
Journal of Computer Science 6 (4): 374-380, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: C. Yaashuwanth, Department of Electrical and Electronics Engineering, Anna University Chennai,
Chennai 600 025

374

Web-Enabled Framework for Real-Time Scheduler Simulator:

A Teaching Tool

C. Yaashuwanth and R. Ramesh
Department of Electrical and Electronics Engineering,

Anna University Chennai, Chennai 600 025

Abstract: Problem statement: A Real-Time System (RTS) is one which controls an environment by
receiving data, processing it, and returning the results quickly enough to affect the functioning of the
environment at that time. The main objective of this research was to develop an architectural model for
the simulation of real time tasks to implement in distributed environment through web, and to make
comparison between various scheduling algorithms. The proposed model can be used for
preprogrammed scheduling policies for uniprocessor systems. This model provided user friendly
Graphical User Interface (GUI). Approach: Though a lot of scheduling algorithms have been
developed, just a few of them are available to be implemented in real-time applications. In order to use,
test and evaluate a scheduling policy it must be integrated into an operating system, which is a
complex task. Simulation is another alternative to evaluate a scheduling policy. Unfortunately, just a
few real-time scheduling simulators have been developed to date and most of them require the use of a
specific simulation language. Results: Task ID, deadline, priority, period, computation time and phase
are the input task attributes to the scheduler simulator and chronograph imitating the real-time execution
of the input task set and computational statistics of the schedule are the output. Conclusion: The Web-
enabled framework proposed in this study gave the developer to evaluate the schedulability of the real
time application. Numerous benefits were quoted in support of the Web-based deployment. The
proposed framework can be used as an invaluable teaching tool. Further, the GUI of the framework
will allow for easy comparison of the framework of existing scheduling policies and also simulate the
behavior and verify the suitability of custom defined schedulers for real-time applications.

Key words: Real-time, scheduler, simulator, preemptions and context switch

INTRODUCTION

 A real-time computing system can be defined as a
real-time application which is expected to respond to
stimuli within some small upper bound on response
time and any late result is as bad as a wrong one. Thus
correctness of a real-time system could be stated true
with logical perfection in the computational result and
its timeliness. A soft real-time system is a system that
has timing requirements, but occasionally missing the
task deadlines have negligible effects. A hard real-time
should meet the timing requirements of system,
computations must always be met or the system will
fail. Determinism, guaranteed worst-case interrupt
latency and guaranteed worst-case context switch time
characterize real-time operating systems (Krishna and
Shin, 1997). Given these characteristics and the relative
priorities of tasks and interrupts in the system, it is
possible to analyze the worst-case performance of the
software and the real-time characteristics of the system.

Scheduling: From real-time design perspective: The
purpose of task scheduling is to organize the set of tasks
ready for execution by the processor system so that
performance objectives are met (Korousic-Seljak,
1994). The order of these tasks is called a ‘schedule’.
For real-time embedded systems, the primary objective
is to ensure that all tasks meet their deadlines. A
schedule can be feasible or optimal: a feasible schedule
orders tasks making them to meet all their deadlines; an
optimal schedule is one which ensures that failures to
meet task deadlines are minimized. The scheduler is
responsible for coordinating the execution of several
tasks on a processor. The scheduler may be preemptive
or non-preemptive. The scheduler for hard real-time
systems must coordinate resources to meet the timing
constraints of the physical system which implies that
the scheduler must be able to predict the execution
behavior of all tasks within the system (Shih et al.,
2001; Cooling and Tweedale, 1997). So the basic

J. Computer Sci., 6 (4): 374-380, 2010

375

requirement of real-time systems is predictability.
Unless the behavior of a real-time system is predictable,
the scheduler cannot guarantee that the computation
deadlines of the system will be met.
 The requirement of predictability differentiates
real-time systems from conventional computing
environments and makes the scheduling solutions for
conventional systems inappropriate for real-time
systems.
 The scheduling theory provides numerous
schedulability tests for each scheduling policies and
locking protocols used in real-time systems (Bini and
Buttazzo, 2004; Sha et al., 1990; 2004).
 These offer a way for programmers to predict, in
advance, whether a multi-tasking design will meet its
deadlines or not. Early work was limited to ‘rate
monotonic’ task priorities with deadlines equal to
periods and used a notion of ‘processor utilization’ to
assess schedulability. More recent works have extended
schedulability analysis to apply to any fixed-priority
scheduling policy and to support arbitrary deadlines.
These works test for schedulability by calculating the
worst-case response time for each task.

