Nearly Partial Derivations on Banach Ternary Algebras

${ }^{1}$ M. Eshaghi, ${ }^{2}$ M.B. Savadkouhi, ${ }^{3}$ M. Bidkham, ${ }^{4}$ C. Park and ${ }^{5}$ J.R. Lee
${ }^{1,2,3}$ Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran
${ }^{4}$ Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
${ }^{5}$ Department of Mathematics, Daejin University, Kyeonggi 487-711, Republic of Korea

Abstract

Problem statement: In this study, we introduce the concept of a partial ternary derivation from $\quad A_{1} \times \cdots \times A_{n}$ into B, where $A_{1}, A_{2} \cdots, A_{n}$ and B are ternary algebras. Conclusion/Recommendations: We prove the generalized Hyers-Ulam stability of partial ternary derivations in Banach ternary algebras.

Key words: Banach ternary algebra, ternary derivation, generalized Hyers-Ulam stability, natural generalization, scalar field, stability of homomorphisms, stability of derivations, approximate derivations

INTRODUCTION

A ternary (associative) algebra (A, []) is a linear space A over a scalar field $\mathrm{F}=\mathrm{R}$ or C equipped with a linear mapping, the so-called ternary product, []: $\mathrm{A} \times \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$ such that $[[a b c]$ de $]=[\mathrm{a}[\mathrm{bcd}] \mathrm{e}]=[\mathrm{ab}$ [cde]] for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e} \in \mathrm{A}$. This notion is a natural generalization of the binary case. Indeed if $(A \Theta$,$) is a$ usual (binary) algebra then $[\mathrm{abc}]:=(\mathrm{a} \Theta \mathrm{b}) \Theta \mathrm{c}$ induced a ternary product making A in to a ternary algebra which will be called trivial. By a Banach ternary algebra we mean a ternary algebra equipped with a complete norm

Ulam (1960) gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G ' with metric $\rho(.$, ,). Given $\in>0$, does there exist a $\delta>0$ such that if $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}$ ' satisfies:

$$
\rho(\mathrm{f}(\mathrm{xy}), \mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}))<\delta
$$

For all $\mathrm{x}, \mathrm{y} \in \mathrm{G}$, then a homomorphism $\mathrm{h}: \mathrm{G} \rightarrow \mathrm{G}$, exists with $\rho(\mathrm{f}(\mathrm{x}), \mathrm{h}(\mathrm{x}))<\in$ for all $\mathrm{x} \in \mathrm{G}$?

In other words, we are looking for situations when the homomorphisms are stable, i.e., if a mapping is
almost a homomorphism, then there exists a true homomorphism near it. In Hyers (1941) considered the case of approximately additive mapping in Banach spaces land satisfying the well-known weak Hyers inequality controlled by a positive constant. The famous Hyers stability result that appeared in (Hyers, 1941) was generalized in the stability involving a sum of powers of norms by Rassias (1978).

Theorem 1.1: (Th. M. Rassias). Let $\mathrm{f}: \mathrm{E} \rightarrow \mathrm{F}$ be a mapping from a normed vector space E into a Banach space F subject to the inequality:

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \in\left(\|x\|^{P}+\|y\|^{P}\right) \tag{1}
\end{equation*}
$$

For all $x, y \in E$, where \in and p are constant with $\in>$ 0 and $\mathrm{p}<1$. Then the limit:

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

For all $\mathrm{x} \in \mathrm{E}$ and $\mathrm{L}: \mathrm{E} \rightarrow \mathrm{F}$ is the unique additive mapping which satisfies:
$\|f(x)-L(x)\| \leq \frac{2 \epsilon}{2-2^{P}}\|x\|^{P}$
For all $x \in E$. If $p<0$ then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$. Also, if the mapping $t \rightarrow f(t x)$
is continuous in $t \in R$ for each fixed $x \in X$, then L is R linear.

In Gajda (1991) answered the question for the case $\mathrm{p}>1$, which was raised by Th. M. Rassias. This new concept is known as Hyers-Ulam-Rassias stability or generalized Hyers-Ulam stability of functional equations. In 1994, a generalization of the Rassias' theorem was obtained by Gavruta (1999). The stability of functional equations was studied by a number of mathematicians, see (Savadkouhi et al., 2009; Czerwik, 2002), (Ebadian et al., 2010; Gordji, 2009; 2010; Gordji and Savadkouhi, 2009a; 2009b; 2009c; 2010a; 2010b; Gordji and Khodaei, 2009a; 2009b; Gordji et al., 2008; 2009a; 2009b; 2009c: 2009d; 2009e: 2009f; 2009g; 2009h; 2010a; 2010b; 2010c; 2010d; 2010e; Gordji and Najati, 2010; Gordji and Moslehian, 2010; Farokhzad and Hosseinioun, 2010; Gajda, 1991; Gavruta, 1999; Gavruta and Gavruta, 2010; Gilanyi, 2001; Gordji et al., 2009e; 2009f; 2009g; 2009h; Gordji and Savadkouhi, 2009a; 2009b; Gordji et al., Gordji and Savadkouhi, 2009; Gordji et al., 2010a; 2010b; Khodaei and Rassias, 2010), (Hyers et al., 1998; Jung, 2001),(Park, 2007; Park and Gordji, 2010; Park and Najati, 2010; Park and Rassias, 2010), (Rassias, 1990; 1998; 2000a; 2000b; 2000c; Rassias and Semrl, 1992; 1993; Rassias and Shibata, 1998) and references therein.

It seems that approximate derivations were first investigated Jun and Park (1996).

Recently, the stability of derivations has been investigated by some authors; (Badora, 2006; Chu et al., 2010; Gordji and Moslehian, 2010; Farokhzad and Hosseinioun, 2010) and references therein.

In this study, we introduce the concept of a partial ternary derivation from $A_{1} \times \cdots \times A_{n}$ into B, where A_{1}, $\mathrm{A}_{2}, \cdots, \mathrm{~A}_{\mathrm{n}}$ and B are ternary algebras. We prove the generalized Hyers-Ulam stability of the partial ternary derivation in Banach ternary algebras.

