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INTRODUCTION 

 
 A ternary (associative) algebra (A, []) is a linear 
space A over a scalar field F = R or C equipped with a 
linear mapping, the so-called ternary product, [ ]: 
A×A×A → A such that [[abc] de] = [a [bcd]e] = [ab 
[cde]] for all a, b, c, d, e ∈ A. This notion is a natural 
generalization of the binary case. Indeed if (AΘ,) is a 
usual (binary) algebra then [abc]:= (aΘb) Θc induced a 
ternary product making A in to a ternary algebra which 
will be called trivial. By a Banach ternary algebra we 
mean a ternary algebra equipped with a complete norm 
||.|| such that ||[abc]|| _ kakkbkkck for all a, b, c ∈ A.  
 Ulam (1960) gave a talk before the Mathematics 
Club of the University of Wisconsin in which he 
discussed a number of unsolved problems. Among 
these was the following question concerning the 
stability of homomorphisms. 
 We are given a group G and a metric group G’ with 
metric ρ(.,.). Given ∈> 0, does there exist a δ> 0 such 
that if f: G→G’ satisfies: 
 

(f (xy),f (x)f (y))ρ < δ  
 
 For all x, y∈G, then a homomorphism h: G→G’ 
exists with ρ(f(x), h(x)) < ∈for all x∈G? 
 In other words, we are looking for situations when 
the homomorphisms are stable, i.e., if a mapping is 

almost a homomorphism, then there exists a true 
homomorphism near it. In Hyers (1941) considered the 
case of approximately additive mapping in Banach 
spaces 1and satisfying the well-known weak Hyers 
inequality controlled by a positive constant. The famous 
Hyers stability result that appeared in (Hyers, 1941) 
was generalized in the stability involving a sum of 
powers of norms by Rassias (1978). 
 
Theorem 1.1: (Th. M. Rassias). Let f: E→F be a 
mapping from a normed vector space E into a Banach 
space F subject to the inequality:  
 

P P|| f (x y) f (x) f (y) || (|| x || || y || )+ − − ≤∈ +  (1) 
 
 For all x, y∈E, where ∈ and p are constant with ∈> 
0 and p<1. Then the limit: 
 

n

n
lim f (2 x)L(x)

n 2
=

→∞
 

 
 For all x∈E and L : E→F is the unique additive 
mapping which satisfies: 
 

P
P

2|| f (x) L(x) || || x ||
2 2

∈
− ≤

−
 (2) 

 
 For all x∈E. If p<0 then inequality (1.1) holds for 
x, y ≠ 0 and (1.2) for x≠0. Also, if the mapping t→f (tx) 
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is continuous in t∈R for each fixed x∈X, then L is R-
linear. 
 In Gajda (1991) answered the question for the case 
p>1, which was raised by Th. M. Rassias. This new 
concept is known as Hyers-Ulam-Rassias stability or 
generalized Hyers-Ulam stability of functional 
equations. In 1994, a generalization of the Rassias’ 
theorem was obtained by Gavruta (1999). The stability 
of functional equations was studied by a number of 
mathematicians, see (Savadkouhi et al., 2009; Czerwik, 
2002), (Ebadian et al., 2010; Gordji, 2009; 2010; Gordji 
and Savadkouhi, 2009a; 2009b; 2009c; 2010a; 2010b; 
Gordji and Khodaei, 2009a; 2009b; Gordji et al., 2008; 
2009a; 2009b; 2009c: 2009d; 2009e: 2009f; 2009g; 
2009h; 2010a; 2010b; 2010c; 2010d; 2010e; Gordji and 
Najati, 2010; Gordji and Moslehian, 2010; Farokhzad 
and Hosseinioun, 2010; Gajda, 1991; Gavruta, 1999; 
Gavruta and Gavruta, 2010; Gilanyi, 2001; Gordji et 
al., 2009e; 2009f; 2009g; 2009h; Gordji  and   
Savadkouhi, 2009a; 2009b; Gordji et al., Gordji and 
Savadkouhi, 2009; Gordji et al., 2010a; 2010b; Khodaei 
and Rassias, 2010), (Hyers et al., 1998; Jung, 2001),( 
Park, 2007; Park and Gordji, 2010; Park and Najati, 
2010; Park and Rassias, 2010), (Rassias, 1990; 1998; 
2000a; 2000b; 2000c; Rassias and Semrl, 1992; 1993; 
Rassias and Shibata, 1998) and references therein. 
 It seems that approximate derivations were first 
investigated Jun and Park (1996). 
 Recently, the stability of derivations has been 
investigated  by  some   authors;   (Badora, 2006; Chu 
et al., 2010; Gordji and Moslehian, 2010; Farokhzad 
and Hosseinioun, 2010) and references therein. 
 In this study, we introduce the concept of a partial 
ternary derivation from A1×· · ·×An into B, where A1, 
A2, · · ·, An and B are ternary algebras. We prove the 
generalized Hyers-Ulam stability of the partial ternary 
derivation in Banach ternary algebras. 
 