Need for schedule simulator: From design
perspective, real-time systems can be approached from
different views. As an example, engineers prefer to deal
with hardware control while computer scientists prefer
to deal with the system modeling. The system modeling
will explain how to model task interactions and how to
allocate processor time for each task. The system
modeling is burdensome because there are many
different scheduling policies and scheduling problem is
known as a strongly complex one. As a consequence of
complexity, most learners feel that the scheduling
theory is only a collection of rules that have to be
memorized (Kumar et al., 2001). Therefore, much of
the attention is not paid to the fact that the most
important concept is not the exact description of a rule
but what kind of conditions and problems are better
suited for each rule. The foresaid misunderstanding can
be solved, assigning jobs that require not only the
resolution of a schedule but the experimentation with
the problem. Although this can be done by hand, it has
limitations due to the exponential growth in the
resolution time with the problem size. The use of
simulation technique would thus help circumvent this
issue.

Study of simulators and scheduling algorithms:
A study of existing simulator: Real-time simulation
tools speed up the decision making processes during the
selection of suitable scheduling algorithm for a real-

time embedded application (Krishna and Shin, 1997).
They also stand as teaching tool helping learners of
real-time system grasp the core ideas related to system
modeling quickly.
 There have been various simulator frameworks
created for this purpose, too (Diaz et al., 2007;
Blumenthal et al., 2002; Singhoff et al., 2004). The
performance analyses of the above mentioned simulator
frameworks were carried out and the need for
developing a new Web-based simulator framework was
discovered.
 The study of existing frameworks of simulation
clearly reveals that each tool is better in its own way.
Thus an appreciable combination of values of each of
the tools is chosen and an earnest attempt has been
made to make the proposed framework to be more
flexible for the future users for trying different other
combinations of evaluation criteria that may be of
interest for different real-time resource capacities. The
experimentation results obtained from the analyzed
simulators were compared to form the reference data
for functional verification of the tool under
development.

Real-time schedulers: Unlike the conventional
schedulers of the modern operating systems, which
provide fairness to all the tasks/processes, the real-time
schedulers are partial and work primarily on
priorities/deadlines of the tasks. In such real-time
systems, most of the timelines of the tasks are already
known or the arrival of the tasks to the system is very
much predictable (Blumenthal et al. 2002). Hence most
of the real-time systems implement static scheduling
algorithms and are simple. But in some complex
environments, dynamic scheduling is often required.
Foundational description of various scheduling policies
employed in uniprocessor real-time systems is
presented here.

Study of scheduling algorithms:
First-come-first-served: The FCFS policy is the
simplest scheduling strategy to be found, as it does not
invoke any task constraints. Ready-to-run tasks are
organized in a list, that at the top being executed first
(Korousic-Seljak, 1994). When a task becomes ready, it
is added to the end of the ready list. Thus tasks execute
in the order in which they are readied - first come, first
served. It is non- preemptive, each task being allowed
to run to completion.

Simple round-robin: The RR policy is the pre-emptive
version of the FCFS technique. Tasks are still arranged
in the ready list in the order in which they become

J. Computer Sci., 6 (4): 374-380, 2010

376

ready-to-run, but when they are set running they
execute within a fixed time slice (Ramamritham and
Stankovic, 1994). If a task is still running at the end of
its time slice, it is forcibly removed from the processor.
Its replacement is the task which was at the head of the
ready queue and the preempted task is sent to the end of
the ready queue. As the task set is executed, it gradually
works its way to the top of the queue. When once more
installed on the processor it resumes execution from the
point of interruption.

