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Abstract: Problem statement: High precision machining requires high capability of multi-axis feed 
drive systems to follow specified contour accurately. Although each feed drive axis is controlled 
independently in many industrial applications such as X-Y tables and Computer Numerical Control 
(CNC) machines, machining precision is evaluated by error components orthogonal to desired contour 
curve. Contouring controller design is required for precision machining, which should consider 
disturbance and dynamics variation such as friction, cutting force and workpiece mass change. 
Approach: This study applied model predictive design to contouring control systems. Model 
predictive control utilized an explicit process model and tracking error dynamics to predict the future 
behavior of a plant and hence it is effective for precision machining in machine tool feed drives. To 
improve the contouring performance, a new performance index was proposed in which error 
components orthogonal to the desired contour curve are more important than tracking errors with 
respect to each feed drive axis. Controller parameters were calculated in real time by solving an 
optimization problem. Results: The proposed controller was evaluated by computer simulation for 
circular and non-circular trajectories. Weighting factors of performance index terms were used as 
tuning factors of the proposed controller. Simulation results showed that a better contouring 
performance can be obtained by choosing of the weighting factors in performance index items 
appropriately. Conclusion/Recommendations: A model predictive contouring controller for biaxial 
feed drive systems was presented. Simulation results demonstrated that the proposed approach can 
significantly improve the contouring accuracy. 
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INTRODUCTION 

 
 The ultimate goal in many industrial applications 
such as X-Y tables, Computer Numerical Control 
(CNC) machines and industrial manipulators is to 
reduce the contouring error as much as possible to keep 
high precision motion. Two main control approaches 
are used to improve the contouring performance, 
tracking control approach and contouring control 
approach. In tracking control approach, the dedicated 
control law of each drive control loop tries to minimize 
the tracking error independent of other control loops. In 
addition, any disturbance in one control loop is 
corrected only by this loop. The other control loops will 
not receive any information about that disturbance and 
it will run as if the disturbed control loop is functioning 
normally. On the other hand, the contour errors to the 
desired path are evaluated in real time and these errors 
are eliminated via feedback control in contouring 
control systems. To improve the tracking accuracy in 

each individual axis, by elimination of the servo lag 
phenomenon Masory (1986) proposed the feed forward 
controller and Tomizuka (1987) proposed the zero 
phase error tracking control. The above approaches can 
be applied to reduce tracking errors for single axis or 
decoupled motion applications effectively, however 
undesirable contour error appears when applied to 
multi-axis contour-following tasks. In contour-
following tasks, reduction of contour error is an issue of 
much concern. To reduce contour error, researchers 
have developed a variety of alternative control 
approaches. By calculation of the contouring error from 
the tracking error in biaxial contour-following tasks, 
Koren (1980) proposed the Cross Coupled Controller 
(CCC). Ho et al. (1999) decomposes the contouring 
error into the normal tracking error and the advancing 
tangential error, a dynamic decoupling procedure is 
then applied to the system dynamics. By transformation 
of machine tool feed drive dynamics into a moving task 
coordinate frame attached to the desired contour, Chiu 
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and Tomizuka (2001) proposed the Task Coordinate 
Frame (TCF) and Lo and Chung (1999) proposed the 
Tangential Contouring Controller (TCC) for biaxial 
motion, The proposed controller is based on a 
coordinate transformation between the X-Y frame and a 
Tangential-Contouring (T-C) frame defined along the 
contour. Cheng and Lee (2005) proposed a real-time 
contour error estimation algorithm. Ye et al. (2002) 
proposed a new Cross-Coupled Path Precompensation 
(CCPP) algorithm for a Rapid Prototyping and 
Manufacturing (RPM) systems. To reduce the contour 
error by optimization of controller parameters using a 
genetic algorithm, Tarng et al. (1999) presented a cross-
coupled fuzzy federate control scheme. 
 Predictive control refers to a class of model based 
controllers that utilizes an explicit process model to 
predict the future response of a plant. Boucher et al. 
(1990) proposed using Generalized Predictive Control 
(GPC), which incorporates both reference preview 
action, as well as disturbance rejection into the same 
control scheme. This formulation is also extendable to 
include control law and tracking error constraints. Zhe 
and Chen (2001) proposed a cross-coupled generalized 
predictive control algorithm. This provides a combined 
feedback-feed forward controller resulting in zero-pole 
cancelation of poles that do not correspond to the 
reference models. They presented a new cost function 
in which synchronization errors are embedded. Susanu 
and Dumur (2005) proposed a hierarchical predictive 
control architecture dedicated to axis feed drives of 
machining centers. The considered performance index 
is a weighted sum of predicted tracking errors from a 
minimum prediction horizon N1 to a maximum 
horizon N2 and future control signal increments over 
the control horizon, nevertheless motion control based 
only on the tracking ability of each axis in multi feed 
drive system does not always guarantee high precision 
machining.  
 To improve the contouring performance in 
machine tool feed drive systems, this study presents a 
model predictive contouring controller design based on 
coordinate transformation approach. The main 
advantage of the proposed approach is to provide easy 
adjustment of controller parameters by including 
transformed error and input signals in the performance 
index of model predictive control. The control law has 
been analytically derived by real time optimization of 
the performance index so that the resulting control 
system provides improved performance in terms of 
tracking and contouring errors. In addition, the 
proposed approach takes into account the dynamics 
modeling errors, cutting forces and disturbances such as 
friction. 