Main results: Let A1, A2,...,An be normed ternary 
algebras over the complex field C and let B be a Banach 
ternary algebra over C. A mapping δk from A1×···×An 
into B is called a k-th partial ternary derivation if there 
exists a mapping gk: Ak→B such that: 
 

k 1,..., k k k n

k k k k 1 k k

k k k 1 k n k k

k 1 k n k k k k

(x [a b c ],..., x )

[g (a )g (b ) (x ,...,c ,..., x )]

[g (a ) (x ,...,b ,..., x )g (c )]

[ (x ,...,| a ,..., x )g (b )g (c )]

δ

= δ

+ δ

+ δ

 

 
And: 

k 1 k k ck n

1 k n

k 1 k n

k 1 k n

(x ,..., b ,..., x )

(x ,...,a ,..., x )

(x ,...,b ,..., x )

(x ,...,c ,..., x )

δ αα +β + γ

= αδ

+βδ

+γδ

 

 
 For all α, β, γ∈C, all ak, bk, ck∈Ak and all xi∈Ai (i≠k). 
 We denote that 0k, 0B are zero elements of Ak, B, 
respectively. 
 
Remark 2.1: Let B = Ak, Ai = 0i (i≠k) and gk = idAk . 
Then the k-th partial ternary derivation can be 
considered as the ternary derivation of an original 
version. 
 
Theorem 2.2: Let l∈{1,−1} be fixed and let Fk: 
A1×···×An→B be a mapping with Fk(x1,···, 0k,···,xn) = 
0B. Assume that there exist a function 

6
k k: A [0, )ϕ → ∞ and an additive mapping gk: Ak →B 

such that: 
 

lm lm lm lm lm lm
k k k k k klm

lim 1 (3 a ,3 b ,3 c ,3 d ,3 e ,3 f ) 0
m 3

ϕ =
→∞

 

 

k k k k k k l
m 0

lm lm lm
k k k k k k k

1(a ,b ,c ,0 ,0 ,0 ) :
3 (m 1)

(3 a ,3 b ,3 c ,0 ,0 ,0 )

∞

=

ϕ =
+

ϕ = ∞

∑  

 
And: 
 

k 1 ak bk ck k k k n

k 1 k n

k 1 k n k 1 k n

k k k k 1 k n

k k k 1 k n k k

k 1 k n k k

|| F (x ,..., ) [d e f ],...x

F (x ,...,a ,..., x )

F (x ,..., b ,..., x ) F (x ,...,c ,...x )

[g (dk)g (e )F (x ,..., f ,...x )]

[g (d )F (x ,...,e ,..., x )g (f )]

[F (x ,...,d ,..., x )g (e

λ + λ + λ + −

λ

−λ − λ

−

−

− k 1

k k k k k k k

)g (f )]

|| (a ,b ,c ,d ,e , f )≤ ϕ

 (3) 

 
 For all ak, bk, ck, dk, ek, fk∈Ak, xi∈Ai (i≠k) and all 
λ∈T:={µ∈C| |µ| = 1}. Then there exists a unique k-th 
partial derivation δk: A1×···×An→B such that: 
 

k 1 n k 1 n

k k k k k k k

|| F (x ,..., x ) (x ,..., x )

(x ,x ,x ,0 ,0 ,0 )

− δ

≤ ϕ
 (4) 
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 For all xi∈Ai (i = 1, 2,···, n). 
 