Main results: Let $A_{1}, A_{2}, \ldots, A_{n}$ be normed ternary algebras over the complex field C and let B be a Banach ternary algebra over C. A mapping δ_{k} from $\mathrm{A}_{1} \times \cdots \times \mathrm{A}_{\mathrm{n}}$ into B is called a k -th partial ternary derivation if there exists a mapping gk: $\mathrm{Ak} \rightarrow \mathrm{B}$ such that:

$$
\begin{aligned}
& \left.\delta_{\mathrm{k}}\left(\mathrm{x}_{1, \ldots}, \ldots, \mathrm{a}_{\mathrm{k}} \mathrm{~b}_{\mathrm{k}} \mathrm{c}_{\mathrm{k}}\right], \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\left[\mathrm{g}_{\mathrm{k}}\left(\mathrm{a}_{\mathrm{k}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{~b}_{\mathrm{k}}\right) \delta\left(\mathrm{x}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{k}}\right)\right] \\
& +\left[\mathrm{g}_{\mathrm{k}}\left(\mathrm{a}_{\mathrm{k}}\right) \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{c}_{\mathrm{k}}\right)\right] \\
& +\left[\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mid \mathrm{a}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{~b}_{\mathrm{k}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{c}_{\mathrm{k}}\right)\right]
\end{aligned}
$$

And:

$$
\begin{aligned}
& \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \alpha \alpha_{\mathrm{k}}+\beta \mathrm{b}_{\mathrm{k}}+\gamma_{\mathrm{ck}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
= & \alpha \delta\left(\mathrm{x}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
+ & \beta \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
+ & \gamma \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
\end{aligned}
$$

For all $\alpha, \beta, \gamma \in C$, all $\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}}, \mathrm{c}_{\mathrm{k}} \in \mathrm{A}_{\mathrm{k}}$ and all $\mathrm{x}_{\mathrm{i}} \in \mathrm{A}_{\mathrm{i}}(\mathrm{i} \neq \mathrm{k})$.
We denote that $0_{k}, 0_{B}$ are zero elements of A_{k}, B, respectively.

Remark 2.1: Let $B=A_{k}, A_{i}=0_{i}(i \neq k)$ and $g_{k}=\operatorname{id}_{A k}$. Then the k-th partial ternary derivation can be considered as the ternary derivation of an original version.

Theorem 2.2: Let $l \in\{1,-1\}$ be fixed and let F_{k} : $\mathrm{A}_{1} \times \cdots \times \mathrm{A}_{\mathrm{n}} \rightarrow$ B be a mapping with $\mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \cdots, 0_{\mathrm{k}}, \cdots, \mathrm{x}_{\mathrm{n}}\right)=$ 0_{B}. Assume that there exist a function $\varphi_{\mathrm{k}}: \mathrm{A}_{\mathrm{k}}^{6} \rightarrow[0, \infty)$ and an additive mapping $\mathrm{g}_{\mathrm{k}}: \mathrm{A}_{\mathrm{k}} \rightarrow \mathrm{B}$ such that:

$$
\begin{gathered}
\lim _{\mathrm{m} \rightarrow \infty} \frac{1}{3^{\operatorname{lm}} \varphi\left(3^{\operatorname{lm}} a_{\mathrm{k}}, 3^{\operatorname{lm}} \mathrm{b}_{\mathrm{k}}, 3^{\operatorname{lm}} \mathrm{c}_{\mathrm{k}}, 3^{\operatorname{lm}} \mathrm{d}_{\mathrm{k}}, 3^{\operatorname{lm}} \mathrm{e}_{\mathrm{k}}, 3^{\operatorname{lm}} \mathrm{f}_{\mathrm{k}}\right)=0} \\
\tilde{\varphi}\left(\mathrm{a}_{\mathrm{k}}, \mathrm{~b}_{\mathrm{k}}, \mathrm{c}_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right):=\sum_{\mathrm{m}=0}^{\infty} \frac{1}{3^{1}(\mathrm{~m}+1)} \\
\varphi_{\mathrm{k}}\left(3^{\operatorname{lm}} \mathrm{a}_{\mathrm{k}}, 3^{\operatorname{lm}} \mathrm{b}_{\mathrm{k}}, 3^{\operatorname{lm}} \mathrm{c}_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)=\infty
\end{gathered}
$$

And:

$$
\begin{align*}
& \| \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \lambda_{\mathrm{ak}}+\lambda_{\mathrm{bk}}+\lambda_{\mathrm{ck}}\right)+\left[\mathrm{d}_{\mathrm{k}} \mathrm{e}_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}\right], \ldots \mathrm{x}_{\mathrm{n}}- \\
& \lambda \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& -\lambda \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)-\lambda \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}, \ldots \mathrm{x}_{\mathrm{n}}\right) \\
& -\left[\mathrm{g}_{\mathrm{k}}(\mathrm{dk}) \mathrm{g}_{\mathrm{k}}\left(\mathrm{e}_{\mathrm{k}}\right) \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}, \ldots \mathrm{x}_{\mathrm{n}}\right)\right] \tag{3}\\
& -\left[\mathrm{g}_{\mathrm{k}}\left(\mathrm{~d}_{\mathrm{k}}\right) \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{e}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}}\right)\right] \\
& -\left[\mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{~d}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{e}_{\mathrm{k}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{f}_{1}\right)\right] \\
& \| \leq \varphi_{\mathrm{k}}\left(\mathrm{a}_{\mathrm{k}}, \mathrm{~b}_{\mathrm{k}}, \mathrm{c}_{\mathrm{k}}, \mathrm{~d}_{\mathrm{k}}, \mathrm{e}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}}\right)
\end{align*}
$$

For all $\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}}, \mathrm{c}_{\mathrm{k}}, \mathrm{d}_{\mathrm{k}}, \mathrm{e}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}} \in \mathrm{A}_{\mathrm{k}}, \mathrm{x}_{\mathrm{i}} \in \mathrm{A}_{\mathrm{i}}(\mathrm{i} \neq \mathrm{k})$ and all $\lambda \in \mathrm{T}:=\{\mu \in \mathrm{C}| | \mu \mid=1\}$. Then there exists a unique k-th partial derivation $\delta_{\mathrm{k}}: \mathrm{A}_{1} \times \cdots \times \mathrm{A}_{\mathrm{n}} \rightarrow \mathrm{B}$ such that:
$\| \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)-\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$\leq \varphi_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)$

For all $x_{i} \in A_{i}(i=1,2, \cdots, n)$.
Proof: Let $\mathrm{l}=1$. In (2.1), putting $\mathrm{a}_{\mathrm{k}}=\mathrm{b}_{\mathrm{k}}=\mathrm{c}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}}, \mathrm{d}_{\mathrm{k}}=$ $\mathrm{e}_{\mathrm{k}}=\mathrm{f}_{\mathrm{k}}=0_{\mathrm{k}}$ and $\lambda=1$, we have:

$$
\begin{aligned}
& \| \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3_{\mathrm{xn}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)-3 \mathrm{~F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& \| \leq \varphi_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)
\end{aligned}
$$

That is:

$$
\begin{gather*}
\left\|\mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)-\frac{1}{3} \mathrm{~F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3_{\mathrm{xk}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right\| \tag{5}\\
\leq \frac{1}{3} \varphi_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)
\end{gather*}
$$

