
Journal of Computer Science 6 (6): 625-633, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Nancy Dandachy, XLIM Laboratory UMR CNRS 6172, Department of Computer Science,
 University of Limoges, 83 Rue d’Isle, 87000 Limoges, France

625

An Alternative Ray Tracing Algorithm for Understanding Scenes with Embedded Objects

1Nancy Dandachy, 1Dimitri Plemenos, 2Safwan Chendeb and 3Bachar El Hassan

1XLIM Laboratory UMR CNRS 6172, Department of Computer Science,
University of Limoges, 83 Rue d’Isle, 87000 Limoges, France

2PARAGRAPHE/CITU Laboratory, Department of Computer Science,
University of Paris 8, 93526 Saint Denis, France

3Departement of Electrical Engineering, Faculty of Engineering, Lebanese University,
Rue AL Arz, Al Kobbeh, Tripoli, Liban

Abstract: Problem statement: In the virtual world domain, the existing techniques of exploration,
were not able alone to resolve the understanding problem of scenes with embedded object, also they
are time and memory consuming. As a solution, a novel method that enhances the visualization of 3D
ray traced scenes with embedded objects by creating a hole proportional to its interior parts was
developed and tested. Approach: This research presented a novel approach that allows an automatic
exploration of 3D scenes with embedded objects. First of all, the apparent contour of the interior object
that we want to see, were computed by using the ray tracing algorithm with the selective refinement
optimization approach. The second step was to search for pixels which are orthogonal in a certain
depth and directed toward the outside of the silhouette in order to create a hole. Results: The obtained
results were convincing and answering to the goal of this research. The proposed method allows the
creation of a hole around an object and can be applied to any type of model. Conclusion: This very
successful approach for 3D scenes with embedded object exploration is further supported by its ability
to give at the same time a global idea about the scene as well as a possibility to explore its interior
while saving time and memory.

Key words: Computer graphics, 3D visualization, selective refinement and ray tracing, contour

detection

INTRODUCTION

 The fast development of the image synthesis
domain, the spread of this domain in lot of applications
and then because of the development of PC’s
performance in speed and capacities, the problem of
scene understanding and extracting knowledge is
becoming more and more pertinent and complicated.
The first work in the field of the comprehension of
virtual world was published at the end of the eighties
and at the beginning of the nineties. There was very
little work that faces this problem, because the
community of the graphic data processing was not
convinced that this field is important for the computer
graphics. Only during these last year’s people have
begun to understand its importance and the necessity to
have fast and accurate techniques for good exploration
and clear understanding of various virtual worlds.
 However, these techniques are not able alone to
answer all problems of 3D complex scenes used in

various fields and applications. Each scene has its own
case that has to be treated separately. For example in the
virtual world domain, the case of scenes with embedded
objects that we want to have at the same time a global
idea about the scene as well as an idea about a part of
its interior in order to add some information (Fig. 1).

Fig. 1: Scene plane with AR

J. Computer Sci., 6 (6): 625-633, 2010

626

The existing techniques of exploration which based on
the computation of a good point of view and/or doing a
local or global animation, cost lot of time and memory
and do not allow us to have a such result. Even
visualization techniques, which are based on the
traditional or realistic methods, are not able to resolve
this problem. For this reason, we are going to present a
new technique that allow the understanding of scenes
with embedded objects by creating a hole which is
proportional to the interior objects in order to make
visible. It is based as a first step on the computation in
image space of the apparent contour of the interior
objects that we want to see by using a hybrid method
that use the selective refinement partition of the ray
tracing algorithm combined with the code direction
technique. The second step consists on the computation
of pixels which are toward the apparent contour in
order to create the hole around the interior objects.

Background at the beginning: One of the most
widespread problems was the choice of a bad position
of the point of view which misses important details or
necessary in formations for the comprehension of the
three-dimensional scenes (Fig. 2). Several techniques
(Colin, 1988; Barral et al., 1999; Dorme, 2001) were
implemented within this framework and research
continues until now in order to give better results that
can save costs in time and memory (Vasquez et al.,
2002; Vasquez and Sbert, 2003; Sokolov et al., 2006;
Shinya et al., 1987).