Proof: Let l = 1. In (2.1), putting ak = bk = ck = xk, dk = 
ek = fk = 0k and λ=1, we have: 

k 1 xn n k 1 k n

k k k k k k k

|| F (x ,...,3 ,..., x ) 3F (x ,..., x ,..., x )

|| (x ,x ,x ,0 ,0 ,0 )

−

≤ ϕ
 

That is: 
 

k 1 k n k 1 xk n

k k k k k k k

1F (x ,..., x ,..., x ) F (x ,...,3 ,..., x )
3

1 (x ,x ,x ,0 ,0 ,0 )
3

−

≤ ϕ

 (5) 

 
 For all xi∈Ai (i = 1, 2,···, n). In (2.3), dividing the 
both sides by 3 and replacing xk with 3xk, we have: 
 
 

2
k 1 xk n k 1 xk n2

xk xk xk
k k k k2

1 1F (x ,...,3 ,..., x ) F (x ,...,3 ,..., x )
3 3

1 (3 ,3 ,3 ,0 ,0 ,0 )
3

−

≤ ϕ
 (6) 

 
 It follows from (2.3) and (2.4) that: 
 

2
k 1 k n k 1 xk n2

k k k k k k k 2

k xk xk xk k k k

1F (x ,..., x ,..., x ) F (x ,...,3 ,..., x )
3

1 1(x ,x ,x ,0 ,0 ,0 )
3 3
(3 ,3 ,3 ,0 ,0 ,0 )

−

≤ ϕ +

ϕ

 

 
 
 For all xi∈Ai (i = 1, 2, · · · , n). Continuing this 
way, we get: 
 

m
k 1 k n k 1 xk nm

m 1
j j j

k k k kxk xk xkj 1
j 0

1F (x ,..., x ,..., x ) F (x ,...,3 ,..., x )
3

1 (3 ,3 ,3 ,0 ,0 ,0 )
3

−

+
=

−

≤ ϕ∑
  (7) 

 
 For all positive integers m and all xi∈Ai (i = 1, 2,···, 
n). For any positive integer p, dividing the both sides by 
3p and replacing xk by 3p

xk in (2.5), we have: 
 

m pP
k 1 xk n k 1 xk nP m

m 1
j p j p j p

k xk xk xk k k kj p 1
j 0

1 1F (x ,...,3 ,..., x ) F (x ,...,3 ,..., x )
3 3 p

1 (3 ,3 ,3 ,0 ,0 ,0 )
3

+

−
+ + +

+ +
=

−
+

≤ ϕ∑
 

Which tends to zero as p →∝. So the sequence 
m m

k 1
1{( ) F (x ,...,3 xk,..., xn)}
3

is a Cauchy sequence in B. 

By the completeness of B, 
m m

k 1
1{( ) F (x ,...,3 xk,..., xn)}
3

converges and so we can 

define a mapping δk: A1×···×An→B given by: 
 

m
k 1 n k 1 xk nm

lim 1(x ,..., x ) F (x ,...,3 ,..., x )
n 3

δ =
→∞

 (8)  

 
 For all xi∈Ai (i = 1,···, n). In (2.1), letting dk = ek = 
fk = 0k and replacing ak, bk, ck with 3m

ak, 3m
bk, 3m

ck, 
respectively, we obtain that: 
 

m
k 1 ak bk ck nm

m
k 1 ak nm

m
k 1 bk nm

m
k 1 ck nm

m m m
k ak bk ck k k km

1 F (x ,...,3 ( ),..., x )
3

1 F (x ,...,3 ,..., x )
3
1 F (x ,...,3 ,..., x )

3
1 F (x ,...,3 ,..., x )

3
1 (3 ,3 ,3 ,0 ,0 ,0 )

3

λ + λ + λ

−λ

−λ

−λ

≤ ϕ

 

 
 Which tends to zero as m →∝. Thus we obtain: 
 

k 1 ak bk ck n k 1 k n

k 1 k n k 1 k n

(x ,..., ,..., x ) (x ,...,a ,..., x )

(x ,...,b ,..., x ) (x ,...,c ,..., x )

δ λ + λ + λ = λδ

+λδ + λδ
 (9) 