For all $x_{i} \in A_{i}(i=1,2, \cdots, n)$. In (2.3), dividing the both sides by 3 and replacing x_{k} with 3_{xk}, we have:

$$
\begin{gather*}
\left\|\frac{1}{3} \mathrm{~F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3_{\mathrm{xk}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)-\frac{1}{3^{2}} \mathrm{~F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3_{\mathrm{xk}}^{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right\| \tag{6}\\
\leq \frac{1}{3^{2}} \varphi_{\mathrm{k}}\left(3^{\mathrm{xk}}, 3^{\mathrm{xk}}, 3^{\mathrm{xk}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)
\end{gather*}
$$

It follows from (2.3) and (2.4) that:

$$
\begin{aligned}
& \left\|\mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)-\frac{1}{3^{2}} \mathrm{~F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3_{\mathrm{xk}}^{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right\| \\
& \leq \frac{1}{3} \varphi_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)+\frac{1}{3^{2}} \\
& \varphi_{\mathrm{k}}\left(3_{\mathrm{xk}}, 3_{\mathrm{xk}}, 3_{\mathrm{xk}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)
\end{aligned}
$$

For all $\mathrm{x}_{\mathrm{i}} \in \mathrm{A}_{\mathrm{i}}(\mathrm{i}=1,2, \cdots, \mathrm{n})$. Continuing this way, we get:

$$
\begin{gather*}
\left\|F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-\frac{1}{3^{m}} F_{k}\left(x_{1}, \ldots, 3_{x k}^{m}, \ldots, x_{n}\right)\right\| \\
\quad \leq \sum_{j=0}^{m-1} \frac{1}{3^{j+1}} \varphi_{k}\left(3_{x k}^{j}, 3_{x k}^{j}, 3_{x k}^{j}, 0_{k}, 0_{k}, 0_{k}\right) \tag{7}
\end{gather*}
$$

For all positive integers m and all $x_{i} \in A_{i}(i=1,2, \cdots$, $\mathrm{n})$. For any positive integer p , dividing the both sides by 3^{p} and replacing x_{k} by $3^{\mathrm{p}}{ }_{\mathrm{xk}}$ in (2.5), we have:

$$
\begin{gathered}
\left\|\frac{1}{3^{P}} F_{k}\left(x_{1}, \ldots, 3_{x k}^{P}, \ldots, x_{n}\right)-\frac{1}{3^{m}+p} F_{k}\left(x_{1}, \ldots, 3^{m+p_{x k}}, \ldots, x_{n}\right)\right\| \\
\quad \leq \sum_{j=0}^{m-1} \frac{1}{3^{j+p+1}} \varphi_{k}\left(3^{j+p}{ }_{x k}, 3^{j+p}{ }_{x k}, 3^{j+p} x_{x k}, 0_{k}, 0_{k}, 0_{k}\right)
\end{gathered}
$$

Which tends to zero as $p \rightarrow \infty$. So the sequence $\left\{\left(\frac{1}{3}\right)^{\mathrm{m}} \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3^{\mathrm{m}} \mathrm{xk}, \ldots, \mathrm{xn}\right)\right\}$ is a Cauchy sequence in B. By the completeness of B, $\left\{\left(\frac{1}{3}\right)^{\mathrm{m}} \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3^{\mathrm{m}} \mathrm{xk}, \ldots, \mathrm{xn}\right)\right\}$ converges and so we can define a mapping $\delta_{\mathrm{k}}: \mathrm{A}_{1} \times \cdots \times \mathrm{A}_{\mathrm{n}} \rightarrow \mathrm{B}$ given by:
$\delta_{k}\left(x_{1}, \ldots, x_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{3^{m}} F_{k}\left(x_{1}, \ldots, 3^{m}{ }_{x k}, \ldots, x_{n}\right)$

For all $x_{i} \in A_{i}(i=1, \cdots, n)$. In (2.1), letting $d_{k}=e_{k}=$ $\mathrm{f}_{\mathrm{k}}=0_{\mathrm{k}}$ and replacing $\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}}$, c_{k} with $3_{\mathrm{ak}}^{\mathrm{m}}, 3_{\mathrm{bk}}^{\mathrm{m}}, 3_{\mathrm{ck}}^{\mathrm{m}}$, respectively, we obtain that:

$$
\begin{aligned}
& \left\|\frac{1}{3^{\mathrm{m}}} \mathrm{~F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3^{\mathrm{m}}\left(\lambda_{\mathrm{ak}}+\lambda_{\mathrm{bk}}+\lambda_{\mathrm{ck}}\right), \ldots, \mathrm{x}_{\mathrm{n}}\right)\right\| \\
& -\lambda \frac{1}{3^{\mathrm{m}}} \mathrm{~F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3_{\text {ak }}^{\mathrm{m}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& -\lambda \frac{1}{3^{\mathrm{m}}} \mathrm{~F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3_{\mathrm{bk}}^{\mathrm{m}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& -\lambda \frac{1}{3^{\mathrm{m}}} \mathrm{~F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3_{\text {ck }}^{\mathrm{m}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& \leq \frac{1}{3^{\mathrm{m}}} \varphi_{\mathrm{k}}\left(3_{\mathrm{ak}}^{\mathrm{m}}, 3_{\text {mk }}^{\mathrm{m}}, 3_{c k}^{\mathrm{m}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)
\end{aligned}
$$

Which tends to zero as $\mathrm{m} \rightarrow \infty$. Thus we obtain:

$$
\begin{align*}
& \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \lambda_{\mathrm{ak}}+\lambda_{\mathrm{bk}}+\lambda_{\mathrm{ck}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\lambda \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \tag{9}\\
& +\lambda \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\lambda \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
\end{align*}
$$

For all $\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}}, \mathrm{c}_{\mathrm{k}} \in \mathrm{A}_{\mathrm{k}}$ and all $\lambda \in \mathrm{T}$.
Setting $\mathrm{c}_{\mathrm{k}}=0_{\mathrm{k}}$ and $\lambda=1$ in (2.7), we have:

$$
\begin{aligned}
& \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}+\mathrm{b}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
\end{aligned}
$$

For all $a_{k}, b_{k} \in A_{k}$, all $x_{i} \in A_{i}(i \neq k)$.
Setting $b_{k}=c_{k}=0_{k}$ in (2.7), we have:

$$
\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \lambda_{\mathrm{ak}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\lambda \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
$$