Fig. 2: Left: Bad viewpoint position. Right: Good view

point position

Fig. 3: Global exploration

 When the calculation from several good points of
view was not sufficient because it does not guarantee
the passage of a point to another without making abrupt
changes, several authors have proposed methods for
global and local exploration through an animation
which cross good points of view according to a way
which follows heuristic rules avoiding the abrupt
changes of the camera (Fig. 3) (Barral et al., 1999;
2000; Dorme, 2001; Jaubert et al., 2006; Sokolov and
Plemenos, 2005; Shinya et al., 1987; Vasquez and
Sbert, 2003).
 However, it is not sufficient to move around the
scene. Therefore, we thought about changing the mode of
visualization. The existing techniques of visualization are
the traditional and the realistic visualization. The first
one is divided on two modes:

• The wireframe mode where only contours of

objects or facets are posted in the scene (Fig. 4)
• The full mode with an elimination of hidden parts

where all objects or facets, considered to be closest
to the position of a given point of view, are
visualized (Fig. 5)

 The problem of the elimination of hidden parts was
one of the most important and difficult problem on
computer graphics. The first algorithm was developed
in the sixties. Its goal was to determine lines, surfaces
or volumes which are visible to the observer located in
a given point on the 3D space.

Fig. 4: Scene bunny on full mode with elimination of

hidden parts

Fig. 5: Scene bunny on wireframe mode

J. Computer Sci., 6 (6): 625-633, 2010

627

Fig. 6: The ray tracing

 The realistic visualization uses the full mode with
an elimination of hidden parts that express the
photorealism by adding light effects mirrors, shades
transparency, textures, reflexions and refractions in
order to be the nearest possible to the reality. It is based
on the ray tracing algorithm and its varieties: the photon
mapping and the radiosity. The photon mapping is
founded on the raytracing algorithm and simulates the
refraction of light through a transparent substance such
as glass or water, diffuse inter-reflexion between
illuminated objects, the scattering subsurface of light in
translucent materials and some of effects caused by
particulate matter such as smoke or water vapor. The
radiosity is an application of the finite element method
to solving the rendering equation for scenes with purely
diffuse surfaces. We will not approach in this study the
principles of the radiosity and the photon mapping
visualization because they do not enter in the objectives
of this study.
 As we are going to use the ray tracing algorithm
with the selective refinement optimization it is
important to talk briefly about the related work in this
field. The ray tracing algorithm so popular today, date
of 1968 and it was initially suggested by Appel (1968).
Its first implementation goes back to 1971, in the
software of three-dimensional visualization MAGI. It
makes it possible to calculate the visibility of the
objects at the same time as their illumination. It is able
to manage the shades, the transparencies, the plating of
textures and the interactions between the objects.
Moreover, it is adapted to any type of graphic
primitives. This improvement has a cost of course: The
computing times are much more important than for the
algorithms seen previously.
 The principle of the algorithm is the following
(Fig. 6):

• One considers a beam of imaginary rays

connecting the eye of the observer to the center of
each elementary square (pixel) of the space image

• For each ray, its intersections with all surfaces of
the scene are calculated, in order to determine the
nearest intersection point to the observer

• he luminous intensity of this point of intersection is
assigned to the corresponding pixel

 Once the visible point by the observer is given, it is
necessary to deal with the problem of shadows by
sending a ray from the visible point to the source of
light. If this ray cuts a surface before the visible point,
the visible point will be then considered in shade.
 Kay and Greenberg (1979) proposed an extension
of the ray tracing algorithm allowing the taking into
account of the refraction of the ray when it crosses
transparent surfaces.
 Whitted (1980) proposed the “backward ray
tracing” algorithm which simulate the opposite course
of the light towards the eye. It is based on the
decomposition of the luminous intensity of a point in a
specular component of reflexion and transmission. This
decomposition gives a binary tree that the algorithm
must traverse each time a ray is sent.
 Kay and Kajiya (1986); Muller (1986) and Rubin
and Whitted 1980) tried to improve the ray tracing
algorithm created by Whitted (1980) in order to reduce
the number of sending rays and the computing time
while preserving an acceptable quality of the images
obtained. Roth (1982) used bounding boxes for the
Constructive Solid Geometry (CSG) trees.
 Kaplan (1985) uses the Binary Space Partition
(BSP) for a recursive subdivision of the image space
into 3D voxels. There is also the beam tracing algorithm
which classifies propagation paths from a source (Arvo
and Kirk, 1987; Muller, 1986; Shinya et al., 1987) by
tracing recursively pyramidal (Ghazanfarpour and
Hasenfratz, 1998) or conical (Amanatides, 1984) beams
of rays (set of rays).
 Works in (Cook et al., 1984; Green and Paddon,
1989; Keates and Hubbold, 1995) use parallel machines
in order to save time and which is based on a
parallelization using a processor by pixel or group of
pixels, by voxel or by object. A relatively complete table
which summarizes the accelerating techniques of ray
tracing appears in (Arvo and Kirk, 1987; Amanatides,
1984; Ghazanfarpour and Hasenfratz, 1998; Glassner,
1984; Kay and Kajiya, 1986; Shinya et al., 1987).
Recently, many accelerating algorithm
(Cassagnabere et al., 2006) which based on the GPUs
algorithm in order to optimize the ray triangle
intersection calculation.
 In addition to these techniques, there exist two
rather important techniques where the goal is to reduce
the computing time: Selective refinement (Dandachy,