 
 For all ak, bk, ck ∈Ak and all λ∈T. 
 Setting ck = 0k and λ = 1 in (2.7), we have: 
 

k 1 k k n

k 1 k n k 1 k n

(x ,...,a b ,..., x )

(x ,...,a ,..., x ) (x ,...,b ,..., x )

δ +

= δ + δ
 

 
 For all ak, bk∈Ak, all xi ∈Ai(i≠k). 
 Setting bk = ck = 0k in (2.7), we have: 
 

k 1 ak n k 1 k n(x ,..., ,..., x ) (x ,...,a ,..., x )δ λ = λδ  

 
 For all ak ∈Ak, all xi∈Ai(i≠k) and all λ∈T. 
 Let γ = θ1+iθ2∈C, where θ1, θ2 ∈R. Let γ1 = θ1 − 
[θ1], γ2 = θ2 − [θ2], where [θi] denotes the greatest 
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integer less than or equal to the number θi (i = 1, 2). 
Then 0 ≤γi < 1 (i = 1, 2) and by using Remark 2.2.2 of 
(Murphy, 1990), one can represent γI as γi = i i,2

2
λ + λ

 in 
which λi,j∈T (1≤i, j≤2). Since δk satisfies (2.7), we 
obtain that: 
 

k 1 xk n

k 1 1xk n

k 1 2xk n

1,1 1,2
k 1 1 k n

2,1 2,2
k 1 2 k n

k 1 1 k n k

(x ,..., ,..., x )

(x ,..., ,..., x )

i (x ,..., ,..., x )

x ,..., [ ] x ,..., x
2

i x ,..., [ ] x ,..., x
2

1(x ,...,[ ]x ,..., x )
2

(

δ γ

= δ θ

+ δ θ

  λ + λ  = δ θ +
    

  λ + λ  + δ θ +
    

= δ θ + δ

1 1,1 1,2 k n

k 1 2 k n

k 1 2,1 2,2 k n

1,1 1,2
1 k 1 k n

2,1 2,2
2 k 1 k n

1 k 1 k

x ,..., ( )x ,..., x )

1i( (x ,...,[ ]x ,..., x )
2

(x ,...,( )x ,..., x ))

[ ] (x ,..., x ,..., x )
2

i [ ] (x ,..., x ,..., x )
2

(x ,..., x ,..., x

λ + λ

+ δ θ +

δ λ + λ

 λ + λ
 = θ + δ
 
 
 λ + λ
 + θ + δ
 
 

= θ δ n 2 k 1 k n

k 1 k n

) i (x ,..., x ,..., x )

(x ,..., x ,..., x )

+ θ δ

= γδ

 

 
 For all γ∈C and all xi∈Ai (i = 1, 2, ···, n). Hence δk 
is C-linear with respect to the k-th variable. It follows 
from (2.5) that: 
 

k 1 k n k 1 k n

k k k k k k k

|| F (x ,..., x ,..., x ) (x ,..., x ,..., x )

|| (x , x ,x ,0 ,0 ,0 )

− δ

≤ ϕ
 

 
 For all xi∈Ai (i = 1, 2,···, n). 
 To prove the uniqueness of δk, let δ’k: A1×···× 
An→B be another k-th partial derivation satisfying 
(2.2). Then we have: 
 Passing the limit m→∝1, we have δk(x1,···, xn) = 
δ’k(x1,···,xn). 
 Finally, putting ak = bk = ck = 0k and replacing dk, 
ek, fk with 3m

dk, 3m
ek, 3m

fk, respectively, in (2.1), we 
obtain: 

3m
k 1 k k k n
m m m

k k k 1 k n k k
3m m

k 1 k n k k
3m m m

k k k k k k k

|| F (x ,...,3 [d e f ),...., x )

[3 g (d )F (x ,...,3 e ,..., x )3 g (f )]

[F (x ,...,3 d ,..., x )3 g (f )]

(0 ,0 ,0 ,3 d ,3 e ,3 f )

−

−

≤ ϕ

 

 
 Then we have: 
 

3m
k 1 k k k n3m

m
k k k 1 k n k km

3m
k 1 k n k k3m

3m m m
k k k k k k k3m

1|| F (x ,...,[3 d e f ),...., x )
3
1 [g (d )F (x ,...,3 e ,..., x )g (f )]