For all $\mathrm{a}_{\mathrm{k}} \in \mathrm{A}_{\mathrm{k}}$, all $\mathrm{x}_{\mathrm{i}} \in \mathrm{A}_{\mathrm{i}}(\mathrm{i} \neq \mathrm{k})$ and all $\lambda \in \mathrm{T}$.
Let $\gamma=\theta_{1}+\mathrm{i} \theta_{2} \in \mathrm{C}$, where $\theta_{1}, \theta_{2} \in \mathrm{R}$. Let $\gamma_{1}=\theta_{1}-$ $\left[\theta_{1}\right], \gamma_{2}=\theta_{2}-\left[\theta_{2}\right]$, where $\left[\theta_{\mathrm{i}}\right]$ denotes the greatest
integer less than or equal to the number $\theta_{i}(i=1,2)$. Then $0 \leq \gamma_{\mathrm{i}}<1(\mathrm{i}=1,2)$ and by using Remark $2,2.2$ of (Murphy, 1990), one can represent γ_{I} as $\gamma_{\mathrm{i}}=\frac{\lambda_{\mathrm{i}}+\lambda_{\mathrm{i}, 2}}{\mathrm{D}_{2}}$ in which $\lambda_{\mathrm{i}, \mathrm{j}} \in \mathrm{T}(1 \leq \mathrm{i}, \mathrm{j} \leq 2)$. Since δ_{k} satisfies (2.7), we obtain that:

$$
\begin{aligned}
& \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \gamma_{\mathrm{xk}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \theta_{1 \mathrm{xk}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& +\mathrm{i} \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \theta_{2 \mathrm{xk}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots,\left(\left[\theta_{1}\right]+\frac{\lambda_{1,1}+\lambda_{1,2}}{2}\right) \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& +i \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots,\left(\left[\theta_{2}\right]+\frac{\lambda_{2,1}+\lambda_{2,2}}{2}\right) \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots,\left[\theta_{1}\right] \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\frac{1}{2} \delta_{\mathrm{k}} \\
& \left(\mathrm{x}_{1}, \ldots,\left(\lambda_{1,1}+\lambda_{1,2}\right) \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& +\mathrm{i}\left(\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots,\left[\theta_{2}\right] \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\frac{1}{2}\right. \\
& \left.\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots,\left(\lambda_{2,1}+\lambda_{2,2}\right) \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right) \\
& =\left(\left[\theta_{1}\right]+\frac{\lambda_{1,1}+\lambda_{1,2}}{2}\right) \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& +\mathrm{i}\left(\left[\theta_{2}\right]+\frac{\lambda_{2,1}+\lambda_{2,2}}{2}\right) \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\theta_{1} \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{i} \theta_{2} \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\gamma \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
\end{aligned}
$$

For all $\gamma \in \mathrm{C}$ and all $\mathrm{x}_{\mathrm{i}} \in \mathrm{A}_{\mathrm{i}}(\mathrm{i}=1,2, \cdots, \mathrm{n})$. Hence δ_{k} is C -linear with respect to the k -th variable. It follows from (2.5) that:

$$
\begin{aligned}
& \| \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)-\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& \| \leq \tilde{\varphi}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)
\end{aligned}
$$

For all $x_{i} \in A_{i}(i=1,2, \cdots, n)$.
To prove the uniqueness of δ_{k}, let $\delta^{\prime}{ }_{\mathrm{k}}: \mathrm{A}_{1} \times \cdots \times$ $A_{n} \rightarrow B$ be another k-th partial derivation satisfying (2.2). Then we have:

Passing the limit $\mathrm{m} \rightarrow \propto 1$, we have $\delta \mathrm{k}\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{n}}\right)=$ $\delta^{\prime}{ }_{k}\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{n}}\right)$.

Finally, putting $\mathrm{a}_{\mathrm{k}}=\mathrm{b}_{\mathrm{k}}=\mathrm{c}_{\mathrm{k}}=0_{\mathrm{k}}$ and replacing d_{k}, $\mathrm{e}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}}$ with $3_{\mathrm{dk}}^{\mathrm{m}}, 3_{\mathrm{ek}}^{\mathrm{m}}, 3_{\mathrm{fk}}^{\mathrm{m}}$, respectively, in (2.1), we obtain:

$$
\begin{aligned}
& \| \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3^{3 \mathrm{~m}}\left[\mathrm{~d}_{\mathrm{k}} \mathrm{e}_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}\right), \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& -\left[3^{\mathrm{m}} \mathrm{~g}_{\mathrm{k}}\left(\mathrm{~d}_{\mathrm{k}}\right) \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3^{m} \mathrm{e}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) 3^{\mathrm{m}} \mathrm{~g}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}}\right)\right] \\
& -\left[\mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3^{3 \mathrm{~m}} \mathrm{~d}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) 3^{\mathrm{m}} \mathrm{~g}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}}\right)\right] \\
& \leq \varphi_{\mathrm{k}}\left(0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 3^{3 \mathrm{~m}} \mathrm{~d}_{\mathrm{k}}, 3^{\mathrm{m}} \mathrm{e}_{\mathrm{k}}, 3^{\mathrm{m}} \mathrm{f}_{\mathrm{k}}\right)
\end{aligned}
$$

Then we have:
$\| \frac{1}{3^{3 \mathrm{~m}}} \mathrm{~F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots,\left[3^{3 \mathrm{~m}} \mathrm{~d}_{\mathrm{k}} \mathrm{e}_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}\right), \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$-\frac{1}{3^{m}}\left[g_{k}\left(d_{k}\right) F_{k}\left(x_{1}, \ldots, 3^{m} e_{k}, \ldots, x_{n}\right) g_{k}\left(f_{k}\right)\right]$
$-\frac{1}{3^{3 \mathrm{~m}}}\left[\mathrm{~F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, 3^{3 \mathrm{~m}} \mathrm{~d}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}}\right)\right]$
$\leq \frac{1}{3^{3 m}} \varphi_{\mathrm{k}}\left(0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 3^{3 \mathrm{~m}} \mathrm{~d}_{\mathrm{k}}, 3^{\mathrm{m}} \mathrm{e}_{\mathrm{k}}, 3^{\mathrm{m}} \mathrm{f}_{\mathrm{k}}\right)$

For all $\mathrm{d}_{\mathrm{k}}, \mathrm{e}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}} \in \mathrm{A}_{\mathrm{k}}$. Passing the limit $\mathrm{m} \rightarrow \propto 1$ in above inequality, we obtain:

$$
\begin{aligned}
& \delta_{k}\left(\mathrm{x}_{1}, \ldots,\left[\mathrm{~d}_{\mathrm{k}} \mathrm{e}_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}\right], \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\left[\mathrm{g}_{\mathrm{k}}\left(\mathrm{~d}_{\mathrm{k}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{e}_{\mathrm{k}}\right) \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right] \\
& -\left[\mathrm{g}_{\mathrm{k}}\left(\mathrm{~d}_{\mathrm{k}}\right) \delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{e}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}}\right)\right] \\
& +\left[\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{~d}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{e}_{\mathrm{k}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}}\right)\right]
\end{aligned}
$$

For all $\mathrm{d}_{\mathrm{k}}, \mathrm{e}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}} \in \mathrm{A}_{\mathrm{k}}$ and all $\mathrm{x}_{\mathrm{i}} \in \mathrm{A}_{\mathrm{i}}(\mathrm{i} \neq \mathrm{k})$.
By the same reasoning as above, one can prove the theorem for the case $1=-1$.