MATERIALS AND METHODS 
 
Contouring error definition: Contouring error is 
defined as the shortest distance between the actual 
contour and the desired one. The relation between the 
contouring error and the tracking error in each feed 
drive axis is shown in Fig. 1. Two coordinate frames 
are used, Σw, whose axes X and Y correspond to feed-
derive axes and it is fixed frame. The curve c is the 
desired contour curve of the point of a machined part 
driven by the feed drive system. The desired position of 
the point of the machined part at time t and defined in 
Σw is r = [r1, r2]

T. The actual position of the feed drive 
system is represented by x = [x1, x2]

T which also is 
defined in the fixed frame. The second coordinate 
frame Σl is attached at r and its axes are l1 and l2. The 
axis l1 is in the tangential direction of c at r and the 
direction of l2 is perpendicular to l1. The tracking error 
in each feed drive axis is defined as follows: 
 

T
w x ye [e e ] r x.= = −  (1) 

 
 This error can be expressed with respect to Σl as 
follows:  
 

T T
l t n we [e e ] R e ,

cos sin
R

sin cos

= =
θ − θ 

=  θ θ 

 (2) 

  
where, θ is the inclination of Σl-Σw. Since it is difficult 
to calculate the actual contouring error in real time for 
complex contour, the error component en is only an 
approximate value of the contouring error ec, which is 
the distance between the actual position x and the 
nearest point on the desired curve c. 
 

 
 

Fig. 1: Definitions of tracking and contouring errors 



J. Computer Sci., 6 (8): 844-851, 2010 
 

846 

 
 
Fig. 2: Typical biaxial feed drive system 
 
Modeling of biaxial feed drive system: A typical 
biaxial feed drive system as shown in Fig. 2 is used to 
demonstrate the improvement in the contour accuracy 
by the proposed control system. Two DC servo motors 
are used to drive the feed drive system, which are 
commonly used in industrial applications. Feed drive 
system is generally represented by the following 
decoupled second-order system: 
 

i

i

T
x y

Mx Cx f ,

M diag{m },

C diag{c },i x, y,

f [f f ] .