J. Computer Sci., 6 (6): 625-633, 2010

628

2007) and the selective expansion (Plemenos and
Sellinger, 1998). We will study in detail the algorithm
of the selective refinement which will be used in our
technique.

MATERIALS AND METHODS

The selective refinement algorithm: Selective
refinement is one of the most elegant approaches which
tend to decrease the computing time by limiting the
number of sending rays. It was initially used by
Warnock (1969) in its hidden parts elimination
algorithm by recursive subdivisions of the image space,
then by Catmull (1974) using recursive subdivisions of
surfaces until obtaining the simple situations where the
problem of the visibility could be solved easily. Jansen
and Van Wijk (1984); Plemenos and Sellinger (1998);
Dandachy (2007) and Dandachy et al. (2007) proposed
similar methods applied to the ray tracing algorithm for
the elimination of hidden parts.
 The algorithm has 2 version where the principle
idea is to divide the image space into a set of macro
pixels. Each one is a 2n×2n pixels.

1st version:

• To each macro pixel, a ray is sent from the

observer to its high left HL pixel (Fig. 7)
• If the visible surface obtained is different from

those seen by the HL pixels of its neighbor macros
pixels, the current macro pixel is subdivided in four
sub macros pixels and the process starts again for
each one of them

• If not, there is a great probability that all the pixels
of the current macro pixel see the same visible
surface. An approximate luminous intensity will be
then attributed. It can be obtained by making a
linear interpolation between the luminous
intensities of the HL pixels of the current macro
pixel and those of its neighbor ones

• The process of subdivision stops as soon as a
threshold of subdivision, defined by the user, is
reached

 2nd version:

• To each macro pixel, a set of rays is sent by the

observer to a set pixels called by its “guide-pixels”
whose number and position are fixed and chosen
before starting by the user. To obtain convincing
results, the number of guide-pixels must be at least
equal to 3 (Fig. 8)

• If visible surfaces obtained from these “guide-
pixels” are different, the running macro pixel is
subdivided in four sub macros pixels and the
process start again for each one of them

Fig. 7: The 1st version of the selective refinement

algorithm

Fig. 8: The 2nd version of the selective refinement

algorithm

• If not, it means that the same face is visible by all

the pixels of the running macro pixel. An
approximate luminous intensity will be then
calculated

• The process of subdivision stops as soon as a
threshold of subdivision, defined by the user, is
reached

 In addition to selective refinement, there exist also
the techniques of the selective expansion applied to the
ray tracing algorithm. Its goal is to reduce the number
of sending rays in order to avoid the rays which do not
cut the scene which lead to reduce the computing time
of the scene visible parts. However this technique
depends on a preliminary sampling, intended to
determine the basic list of useful macros pixels. Thus,
an insufficient sampling might remove certain small
objects.

J. Computer Sci., 6 (6): 625-633, 2010

629

Scene exploration by creating a hole around the
interior objects: Our approach is divided in two parts:

• The apparent contour detection part of the interior

objects
• The computation of orthogonal pixels directed

toward the outside of the apparent contour in order
to create the hole

Apparent contour detection of the interior objects:
This part is divided on two steps:

• The step 1 uses the optimized ray tracing technique

based on the selective refinement algorithm in
order to search, for each interior object that we
want to make visible, for an initial contour pixel
(Fig. 9)

• The step 2 uses the initial contour pixels obtained
from step 1 and uses the code direction technique
(Dandachy et al., 2007) in order to search for the
complete contour pixels (Fig. 10)