Theorem 2.3: Let $1 \in\{1,-1\}$ be fixed and let F_{k} : $\mathrm{A}_{1} \times \cdot \cdot$ $\cdot \times A_{n} \rightarrow B$ be a mapping with $F_{k}\left(x_{1}, \cdots, 0_{k}, \cdots, x_{n}\right)=0_{B}$. Assume that there exist a function $\varphi_{k}: \mathrm{A}_{\mathrm{k}}^{6} \rightarrow[0, \infty)$ and an additive mapping $g_{k}: A_{k} \rightarrow B$ such that:

$$
\lim _{\mathrm{m} \rightarrow \infty} 3^{\operatorname{lm}} \varphi\left(3_{\mathrm{ak}}^{-\mathrm{lm}}, 3^{-\operatorname{lm}} \mathrm{bk}, 3^{-\mathrm{lm}} \mathrm{ck}, 3^{-\mathrm{lm}}{ }_{\mathrm{ek}}, 3^{-\operatorname{lm}} \mathrm{fk}\right)=0
$$

$$
\begin{gathered}
\tilde{\varphi}_{\mathrm{k}}\left(\mathrm{a}_{\mathrm{k}}, \mathrm{~b}_{\mathrm{k}}, \mathrm{c}_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right):=\sum_{\mathrm{m}=1}^{\infty} 3^{1(\mathrm{~m}-1)} \varphi_{\mathrm{k}} \\
\left(\frac{\mathrm{a}_{\mathrm{k}}}{3^{\operatorname{lm}}}, \frac{\mathrm{b}_{\mathrm{k}}}{3^{\operatorname{lm}}}, \frac{\mathrm{c}_{\mathrm{k}}}{3^{\operatorname{lm}}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)<\infty
\end{gathered}
$$

And:

$$
\begin{align*}
& \| \mathrm{F}_{\mathrm{k}}\left(\mathrm{x} 1, \ldots \ldots, \lambda \mathrm{a}_{\mathrm{k}}+\lambda \mathrm{b}_{\mathrm{k}}+\lambda \mathrm{c}_{\mathrm{k}}\right. \\
& \left.\|+\left[\mathrm{d}_{\mathrm{k}} \mathrm{e}_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}\right], \ldots,, \mathrm{x}_{\mathrm{n}}\right)-\lambda \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& -\lambda \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{~b}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right)-\lambda \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& -\left[\mathrm{g}_{\mathrm{k}}\left(\mathrm{~d}_{\mathrm{k}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{e}_{\mathrm{k}}\right) \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}, \ldots ., \mathrm{x}_{\mathrm{n}}\right)\right] \tag{10}\\
& -\left[\mathrm{g}_{\mathrm{k}}\left(\mathrm{~d}_{\mathrm{k}}\right) \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{e}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}}\right)\right] \\
& -\left[\mathrm{f}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{~d}_{\mathrm{k}}, \ldots,, \mathrm{x}_{\mathrm{n}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{e}_{\mathrm{k}}\right) \mathrm{g}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}}\right)\right] \| \\
& \leq \varphi_{\mathrm{k}}\left(\mathrm{a}_{\mathrm{k}}, \mathrm{~b}_{\mathrm{k}}, \mathrm{c}_{\mathrm{k}}, \mathrm{e}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}}\right)
\end{align*}
$$

For all $\left(\mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}}, \mathrm{c}_{\mathrm{k}}, \mathrm{e}_{\mathrm{k}}, \mathrm{f}_{\mathrm{k}}\right) \in \mathrm{A}_{\mathrm{k}}, \mathrm{x}_{\mathrm{i}} \in \mathrm{A}_{\mathrm{i}}(\mathrm{i} \neq \mathrm{k})$ and $\lambda=1$, i . If for each fixed $x_{i} \in A_{i}(i=1,2, \ldots, n)$ the function $t \rightarrow F_{k}\left(x_{1}, \cdot \cdot, \mathrm{tx}_{\mathrm{k}}, \cdots, x_{n}\right)$ is continuous on R, then there exists a unique k-th partial derivation $\delta_{\mathrm{k}}: \mathrm{A}_{1} \times \cdots \times \mathrm{A}_{\mathrm{n}} \rightarrow \mathrm{B}$ such that:

$$
\begin{equation*}
\left\|\mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)-\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\right\| \leq \tilde{\varphi}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right) \tag{11}
\end{equation*}
$$

For all $x_{i} \in A_{i}(i=1,2, \cdots, n)$.
Proof: Let $\mathrm{l}=1$. In (2.8), putting $\mathrm{d}_{\mathrm{k}}=\mathrm{e}_{\mathrm{k}}=\mathrm{f}_{\mathrm{k}}=0_{\mathrm{k}}, \lambda=1$ and replacing $a_{k}, b_{k}, c=$ by $\frac{x_{k}}{3}$ we get:
$\left\|F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-3 F_{k}\left(x_{1}, \ldots \ldots, \frac{x_{k}}{3}, \ldots \ldots, x_{n}\right)\right\|$
$\leq \varphi_{k}\left(\frac{\mathrm{X}_{\mathrm{k}}}{3}, \frac{\mathrm{x}_{\mathrm{k}}}{3}, \frac{\mathrm{x}_{\mathrm{k}}}{3}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)$
For all $x_{i} \in A_{i}(i=1,2, \cdots, n)$. Then we have:
$\left\|F_{k}\left(x_{1}, \ldots ., \frac{x_{k}}{3}, \ldots ., x_{n}\right)\right\|-\frac{1}{3} F_{k}\left(x_{1}, \ldots ., x_{k}, \ldots . ., x_{n}\right)$
$\leq \frac{1}{3} \varphi_{\mathrm{k}}\left(\frac{\mathrm{x}_{\mathrm{k}}}{3}, \frac{\mathrm{x}_{\mathrm{k}}}{3}, \frac{\mathrm{x}_{\mathrm{k}}}{3}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)$
For all $x_{i} \in A_{i}(i=1,2, \cdots, n)$. And we obtain that:
$\left\|3^{2} F_{k}\left(x_{1}, \ldots, \frac{x_{k}}{3^{2}}, \ldots, x_{n}\right)-3 F_{k}\left(x_{1}, \ldots, \frac{x_{k}}{3}, \ldots, x_{n}\right)\right\|$ $\leq 3 \varphi_{\mathrm{k}}\left(\frac{\mathrm{x}_{\mathrm{k}}}{3^{2}}, \frac{\mathrm{x}_{\mathrm{k}}}{3^{2}}, \frac{\mathrm{x}_{\mathrm{k}}}{3^{2}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)$