3
1 [F (x ,...,3 d ,..., x )g (f )]

3
1 (0 ,0 ,0 ,3 d ,3 e ,3 f )

3

−

−

≤ ϕ

 

 
 For all dk, ek, fk∈Ak. Passing the limit m→∝1 in 
above inequality, we obtain: 
 

k 1 k k k n

k k k k k 1 k n

k k k 1 k n k k

k 1 k n k k k k

(x ,...,[d e f ],...., x )

[g (d )g (e ) (x ,...,f ,..., x )]

[g (d ) (x ,...,e ,..., x )g (f )]

[ (x ,...,d ,..., x )g (e )g (f )]

δ

= δ

− δ

+ δ

 

 
 For all dk, ek, fk ∈Ak and all xi∈Ai (i≠k). 
 By the same reasoning as above, one can prove the 
theorem for the case l = −1. 
 
Theorem 2.3: Let l ∈{1,−1} be fixed and let Fk: A1×· · 
·×An →B be a mapping with Fk(x1,···,0k,···,xn) = 0B. 

Assume that there exist a function k
6

: A [0, )
k

ϕ → ∞ and 

an additive mapping gk: Ak→B such that: 
 

lm lm lm lm lm lm
ak bk ck ek fk

lim
3 (3 ,3 ,3 ,3 ,3 ) 0

m
− − − − −ϕ =

→∞
 

 

1(m 1)
k k k k k k k k

m 1

k k k
k k klm lm lm

(a ,b ,c ,0 ,0 ,0 ) : 3

a b c, , ,0 ,0 ,0
3 3 3

∞
−

=

ϕ = ϕ

 
< ∞  

 

∑
 

 
 And: 
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k k k k

k k k n k 1 k n

k 1 k n k 1 k n

k k k k k 1 k n

k k k 1 k n k k

k 1 k

F (x1,....., a b c

[d e f ],...., x ) F (x ,....,a ,...., x )

F (x ,...,b ,..., x ) F (x ,...,c ,..., x )

[g (d )g (e )F (x ,..., f ,....., x )]

[g (d )F (x ,...,e ,..., x )g (f )]

[f (x ,...,d ,....

λ + λ + λ

+ − λ

−λ − λ

−

−

− n k k k k

k k k k k k

, x )g (e )g (f )]

(a ,b ,c ,e ,f )≤ ϕ

 (10) 

 
 For all (ak, bk, ck, ek, fk)∈Ak,xi∈Ai(i≠k) and λ =1, i. 
If for each fixed xi∈Ai (i=1, 2,…, n) the function 
t→Fk(x1,·· , txk,···, xn) is continuous on R, then there 
exists a unique k-th partial derivation δk: A1×···×An→B 
such that: 
 

k 1 n k 1 n k k k k k k kF (x ,..., x ) (x ,...., x ) (x ,x ,x ,0 ,0 ,0 )− δ ≤ ϕ  (11) 
 
 For all xi ∈ Ai (i = 1, 2,···, n). 
 
Proof: Let l = 1. In (2.8), putting dk = ek = fk = 0k, λ = 1 

and replacing ak, bk, c = by kx
3

 we get: 
 

k
k 1 k n k 1 n

k k k
k k k k

xF (x ,...., x ,..., x ) 3F (x ,....., ,....., x )
3

x x x( , , ,0 ,0 ,0 )
3 3 3

−

≤ ϕ

 

  
 For all xi ∈ Ai (i = 1, 2,···,n). Then we have: 
 

k
k 1 n k 1 k n

x 1F (x ,...., ,...., x ) F (x ,...., x ,....., x )
3 3

−  (12) 

 
k k k

k k k k
1 x x x( , , ,0 ,0 ,0 )
3 3 3 3

≤ ϕ  (13) 

 
 For all xi∈Ai (i = 1, 2,···,n). And we obtain that: 
 

2 k k
k 1 n k 1 n2

k k k
k k k k2 2 2

x x3 F (x ,...., ,...., x ) 3F (x ,..., ,...., x )
3 3

x x x3 ( , , ,0 ,0 ,0 )
3 3 3

−

≤ ϕ

 