Fig. 9: Search for each interior object for an initial

contour pixel

Fig. 10: Apparent contour pixels

 In order to get a departure contour point, we divide
the image space into a set of macro pixels (each macro
pixel is about 8×8 pixels). For each macro pixel, we
send rays to the Up Right (UR), Up Left (UL) Down
Right (DR) and Down Left (DL) pixels to detect for
each ray the Id of the closest object (Fig. 11). We
associate each returned Id to its correspondent pixel.
The macro pixels which represent different
intersections most contain a contour pixel. They are
considered as our useful macro pixels which are
subdivided into 4 sub macro pixels.
 The same process is applied to each sub macro
pixel until we obtain a block of 2×2 pixels. The block
of 2×2 pixels that has intersection with different
objects, contains certainly at least a one contour point.
More we have different intersections in the block, more
we have initial contour pixels. To avoid having more
than one initial contour pixel for the same object, since
we get the first contour pixel of an object, we neglect
all other pixels that have the same ID.

Step 2: Searching for the complete contour: Before
talking about this step, we define first, for each pixel,
its 8 neighbors. Each pixel in the neighborhood has a
previous and a following pixel, respecting the order
indexed from 0-7 (Fig. 12).

Fig. 11: Send rays to the UR, UL, DR and DL pixels of

a micro pixel

Fig. 12: Defining a pixel neighbors

J. Computer Sci., 6 (6): 625-633, 2010

630

 It is obvious that all pixels defining the contour of
the object should have the same Id of the departure one.
As the contour point should be the separated point
between tow different zone, its following neighbor
pixel and its previous one should have different Ids.
Otherwise, the current pixel should necessary be an
interior point of the object.
 Since we get from step 1, for each interior object
that we want to make visible, a departure contour point,
we uses the code direction algorithm which starts with
an initial contour pixel and follows, at each time, a
certain direction that conducts us to the following
contour point until we obtain the complete contour of
an object. At each time, the direction should be one of
the 8 directions that conduct to the 8 neighbors defined
on Fig. 12.
 In order to choose the departure direction that
conduct us from the departure contour point to the
second contour point, we send a ray to each neighbor of
the departure point. The first one that has the same Id of
the departure point and its previous and following
pixels have different Ids will be our second contour
pixel. If all the neighbors were tested and none of them
was a contour pixel, we stop the research.
 Since we get the second contour pixel, we apply
the same process to find the following direction by
considering the obtained contour pixel as a starting one.
In order to avoid a return to a chosen contour point, we
only test between the 8 neighbors which are not tested
yet. To do so, we associate to each pixel a buffer that
we call the v-buffer that is updated each time the pixel
is tested. The algorithm will stop when we fall in one of
these tow cases:

• We return to the initial departure point (closed

contour)
• None of the neighbors of the current pixel is a

contour point (opened contour) Fig. 13

Fig. 13: The apparent contour of bunny scene

Orthogonal pixels detection toward the apparent
contour: While getting by the code direction technique,
pixels that form the apparent contour of the interior
objects, the algorithm search for pixels toward the
silhouette using tangent and normal directions (Fig. 14).
 The tangent vector direction in a current pixel is
given by following formula:

Tg_Vector = following_contour_pixel - current_pixel

 Each tangent direction has 2 possible normal
directions selected among the 8 directions in the
neighborhood of the current pixel: The outgoing and the
ingoing one. We are interested on the outgoing direction
that points to the pixel having a different Id from the
current one. The ingoing direction should points to the
pixel having the same Id of the current pixel.
 By computing the outgoing normal directions with
the depth of one pixel we obtain the following result in
Fig. 15. It appears to be not efficient in order to suggest
the idea of a real hole since the depth of one pixel is not
sufficient and the hole is not continuous.