For all $\mathrm{x}_{\mathrm{k}} \in \mathrm{A}_{\mathrm{k}}$. By using the induction, we obtain that:

$$
\begin{aligned}
& \left\|3^{m} F_{k}\left(x_{1}, \ldots ., \frac{x_{k}}{3^{m}}, \ldots ., x_{n}\right)-3^{p} F_{k}\left(x_{1}, \ldots ., \frac{x_{k}}{3^{p}}, \ldots ., x_{n}\right)\right\| \\
& \leq \sum_{j=p+1}^{m} 3^{j-1} \varphi_{k}\left(\frac{x_{k}}{3^{j}}, \frac{x_{k}}{3^{j}}, \frac{x_{k}}{3^{j}}, 0_{k}, 0_{k}, 0_{k}\right)
\end{aligned}
$$

For all $\mathrm{m}>\mathrm{p} \geq 0$ and all $\mathrm{x}_{\mathrm{i}} \in \mathrm{A}_{\mathrm{i}}(\mathrm{i}=1,2, \cdots, \mathrm{n})$. Thus for $\quad x_{i} \in A_{i} \quad(i=1, \cdots, n)$, the sequence $\left\{3^{m} F_{k}\left(x_{1}, \ldots, \frac{x_{k}}{3^{m}}, \ldots ., x_{n}\right)\right\}$ is a Cauchy sequence. From the completeness of B, the sequence is convergent. So we can define a mapping δ_{k} given by:
$\delta_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}:=\lim _{m \rightarrow \infty} 3^{m} F_{k}\left(x_{1}, \ldots, \frac{x_{k}}{3^{m}}, \ldots, x_{n}\right)\right.$

For all $\mathrm{x}_{\mathrm{i}} \in \mathrm{A}=(\mathrm{i}=1, \cdots, \mathrm{n})$. Letting $\lambda=1, \mathrm{~d}_{\mathrm{k}}=\mathrm{e}_{\mathrm{k}}=$ $\mathrm{f}_{\mathrm{k}}=0_{\mathrm{k}}$ and replacing $\mathrm{a}_{\mathrm{k}}, \quad \mathrm{b}_{\mathrm{k}}, \quad \mathrm{c}_{\mathrm{k}} \quad$ by $\frac{a_{k}}{3^{m}}, \frac{b_{k}}{3^{m}}, \frac{c_{k}}{3^{m}}$ respectively, in (2.8), we have that:

$$
\left\|\begin{array}{l}
\| 3^{m} F_{k}\left(x_{1}, \ldots, \frac{a_{k}+b_{k}+c_{k}}{3^{m}}, \ldots ., x_{n}\right)
\end{array}\right\|^{-3^{m} F_{k}\left(x_{1}, \ldots, \frac{a_{k}}{3^{m}}, \ldots, x_{n}\right)} \begin{aligned}
& -3^{m} F_{k}\left(x_{1}, \ldots ., \frac{b_{k}}{3^{m}}, \ldots ., x_{n}\right) \tag{15}\\
& -3^{m} F_{k}\left(x_{1}, \ldots ., \frac{c_{k}}{3^{m}}, \ldots, x_{n}\right) \\
& \quad \leq 3^{m} \varphi_{k}\left(\frac{a_{k}}{3^{m}}, \frac{b_{k}}{3^{m}}, \frac{c_{k}}{3^{m}}, 0_{k}, 0_{k}, 0_{k}\right)
\end{aligned}
$$

Passing the limit $\mathrm{m} \rightarrow \infty$, we obtain:

$$
\begin{align*}
& \delta_{k}\left(\mathrm{x}_{1}, \ldots ., \mathrm{a}_{\mathrm{k}}+\mathrm{b}_{\mathrm{k}}+\mathrm{c}_{\mathrm{k}}, \ldots ., \mathrm{x}_{\mathrm{n}}\right)=\delta_{k}\left(\mathrm{x}_{1}, \ldots ., \mathrm{a}_{\mathrm{k}}, \ldots ., \mathrm{x}_{\mathrm{n}}\right) \tag{16}\\
& +\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots ., \mathrm{b}_{\mathrm{k}}, \ldots \ldots, \mathrm{x}_{\mathrm{n}}\right)+\delta_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots,, \mathrm{c}_{\mathrm{k}}, \ldots ., \mathrm{x}_{\mathrm{n}}\right)
\end{align*}
$$

CONCLUSION

For all $a_{k}, b_{k}, c_{k} \in A_{k}$ and all $x_{i} \in A_{i}(i \neq k)$. Since $F_{k}\left(x_{1}, \cdots, t_{k}, \cdots, x_{n}\right)$ is continuous at $t \in R$ for each fixed $x_{i} \in A_{i}(i=1, \cdots, n)$, the mapping δ_{k} is R-linear with respect to the k -th variable by the same reasoning as the proof of the main theorem of (Rassias, 1978). Putting b_{k} $=\mathrm{c}_{\mathrm{k}}=\mathrm{d}_{\mathrm{k}}=\mathrm{e}_{\mathrm{k}}=\mathrm{f}_{\mathrm{k}}=0_{\mathrm{k}}, \delta=\mathrm{i}$ and replacing a_{k} with $\frac{a_{\mathrm{k}}}{3^{\mathrm{m}}}$ in (2.8), we can easily obtain the inequality:

$$
\| \begin{align*}
& \| 3^{m} F_{k}\left(x_{1}, \ldots ., \frac{i a_{k}}{3^{m}}, \ldots, x_{n}\right)-i 3^{m} F_{k}\left(x_{1}, \ldots . ., \frac{a_{k}}{3^{m}}, \ldots, x_{n}\right) \| \tag{17}\\
& \leq 3^{m} \varphi_{k}\left(\frac{a_{k}}{3^{m}}, 0_{k}, 0_{k}, 0_{k}, 0_{k}, 0_{k}\right)
\end{align*}
$$

For all $m \in N$ and $a_{k} \in A_{k}$. Since the right-hand side in (2.14) tends to zero as $\mathrm{m} \rightarrow \infty$, we have:

$$
\begin{aligned}
& \delta_{k}\left(x_{1}, \ldots, . \mathrm{ix}_{k}, \ldots, x_{n}\right) \\
& =\lim _{m \rightarrow \infty} 3^{m} F_{k}\left(x_{1}, \ldots, \frac{i x_{k}}{3^{m}}, \ldots, x_{n}\right) \\
& =\lim _{m \rightarrow \infty} i 3^{m} F_{k}\left(x_{1}, \ldots, \frac{x_{k}}{3^{m}}, \ldots, x_{n}\right) \\
& =i \delta_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)
\end{aligned}
$$