 
 For all xk∈Ak. By using the induction, we obtain 
that: 
  

m pk k
k 1 n k 1 nm p

m
j 1 k k k

k k k kj j j
j p 1

x x3 F (x ,...., ,...., x ) 3 F (x ,...., ,...., x )
3 3

x x x3 ( , , ,0 ,0 ,0 )
3 3 3

−

= +

−

≤ ϕ∑
 (14) 

 For all m>p≥0 and all xi∈Ai (i = 1, 2,···, n). Thus 
for xi∈Ai (i = 1,···,n), the sequence 

m k
k 1 nm

x{3 F (x ,...., ,....., x )}
3

 is a Cauchy sequence. From 

the completeness of B, the sequence is convergent. So 
we can define a mapping δk given by: 
 

m k
k 1 k n k 1 nm

m

lim x(x ,...., x ,...., x : 3 F (x ,..., ,...., x )
3→∞

δ =  

 
 For all xi∈A= (i = 1,···,n). Letting λ = 1, dk = ek = 
fk = 0k and replacing ak, bk, ck by 

k k k
m m m

a b c, ,
3 3 3

respectively, in (2.8), we have that: 

 
m k k k

k 1 nm

m k
k 1 nm

m k
k 1 nm

m k
k 1 nm

m k k k
k k k km m m

a b c3 F (x ,...., ,....., x )
3

a3 F (x ,...., ,...., x )
3
b3 F (x ,....., ,....., x )
3
c3 F (x ,....., ,...., x )
3

a b c3 ( , , ,0 ,0 ,0 )
3 3 3

+ +

−

−

−

≤ ϕ

  (15) 

 
 Passing the limit m→∞, we obtain: 
 

k 1 k k k n k 1 k n

k 1 k n k 1 k n

(x ,.....,a b c ,...., x ) (x ,....,a ,....., x )

(x ,....,b ,......, x ) (x ,....,c ,...., x )

δ + + = δ

+δ + δ
  (16) 

 
CONCLUSION 

 
 For all ak, bk, ck ∈ Ak and all xi ∈ Ai (i ≠ k). Since 
Fk(x1, · · · , txk, · · · , xn) is continuous at t∈R for each 
fixed xi∈Ai (i = 1,···, n), the mapping δk is R-linear with 
respect to the k-th variable by the same reasoning as the 
proof of the main theorem of (Rassias, 1978). Putting bk 
= ck = dk = ek = fk = 0k, δ = i and replacing ak with 

k
m

a
3

in (2.8), we can easily obtain the inequality: 
 

m mk k
k 1 n k 1 nm m

m k
k k k k k km

ia a3 F (x ,...., ,...., x ) i3 F (x ,....., ,..., x )
3 3

a3 ( ,0 ,0 ,0 ,0 ,0 )
3

−

≤ ϕ

  (17) 

 
 For all m∈N and ak∈Ak. Since the right-hand side 
in (2.14) tends to zero as m→∞, we have: 
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k 1 k n

m k
k 1 nm

m k
k 1 nm

k 1 k n

(x ,...., ix ,...., x )
lim ix3 F (x ,..., ,...., x )

m 3
lim xi3 F (x ,..., ,...., x )

m 3
i (x ,..., x ,..., x )

δ

=
→ ∞

=
→ ∞

= δ

 

 
 For all xi ∈ Ai (i = 1, ..., n). Thus δk is C-linear 
with respect to the k-th variable. Now, let p = 0 in 
(2.11), we obtain the following: 
 

m k
k 1 k n k 1 nm

m
j 1 k k k

k k k kj j j
j 1

xF (x ,..., x ,..., x ) 3 F (x ,..., ,...., x )
3

x x x3 ( , , ,0 ,0 ,0 )
3 3 3

−

=

−

≤ ϕ∑
 

 
 Passing the limit m →∝1, we have: 
 

k 1 k n 1 k n

k k k k k k k

F (x ,...., x ,...., x ) (x ,....., x ,..., x )

(x , x , x , 0 , 0 ,0 )

− δ

≤ ϕ
 

 
 For all xi∈Ai (i = 1,···, n). By a similar method to 
the proof of Theorem 2.2, one can prove that δk is a 
unique k-th partial derivation which satisfies (2.9). 
 By the same reasoning as above, one can prove the 
theorem for the case l = −1. 
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