+ =
=

= =

=

ɺɺ ɺ

 (3) 

  
where, mi(>0), ci(≥0) and fi are the table mass, viscous 
friction coefficient and driving force on the drive axis i, 
respectively. The symbol diag{ai} denotes a diagonal 
matrix with the elements ai at the ith diagonal positions. 
Two ball screws are used to convert angular motion of 
the motors to linear motions of the table. The motor 
dynamics for driving the feed drive system are 
described as follows: 
 

} { }{
{ }

mi mi

T
mi m1 m2

i i

i

T T
x y x y

N Z Kv,

[ , ] ,

N diag n , Z diag z ,

K diag k , i x , y

[ , ] , v [v ,v ] ,

θ + θ + τ=

θ = θ θ

= =

= =

τ= τ τ =

ɺɺ ɺ

 (4) 

 
where, θmi, ni(>0), zi(≥0), ki(>0), τi and νi are the 
rotational angle of the motor, motor inertia, viscous 
friction coefficient, torque-voltage conversion ratio, 
torque for driving the feed drive system and the input 

voltage to the motor of the ith drive axis respectively. 
Relations among force fi torque τi, position xi and angle 
θmi are represented as follows: 
 

i i mi
i i

i

2 p
f , x

p 2

πτ θ= =
π

 (5) 

 
where, pi is the pitch of the ball screw.  
 
Model predictive control: A discrete time model 
describes the plant dynamics has been used to estimate 
the output of the plant. The following transfer function 
model is used to describe the biaxial feed drive system: 
 

d 1 1
i i

i i i1 1
i i

1
i i

q B (q ) C (q )
y (k) u (k 1) e (k),

A (q ) T (q )

e (k) (k), 1 q

− − −

− −

−

= − +

=∆ζ ∆ = −
 (6) 

 
where the index i (i = x, y) denotes the corresponding 
motion axis of the biaxial feed drive system, k is the 
normalized discrete time, yi(k) and ui(k) are the output 
and the control input of each feed drive axis 
respectively, d is the time delay in the process samples, 
ζi(k) represents a random disturbance and Ai(q

−1), 
Bi(q

−1), Ci(q
−1) and Ti(q

−1) are polynomials for the ith 

feed drive axes in the delay operator q−1. The predicted 
output of the plant is as follows:  
 

d̂ 1
i i

i i i i1
i i

ˆq B (q ) F
ˆ ˆy (k i) u (k i 1) [y (k) y (k)]

ˆ ˆA (q ) C

− −

−
+ = + − + −  (7) 

 
 The symbol ^ denotes estimates, Fi is a polynomial 
that satisfies the following Diophantine equation: 
  

1i i
i

i i

C F
E q

T T
−= +  (8)  

 

 The purpose of this controller is for the feed drive 
to follow the reference trajectory as closely as possible 
and the following performance index has been 
presented (Soeterboek, 1992): 
 

( ) ( )

* T T
i i i i i i i i

T
i i i m i i P

T
i i i m i i P

T
i i i P i

ni
i i

di

ˆ ˆJ (y w ) (y w ) u u ,

ˆ ˆ ˆy [P y (k H ),...,P y (k H )] ,

w [P 1 w (k H ),...,P 1 w (k H )] ,

ˆu [u (k),...,u (k H d 1)] ,

Q
u (k) u (k).

Q

∗ ∗ ∗ ∗ ∗

∗

∗

∗ ∗ ∗

∗

= − − + ρ

= + +

= + +

= + − −

=

 (9) 
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Where: 
Pi = A polynomial used to tune the servo 

behavior of the control system 
Hm and Hp = The minimum cost horizon and 

prediction horizon respectively 
wi = The reference signal 
ρi = A non-negative weighting factor to 

adjust the control input 
Qni and Qdi = Monic polynomials with no common 

factors and can be used to obtain the 
weighting factor for ui(k) 