Fig. 14: tangent and normal directions

Fig. 15: The hole with a one depth outgoing normal

directions

J. Computer Sci., 6 (6): 625-633, 2010

631

 In order to regulate this, we suggest to augment the
depth number and to take into account not only outgoing
normal directions, but also its the previous and following
directions which are illustrated in the Fig. 16.
 In order to define a depth, we search also for pixels
which are in the kth depth of the outgoing normal
direction, its previous and following directions (see
Fig. 17). These points are Nk, Pk and Fk which are
obtained by using these following formulas:

Nk = C + k × N0
Pk = C + k × P0
Fk = C + k × F0

Where:
C = The current pixel
Nk = The kth pixel in the kth outgoing normal direction
Pk = The kth pixel in the kth previous direction
Fk = The kth pixel in the kth following direction

Fig. 16: The previous and following direction to a

outgoing normal direction

Fig. 17: The Kth pixels toward the current pixel C

RESULTS AND DISCUSSION

 Generally, a depth of 4 pixels is enough to give good
results (Fig. 18 and19).
 More we get pixels; more the hole gives the
impression to be deeper. However, it is important to be
aware to the fact that the hole should not be so large
compared to the outside object volume since it might
mask a big part of it.
 In order to regulate this problem, we take a depth
that do not exceed the half distance d where d is the
minimal distance from the all kth pixels of the hole to
the projected boundaries edges and it is given by the
following formula:

p P
d Min (dist(p,S))

ε
=

Where:
P = The set of pixels in the depth k of the hole
S = The set of the boundaries edges

Fig. 18: Scene sphere

Fig. 19: Scene house

J. Computer Sci., 6 (6): 625-633, 2010

632

Fig. 20: The example of tow internally tangent sphere

 We are not interested in cases where the interior
object is very closed to the border of the including
object, because it will be useless to create a hole which
is not able to have a sufficient depth without exceeding
the volume of the including object. Figure 20 shows the
example of 2 internally tangent sphere.
 In order to avoid the obtaining image presented in
Fig. 20, it might be possible before starting our
algorithm, to use one of techniques based on the
calculation of good points of view described in
(Sokolov et al., 2006).

CONCLUSION

 We have presented in this study, a technique which
help to improve the visualization of three-dimensional
scenes with embedded objects. These methods are easy
to implement, rapid and are not expensive in memory.
The obtained results are convincing and answer to our
goal.
 The creation of a hole around the interior objects is
an effective idea since it guarantees to the observer to
be able to clearly see the including objects as well as
some of its interior parts. The proposed method allow
the creation of a hole around an object and can be
applied to any type of models since it is based on the
detection of the interior object’s contour pixels and then
on the research of the orthogonal pixels toward the
interior object’s silhouette.
 Practically, it does not present any problem except
the case where an interior object is very close to the
border of an including object which make the algorithm
unable to create a hole around the object including
without exceeding its border.
 In order to have a better result, it might be better in
the future to begin with a good point of view calculated

by one to the techniques presented in the Introduction
of this study.
 We have admitted in this study that we know the
interior parts that we want to make visible. It would be
interesting in the future to develop a new automatic
method of a scene exploration technique allowing
interaction with the user, where the user can point out
which parts of the scene he would like to explore in
detail before starting the algorithm of creating holes.

REFERENCES

Amanatides J., 1984. Ray tracing with cones. Comput.

Graph., 18: 129-135. DOI: 10.1145/964965.808589
Appel, A., 1968. Some techniques for shading machine

renderings of solids. Proceeding of the AFIPS
Spring Joint Computer Conference, Apr. 30-May 2,
Atlantic City, New Jersey, pp: 37-35.

Arvo, J. and D. Kirk, 1987. Fast ray tracing by ray
classification. Proceeding of the International
Conference on Computer Graphics and Interactive
Techniques, (CGIT’87), ACM Press, New York,
USA., pp: 55-64.

Barral, P., G. Dorme and D. Plemenos, 1999. Visual
understanding of a scene by automatic movement
of a camera. Proceeding of the International
Conference GraphiCon’99, Aug. 26-Sept. 3,
Moscow (Russia), pp: 59-65.

Cassagnabere, C., F. Rousselle and C. Renaud, 2006.
CPU-GPU multithreaded programming model:
Application to the path tracing with next event
estimation algorithm. Proceeding of the
International Symposium on Visual Computer,
Nov. 2006, Lake Tahoe, NV, USA., pp: 265-275.

Colin, C., 1988. A system for exploring the universe of
polyhedral shapes. Proceeding of the
Eurographics’88, Sept. 1988, Nice (France),
pp: 209-220.

Cook, R.L., T. Porter and L. Carpenter, 1984.
Distributed ray tracing. SIGGRAPH Comput.
Graph., 18: 137-145.

Dandachy, N., 2007. Alternative visualization
techniques for understanding three dimensional
scenes. Ph.D. Thesis, University of Limoges,
France.