Shortest-job-first: The SJF policy is a static priority-
based alternative to the FCFS scheduling strategy. It
uses a single criterion in defining priority, task
execution time. Within the ready list, the task with the
shortest (worst-case) computation time is allocated the
highest scheduling priority. As a result it is placed at
the front of the ready queue, waiting for service by the
processor.
 However, the policy is non-preemptive and the
current executing task is always allowed to complete.

Least-Laxity-First (LLF): The LLF (or Earliest
Deadline as Late as possible, EDL) scheduling principle
uses the criterion of task ‘laxity’ (i.e., spare time). EDL
assigns highest priority to the task having least laxity.
For EDL, once a task is readied, time to deadline
reduces as time elapses. The general expression
defining the laxity of a task i is:

laxity(i,t) = max(TD(i)-Tc(i)-t, 0.000)

Where:
TD(i) = Its deadline
Tc(i) = Its computation time
t = The current run-time (the second max function

parameter is fixed to 0.000 because a laxity
value must never be negative)

 It is obvious that laxity is a dynamic attribute; thus
making LLF a dynamic scheduling policy.

Rate Monotonic (RM): Rate monotonic scheduling is
a static-priority scheduling algorithm for periodic tasks.
In RM, priorities are equal to the periods of the
associated tasks. Hence, the task with the shortest
period has the highest priority and the task with the
longest period has the lowest priority. Intuitively, this
prioritization makes sense, since the task that has the
shortest period will be the first one to be re-released.
Hence, it should be the first one to complete. RM is not
optimal when each task’s deadline is not concurrent
with the task’s next release (period).

Earliest Deadline First: EDF is a dynamic priority
scheduling algorithm that assigns highest priority to
whatever task has the nearest deadline. Formally, a task
τi’s priority at time t is given by:

Pi = di(t)-t

where, di(t) is the next deadline of τi (at or after t). For
task sets where task’s period is identical to its deadline
span, EDF will produce a valid schedule if and only if
the processor utilization of the task set is one or less. If
a task set has utilization over one, the task set has no
valid schedule.

Deadline monotonic: DM scheduling is a static
priority scheduling algorithm for periodic tasks. DM
uses the deadline span of each task for its priority.
Thus, tasks with the smallest deadline span will have
highest priority and tasks with the largest deadline span
will have the lowest priority. The intuition behind DM
is that the task with the smallest deadline span (not
necessarily the one with the smallest period) should be
the task considered most urgent and therefore the task
with the highest priority.

MATERIALS AND METHODS

Design of the proposed web- enabled simulator: This
study describes the development of the proposed
simulator framework in LabVIEW. The AURTSS (AU
Real-Time Scheduler Simulator) is being developed to
be used for teaching real-time scheduling as well as to
test and evaluate real-time scheduling policies used in
embedded real-time applications.
 Laboratory Virtual Instruments Engineering
Workbench (LabVIEW) was originally intended as an
environment for the development and execution of
software analogs for conventional laboratory
instruments for the non-programmer scientist.
Accordingly a graphical approach was taken both for
user I/O to allow the computer to visually resemble the
imitated instrument and for programming to facilitate
novice program development. LabVIEW provides two
graphical environments: the front panel and the block
diagram (National Instruments Corporation, 2005).
 A framework for evaluation of a scheduling
algorithm must satisfy characteristics such as
simplicity, compatibility with the PC platform and the
used operating system, usage of the standard operating
system functions, accuracy of results and ease of use.
Majority of these requests are aimed for use in the
visual user interface that looks as shown in the Fig.1.
The proposed Web-enabled scheduler simulator could
be operated through a Web browser through a set of
click-on and data input windows.