 
Model predictive contouring controller: In the 
previous performance index (9) as well as (Susanu and 
Dumur, 2005), only the tracking errors with respect to 
each feed drive axis are included. The error components 
orthogonal to the desired contour curves are more 
important than tracking errors and hence the orthogonal 
error component is included in the proposed 
performance index with control inputs in the normal 
and tangential directions as follows: 

 
p p p p

j j j j

m m m m

j j j

H H H H
2 2 2 2

cn n ct t n n t t
j H j H j H j H

T T T
t j n x y

J e e u u

[u u ] R [u u ]

= = = =

=ρ +ρ +ρ +ρ

=

∑ ∑ ∑ ∑
 (10) 

 
Where: 
ρcn and ρct = Weighting factors to adjust the 

importance of the error 
component in the orthogonal and 
tangential directions, respectively 

ρn and ρt = Weighting factors used to adjust 
the control inputs in the normal 
and tangential directions, 
respectively 

uxj, uyj, unj and utj = The jth control inputs in X, Y, N 
and T directions, respectively 

 
 Minimization of the performance index (10) gives: 

  
1
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yj yx yy yy
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Where: 
x and y = Refer to the corresponding feed drive axis 
M and N = Matrices that consist of plant parameters 

with dimensions P i c
ˆH d H− ×  and 

iP i P C
ˆH d n n HΦ− × + −  respectively 

Hc = The control horizon: 
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where, P c

ˆj  H H d= − − . Gi, Hi and Fi are matrices as 

follows: 
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which consist of the elements of the polynomials Gim, 
Him and Fim respectively satisfying the following 
Diophantine equations: 
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ˆim di im
im P

i i

B̂ H ˆG q , m [d 1,...,H ]
ˆ ˆA A

− += + = +  (16) 

 
j im

im P

i i

1 F ˆE q , m [d 1,...,H ]
ˆ ˆA A

−= + = +  (17) 

  
Φ = A lower triangular matrix of dimension 

P i P i
ˆ ˆ(H d ) (H d )− × −  

Ω = A matrix of dimension P i
ˆ(H d )− ×nΩ, with 

nΩ  = max 
ni diQ Q(n ,n )  

Φ and Ω = Consist of the elements of the 
polynomials Φ and Ω respectively which 
satisfy the following Diophantine 
equation: 

 
1ni

di di

Q
q

Q Q
− Ω= Φ +  (18) 

 
x* and y* are as follows:  
 

( ) ( )
( ) ( )

x m x P

y m y P

x [P 1 x(k H ),...,P 1 x(k H )]

y [P 1 y(k H ),...,P 1 y(k H )]

∗

∗

= + +

= + +
 (19) 

 
where, x and y are the reference trajectories in X and 
Y directions respectively and uɶ , u

⌣ , u
⌢ and c are given 

by: 
 

i
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Φ
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RESULTS 

 
 To verify the effectiveness of the proposed 
controller, computer simulation has been conducted for 
circular and non-circular reference trajectories. The 
parameters of the feed drive system are shown in 
Table 1. The biaxial feed drive system is represented in 
discrete time by the following polynomials: 
 

1 1 2
i

1 1 2
i

A (q ) 1 -1.97q 0.97q

B (q ) 0.28e-6q  0.28e-6q

− − −

− − −

= +

= +
 (21) 

Table 1: Biaxial feed drive system parameters 
p1, p2 0.005 (m) n1, n2 0.05 (kgm2) 
m1 8.0 (kg) z1, z2 0.31 (Nms rad−1) 
m2 2.5 (kg) k1, k2 1.4 (Nm V−1) 
c1, c2 0.0 (Ns m−1)  

 

 
 (a) (b) 
 
Fig. 3: Reference trajectories. (a) Circular and (b) non-

circular  
 
 This model is obtained from continuous-time 
model by  using  zero-order  hold  and  sampling  time 
T = 0.005 sec.  
 Two reference trajectories are used to simulate the 
proposed controller as follows: 
 
• Circular reference trajectory 
 

 
x 5sin ( t) (mm)

10

y 5cos( t) (mm)
10

π=

π=
 (22) 

