs/originals/E0
53.pdf

Ford, L.R. and D.L. Fulkerson, 1962. Flows in
Networks. Princeton University Press, New Jersey,
USA., ISBN: 10: 0691079625, pp: 198.

Kirchhoff V.S., 1845. Ueber den durchgang eines
elektrischen stromes durch eine ebene, insbesonere
durch eine kreisförmige (About the electric current
running through a plane, especially through a
circular form). Annalen der Physik und Chemie,
140: 497-514. DOI: 10.1002/andp.18451400402.

Lau, H.T., 2006. A Java Library of Graph Algorithms
and Optimization (Discrete Mathematics and its
Applications). Chapman and Hall/CRC, Boca
Raton, FL., ISBN: 978-1-58488-718-8, pp: 386.

Prim, R.C., 1957. Shortest connection networks and
some generalizations. Bell. Syst. Tech. J., 36:
1389-1401.
http://bibnetwiki.org/wiki/Shortest_connection_net
works_and_some_generalizations.

Sichi, J.V., 2003. JGraphT.
http://jgrapht.sourceforge.net

Sedgewick, R., 2003. Algorithms in Java, Part 5: Graph
Algorithms. 3rd Edn., Addison Wesley, Boston,
MA., ISBN: 10: 0201361213, pp: 528.

Siemens, N., 1971. A simple CPM time-cost tradeoff
algorithm. Manage. Sci., 17: B354-B363. DOI:
10.1287/mnsc.17.6.B354

Wu, M., 2005. Teaching graph algorithms using online
java package IAPPGA. ACM SIGCSE Bull., 37: 64-68.
http://portal.acm.org/citation.cfm?id=1113879