For all $\mathrm{x}_{\mathrm{i}} \in \mathrm{A}_{\mathrm{i}}(\mathrm{i}=1, \ldots, \mathrm{n})$. Thus δ_{k} is C-linear with respect to the k -th variable. Now, let $\mathrm{p}=0$ in (2.11), we obtain the following:

$$
\begin{aligned}
& \left\|F_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-3^{m} F_{k}\left(x_{1}, \ldots, \frac{x_{k}}{3^{m}}, \ldots, x_{n}\right)\right\| \\
& \leq \sum_{j=1}^{m} 3^{j-1} \varphi_{k}\left(\frac{x_{k}}{3^{j}}, \frac{x_{k}}{3^{j}}, \frac{x_{k}}{3^{j}}, 0_{k}, 0_{k}, 0_{k}\right)
\end{aligned}
$$

Passing the limit $\mathrm{m} \rightarrow \propto 1$, we have:

$$
\begin{aligned}
\| \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \ldots ., \mathrm{x}_{\mathrm{n}}\right)- & \delta\left(\mathrm{x}_{1}, \ldots \ldots, \mathrm{x}_{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \| \\
& \leq \tilde{\varphi}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}, 0_{\mathrm{k}}\right)
\end{aligned}
$$

For all $x_{i} \in A_{i}(i=1, \cdots, n)$. By a similar method to the proof of Theorem 2.2, one can prove that δ_{k} is a unique k -th partial derivation which satisfies (2.9).

By the same reasoning as above, one can prove the theorem for the case $1=-1$.

ACKNOWLEDGEMENT

The fifth researchers were supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-20100009232).

REFERENCES

Badora, R., 2006. On approximate derivations. Math. Inequal. Appl., 9: 167-173. http://files.ele-math.com/abstracts/mia-09-17-abs.pdf
Chu, H.Y., S.H. Ku and J.S. Park, 2010. Partial Stabilities and Partial Derivations of N -Variable Functions. Nonlinear Anal-TMA, 72: 1531-1541. DOI:10.1016/J.NA.2009.08.038
Czerwik, S., 2002. Functional Equations and Inequalities in Several Variables. 1st Edn., World Scientific, River Edge, NJ., pp: 410. ISBN: 981-02-4837-7
Ebadian, A., A. Najati and M.E. Gordji, 2010. On approximate additive-quartic and quadratic-cubic Functional equations in two variables on abelian groups. Results. Math., 58: 39-53. DOI: 10.1007/s00025-010-0018-4

Farokhzad, R. and S.A.R. Hosseinioun, 2010. Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative fixed point approach. Int. J. Nonlinear Anal. Appl., 1: 42-53
Gajda, Z., 1991. On stability of additive mappings. Int. J. Math. Sci., 14: 431-434. DOI:10.1155/S016117129100056x
Gavruta, P., 1999. An Answer to a Question of J. M. Rassias Concerning The Stability Of Cauchy Lfunctiona Equation. In: Advances in Equations and Inequalities, Rassias, J.M. (Ed.). Hadronic Press, Palm Harbor, Fla, USA., pp: 67-71.
Gavruta, P.G. and L. Gavruta, 2010. A new method for the generalized hyers-lam-rassias stability. Int. J. Nonlinear Anal. Applied, 1: 11-18.
Gilanyi, A., 2001. Eine zur Parallelogrammgleichung aquivalente ungleichung. Aequationes Math., 62 : 303-309. DOI:10.1007/PL00000156
Gordji, M.E., A. Ebadian and S. Zolfaghari, 2008. Stability of A Functional Equation Deriving From Cubic And Quartic Functions. Abstr. Applied Anal., 2008: 17-17. ID 801904.
Gordji, M.E., 2009. Stability of an additive-quadratic functional equation of two variables in F-spaces. J. Nonlinear Sci. Appl., 2: 251-259.
Gordji, M.E. and H. Khodaei, 2009a. On the Generalized Hyers-Ulam-Rassias Stability of Quadratic Functional Equations. Abstract Applied Anal., 2009: 11-11. ID 923476.
Gordji, M.E. and H. Khodaei, 2009b. Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces. Nonlinear Anal., 71: 5629-5643. DOI:10.1016/J.NA.2009.04.052
Gordji, M.E. and M.B. Savadkouhi, 2009a. Approximation of generalized homomorphisms in quasi-Banach Algebras. Analele Univ. Ovidius Constata, Math. Series, 17: 203-214. http://www.emis.ams.org/journals/ASUO/mathema tics/pdf18/Articol19.pdf
Gordji, M.E. and M.B. Savadkouhi, 2009b. On approximate cubic homomorphisms. Advance Diff. Equations, Article, ID 618463-11-11. DOI: 10.1155/2009/618463.

Gordji, M.E. and M.B. Savadkouhi, 2009c. Stability of a mixed type cubic and quartic functional equations in random normed spaces. J. Ineq. Appl., 2009: 99. Article, ID 527462 http://downloads.hindawi.com/journals/jia/2009/52 7462.pdf

Gordji, M.E., M.B. Savadkouhi and C. Park, 2009a. Quadratic-quartic functional equations in RN spaces. J. Ineq. Appl., 2009: 14-14. DOI:10.1155/2009/868423Article, ID 868423
Gordji, M.E., J.M. Rassias and N. Ghobadipour, 2009b. Generalized hyers-ulam stability of the generalized (n,k)-derivations. Abs. Applied Anal., 2009: 8-8. Article, ID 437931 DOI:10.1155/2009/437931
Gordji, M.E., M. Bavand-Savadkouhi, J.M. Rassias and S. Zolfaghari, 2009c. Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces. Abstract Applied Anal., 2009: 14-14. Article, ID 417473 DOI: 10.1155/2009/417473.