Dandachy, N., Plemenos D. and B. El Hassan, 2007.
Scene understanding by apparent contour
extraction. Proceeding of the International
Conference of 3IA’07, May 2007, Athens
(Greece), pp: 85-96.

Dorme, G., 2001. Study and realization of techniques
for understanding three dimensional scenes. Ph.D.
Thesis, University of Limoges, France.

J. Computer Sci., 6 (6): 625-633, 2010

633

Catmull, E., 1974. A subdivision algorithm for
computer display of curved surfaces. Ph.D. Thesis,
University of Utah.

Ghazanfarpour, D. and M. Hasenfratz, 1998. A beam
tracing with precise antialiasing for polyhedral
scenes. Comput. Graph. J., 22: 103-115. DOI:
10.1016/S0097-8493(97)00086-1

Glassner, A.S., 1984. Space Subdivision for fast ray
tracing. IEEE Comput. Graph. Appli., 4: 15-22.

Green S.A. and D.J. Paddon, 1989. Exploiting
coherence for multiprocessor ray tracing. IEEE
Comput. Graph. Appli., 9: 12-26.

Jansen, F.W. and J.J. Van Wijk, 1984. Previewing
techniques in raster graphics. Comput. Graph.,
8: 149-161.

Jaubert, B., D. Plemenos and K. Tamine, 2006.
Techniques for off-line scene exploration using a
virtual camera. Proceeding of the International
Conference of 3IA’2006, May 23-24, Limoges
(France), pp: 31-44.

Kaplan, M.R., 1985. Space tracing, a constant time ray
tracer. SIGGRAPH Course Notes, 18: 149-158.

Kay T.L. and J. Kajiya, 1986. Ray tracing complex
scenes. Comput. Graph., 20: 269-278.

Kay, D.S. and D. Greenberg, 1979. Transparency for
computer synthesized images. ACM SIGGRAPH
Comput. Graph., 13: 158-164.

Keates, M. and R.J. Hubbold, 1995. Interactive ray
tracing on a virtual shared-memory. Comput.
Graph. Forum, 14: 189-202. DOI: 10.1111/1467-
8659.1440189

Muller, H., 1986. Image generation by space sweep.
Comput. Graph. Forum, 5: 189-196. DOI:
10.1111/j.1467-8659.1986.tb00297.x

Plemenos, D. and D. Sellinger, 1998. Declarative
modeling by iterative refinement. Proceeding of the
International Conference of 3IA’98, Apr. 1998,
Limoges (France), pp: 67-79.

Roth, S.D., 1982. Ray casting for modeling solids. J.
Comput. Graph. Image Process., 18: 109-144. DOI:
10.1016/0146-664X(82)90169-1

Rubin, S. and T. Whitted, 1980. A three dimensional
representation for fast rendering of complex
scenes. Proceeding of the International Conference
on Computer Graphics and Interactive Techniques,
July 14-18, AM Press, Seattle, Washington, United
States, pp: 110-116.
http://portal.acm.org/citation.cfm?id=800250.8074
79

Shinya M., T. Takahashi and S. Naito, 1987. Principles
and applications of pencil tracing. ACM
SIGGRAPH, 21: 45-54.

Sokolov, D., D. Plemenos and K. Tamine, 2006.
Methods and data structures for virtual world
exploration. Visual Comput., 22: 506-516 .

Sokolov, D. and D. Plemenos, 2005. Viewpoint quality
and global scene understanding. Proceeding of the
6th International Symposium on Virtual Reality,
Archaeology and Cultural Heritage, Nov. 2005,
The Eurographics Association, Pisa (Italy), pp: 67-73.
http://www.gametools.org/archives/publications/LI
M_vast2005.pdf

Vasquez, P.P and Sbert M., 2003. Automatic indoor
scene exploration. Proceeding of the International
Conference of 3IA’03, May 2003, Limoges
(France), pp: 13-24.

Vasquez, P.P., M. Sbert, M. Feixas and W. Heidrich,
2002. Image-based modeling using viewpoint
entropy. Proceeding of the Computer Graphics
International, July 2002, pp: 267-279.

Warnock, C.S., 1969. A hidden surface algorithm for
computer generated half-tone pictures. Department
of Computer Science, University of Utah.

Whitted, T., 1980. An improved illumination model for
shaded display. Commun. ACM, 23: 343-349.