 
• Non-circular reference trajectory 
 

 
x 5sin ( t) (mm)

10

x 5sin ( t) (mm)
5

π=

π=
 (23) 

 
 Circular and non-circular reference trajectories are 
shown in Fig. 3a and b respectively. 
 For the circular reference trajectory the actual 
contouring error can be easily calculated by the 
following equation, although this equation is used for 
verification only and not used to calculate the controller 
parameters: 
 

2 2
ce 5 x y (mm)= − +  (24) 

 
 Weighting  factors  ρcn, ρct, ρn and ρt are 
important tuning parameters for the proposed 
contouring  controllers and allow the designer to 
adjust the  importance of the performance index terms. 
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 (a) (b) 
 
Fig. 4: Simulation results (circular trajectory). (a) ρcn = 1; 

(b) ρcn = 10 
 

 
 (a) (b) 
 
Fig. 5: Simulation results (non-circular trajectory). (a) 

ρcn = 1; (b) ρcn = 10 
 
Simulation results for circular reference trajectory, 
where the weighting factor for error components 
orthogonal to the desired contour curve ρcn is set to one, 
are shown in Fig. 4a. Since the error components 
orthogonal to the desired contour curves are more 
important than tracking errors with respect to each feed 
drive axis, a better contouring performance is obtained 
by increasing the weighting factor for error components 
orthogonal to the desired contour curve. Figure 4b 
shows the simulation results for circular trajectory case 
with ρcn = 10.  

 
 (a) (b) 

 
Fig. 6: Simulation  results  (circular   trajectory).  (a) 

ρt =  ρn; (b) ρt = 103 ρn 

 
 To verify the effectiveness of the proposed 
controller to follow non-circular trajectories effectively, 
the non-circular trajectory is used. For the non-circular 
trajectory, a minimization problem is solved offline to 
calculate the magnitude of the actual contouring error at 
time tk as follows: 

 

{ } { }2 2

c k k 1 2 k 21t
e (t ) min x (t ) r (t) x (t ) r (t) mm= − + −  (25) 

 
 Note that this error magnitude is used only for 
verification purpose. The Simulation results for the 
non-circular trajectory, where the weighting factor for 
error components orthogonal to the desired contour 
curve is set to values same as those used in Fig. 4, are 
shown in Fig. 5a and b. 
 Figure 6a shows the simulation results for circular 
reference trajectory, where equaled weighting factors 
are used to adjust the control inputs in the orthogonal 
and tangential directions. The improved results for 
contouring error are obtained in Fig. 6b by adjusting the 
control input weighting factor in the orthogonal 
direction to be thousand times less than that in the 
tangential direction. 
 Simulation results for non-circular reference 
trajectory are shown in Fig. 7a and b, where the control 
input weighting factors are set to values same as those 
used in Fig. 6. 
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 (a) (b) 

 
Fig. 7: Simulation results (non-circular trajectory). (a) 

ρt = ρn; (b) ρt = 103 ρn 

 
DISCUSSION 

 
 The error components orthogonal to the desired 
contour curves are more important than tracking errors 
with respect to each feed drive axis and hence by 
increasing the weight factor for the orthogonal error 
components in the performance index gives a 
reasonable enhancement of the contouring performance. 
In addition, control inputs in the orthogonal and 
tangential direction are important tuning parameters for 
the proposed contouring controller by which the control 
energy can be adjusted to be smaller in the tangential 
direction than that in the orthogonal direction. 
 

CONCLUSION 
 
 A model predictive contouring controller for biaxial 
feed drive systems based on coordinates transformation 
has been presented. To verify the effectiveness of the 
proposed control approach, computer simulation has 
been conducted for circular and non-circular reference 
trajectories. Simulation results show that the proposed 
controller can significantly improve the contouring 
accuracy for any smooth contour. Applying this 
approach to three or five axis machine are left for future 
study. 
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