Gordji, M.E., S. Abbaszadeh and C. Park, 2009d. On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces. J. Ineq. Appl., 2009: 26-26. http://downloads.hindawi.com/journals/jia/2009/15 3084.pdf Article, ID 153084

Gordji, M.E., S. Zolfaghari, J.M. Rassias and M.B. Savadkouhi, 2009e. Solution and Stability of a Mixed Type Cubic and Quartic Functional Equation in Quasi-Banach Spaces. Abstr. Applied Anal. 2009: 14-14. DOI:10.1155/2009/417473 ID 417473: [30]
Gordji, M.E., S. Kaboli-Gharetapeh, C. Park and S. Zolfaghri, 2009f. Stability of an additive-cubicquartic functional equation. Adv. Difference Eq., 2009: 20-20. DOI:10.1155/2009/395693 Article, ID 395693
Gordji, M.E., S.K. Gharetapeh, J.M. Rassias and S. Zolfaghari, 2009 g . Solution and stability of a mixed type additive, quadratic and cubic functional equation. Adv. Difference Eq., 2009: 17-17. Article ID 826130. DOI: 10.1155/2009/826130.
Gordji, M.E., T. Karimi and S.K. Gharetapeh, 2009h. Approximately n-Jordan homomorphisms on Banach algebras, J. Ineq. Appl. Article, 2009: 8-8. DOI:10.1155/2009/870843ID 870843- 8.
Gordji, M.E., 2010. Stability of a functional equation deriving from quartic and additive functions. Bull. Korean Math. Soc., 47: 491-502. DOI:10.4134/BKMS.2010.47.3.491
Gordji, M.E. and M.B. Savadkouhi, 2010a. Stability of a mixed type cubicquartic functional equation in non-Archimedean spaces. Appl. Math. Lett., 23: 1198-1202. DOI:10.1016/J.AML.2010.05.011
Gordji, M.E. and M.B. Savadkouhi, 2010b. Stability of cubic and quartic functional equations in nonarchimedean spaces. Acta Appl. Math., 110: 13211329. DOI:10.1007/S10440-009-9512-7

Gordji, M.E. and A. Najati, 2010. Approximately Jhomomorphisms: A fixed point approach. J. Geometry Phys., 60: 809-814. DOI:10.1016/J.GEOMPHYS.2010.01.012
Gordji, M.E. and M.S. Moslehian, 2010. A trick for investigation of approximate derivations. Math. Commun. 15:

99-105. http://profdoc.um.ac.ir/pubs_files/p11016597.pdf
Gordji, M.A., S.K. Gharetapeh, T. Karimi, E. Rashidi and M. Aghaei, 2010a. Ternary Jordan derivations on c-ternary algebras. J. Comp. Anal. Appl., 12: 463-470.
Gordji, M.E., M.B. Ghaemi and H. Majani, 2010b. Generalized Hyers-Ulam-Rassias Theorem in Menger Probabilistic Normed Spaces. Discrete Dyn. Nature Soci., 2010: 11-11. DOI:10.1155/2010/162371 Article ID 162371.
Gordji, M.E., M.B. Ghaemi, H. Majani and C. Park, 2010c. Generalized ulam-hyers stability of Jensen functional equation in erstnev pn spaces. J. Ineq. Appl., 2010: 14-14. ID 868193. http://downloads.hindawi.com/journals/jia/2010/86 8193.pdf

Gordji, M.E., M.B. Ghaemi, S.K. Gharetapeh, S. Shams and A. Ebadian, 2010d. On the stability of Jderivations. J. Geometry Phys., 60: 454-459. DOI:10.1016/J.GEOMPHYS.2009.11.004
Gordji, M.E., M.B. Savadkouhi and M. Bidkham, 2010e. Stability of a mixed type additive and quadratic functional equation in non-archimedean spaces. J. Comp. Anal. Appl., 12: 454-462.
Hyers, D.H., 1941. On the stability of the linear functional equation. Proc. Nat. Acad. Sci., 27: 222224. DOI:10.1073/PNAS.27.4.222

Hyers, D.H., G. Isac and T.M. Rassias, 1998. Stability of Functional Equations in Several Variables. 1st Edn., Birkhauser, Boston, ISBN: 0-8176-4024-X pp: 330.
Jun, K.W. and D.W. Park, 1996. Almost derivations on the Banach algebra Cn 0, 1. Bull. Korean Math. Soc. 33: 359-366. http://mathnet.kaist.ac.kr/mathnet/kms_tex/4169.pd f
Jung, S.M., 2001. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis.1st Edn., Hadronic Press, Palm Harbor, pp: 256.
Khodaei, H. and Th.M. Rassias, 2010. Approximately generalized additive functions in several variables. Int. J. Nonlinear Anal. Appl., 1: 22-41.
Murphy, J.G., 1990. C*Algebras and Operator Theory. 1st Edn., Academic Press, San Diego, pp: 286.

Park, C. and A. Najati, 2010. Generalized additive functional inequalities in banach algebras. Int. J. Nonlinear Anal. Appl., 1: 54-62.
Park, C. and M.E. Gordji, 2010. Comment on approximate ternary Jordan derivations on Banach ternary algebras Bavand Savadkouhi et al. J. Math. Phys., 50: 042303 2009. J. Math. Phys. 51: 7-7. DOI:10.1063/1.3299295
Park, C. and T.M. Rassias, 2010. Isomorphisms in unital C*algebras. Int. J. Nonlinear Anal. Appl., 1: 1-10.
Park, C., 2007. Isomorphisms between C*-ternary algebras. J. Math. Anal. Appl., 327: 101-115. DOI:10.1016/J.JMAA.2006.04.010
Rassias, T.M. and K. Shibata, 1998. Variational problem of some quadratic functionals in complex analysis. J. Math. Anal. Appl., 228: 234-253. DOI:10.1006/JMAA.1998.6129
Rassias, T.M. and P. Semrl, 1992. On the behavior of mappings which do not satisfy hyers-ulam stability. Proc. Amer. Math. Soc., 114: 989-993. DOI:10.1090/S0002-9939-1992-1059634-1
Rassias, T.M. and P. Semrl, 1993. On the hyers-ulam stability of linear mappings. J. Math. Anal. Appl., 173: 325-338. DOI:10.1006/JMAA.1993.1070
Rassias, T.M., 1978. On the stability of the linear mapping in banach spaces. Proc. Am. Math. Soc., 72: 297-300. DOI:10.1090/S0002-9939-1978-0507327-1
Rassias, T.M., 1990. Problem 16; 2, Report of the 27th International Symp. Functional Equations Aeq. Math., 39: 292-293.

Rassias, T.M., 1998. On the stability of the quadratic functional equation and its applications. Studia Univ. Babes-Bolyai., 43: 89-124. http://www.hindawi.com/journals/aaa/2008/628178 .html
Rassias, T.M., 2000a. The problem of S.M. Ulam for approximately multiplicative mappings. J. Math. Anal. Appl., 246: 352-378. DOI:10.1006/JMAA. 2000.6788
Rassias, T.M., 2000b. On the stability of functional equations and a problem of Ulam. Acta Appl. Math., 62: 23-130. DOI:10.1023/A:1006499223572
Rassias, T.M., 2000c. On the stability of functional equations in Banach spaces. J. Math. Anal. Appl., 251: 264-284. DOI:10.1006/JMAA.2000.7046
Savadkouhi, M.B., M.E. Gordji, J.M. Rassias and N. Ghobadipour, 2009. Approximate ternary Jordan derivations on Banach ternary algebras. J. Math. Phys., 50: 9-9. DOI:10.1063/1.3093269
Ulam, S.M., 1960. A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics. 1st Edn., Interscience Publisher, New York, pp: 150.