J. Computer Sci., 6 (4): 374-380, 2010

377

Fig. 1: Task elements in the simulator

Real-time scheduler simulator: Scheduling algorithm
evaluation and analysis tool performs the task
definition, task sets generation, execution of selected
algorithms, execution analysis of the execution and
results displaying. The performance evaluation of the
real-time scheduling algorithms is carried out based on
the results obtained through computational analysis.
Various stages of evaluation procedure are:

• Identification of the tasks
• Selection of algorithms
• Simulation Timing diagram
• Simulation execution

 The most successful scheduling algorithm for the
periodic tasks scheduling is the one that has minimal
response times, minimal number of tasks with missed
deadlines and maximal resource utilization in the given
workload and with other parameters.
 The complete task model is too complex for
implementation and some of the task parameters are
hence ignored. In real-time systems two characteristics
of tasks are considered to be of primary interest:
Criticality or importance; and timing. Task importance
is frequently a subjective issue, whereas timing is
objective. The essential timing attributes of tasks are
deadline (TD), worst-case computation time (Tcw) and
period (Tp),

Elements of the simulator: Task Attributes are part of
the simulator will allow the user to add Task (to the
existing task set) with parameters like:

• Task ID
• priority
• phase
• execution time
• period
• deadline

 Among these parameters, Task ID should be unique for
each input task. All other parameters are numerals. All
the parameters are required to save a new task to a task
set, modify the parameters of a task from the declared
task set. delete task(s) from the input task set. Figure 1
shows the elements of simulator.

Resource usage: Add a resource to specific task(s) for
its execution (critical section) with:

• Resource ID
• Task ID
• Start time
• Execution time

Figure 2 shows the adding and deleting of tasks.

J. Computer Sci., 6 (4): 374-380, 2010

378

Fig. 2: Adding and deleting task in the simulator

Simulator controls: The simulator controls part of the
simulator is the main part of the simulator which
provides the following functionalities to the user:

• Selection of scheduling policy
• selection of task synchronization protocol
• choice of preemptive or non-preemptive scheduling
• run Feasibility Test to find whether the declared

task set is feasibly schedulable with the desired
scheduling scheme

 A run-time scheduler allocates processing time to
the tasks in discrete quanta. Each task has a static base
priority, although at run-time that task may
temporarily acquire a higher active priority. At run
time, each task requires an infinite number of
invocations. The time at which a task invocation
becomes ready to execute is its arrival time. The time
at which a task invocation actually begins execution is
its starting time. This may be significantly later that
the arrival time if, for instance, a higher priority task
was already running when the invocation arrived. The
time at which a task invocation completes execution is
its finishing time. Invocations of a task I are usually
assumed to arrive regularly with a fixed period, Ti.

(Sporadic, or non-periodic, tasks, arrive at irregular
intervals but with a known minimum separation. For
each task the programmer specifies a deadline, Di, by
which each of its invocations must finish, measure
relative to the arrival time of the invocation. To
support analysis, the programmer also postulates a worst-
case computation time, Ci, for each invocation of task i.
It is assumed that Ci includes the context switching
overheads associated with scheduling the task
invocation the run-time scheduler thus appears to
operate instantaneously in the model.The worst-case
difference between task i’s arrival and finishing times is
its response time, Ri. Each task normally starts to
perform invocations from time 0, but this can be
delayed by assuming an initial offset, Oi.

Significance of web-based deployment: There are
vital reasons behind the implementation of the
simulator as a Web-enabled framework and Web-based
deployment as listed out here. They are ease in
deployment and enhancement of functionality.
Anytime, anywhere access to users-any computer with
Web connectivity can be used for learning and
teaching. Easy access to users over the Internet since no
extra hardware or software is required to access the
application.

J. Computer Sci., 6 (4): 374-380, 2010

379

Fig. 3: Output timing diagram

RESULTS

 Figure 3 shows the output of the simulator. Task
ID, deadline, priority, period, computation time and
phase are the input task attributes to the scheduler
simulator and chronograph imitating the real-time
execution of the input task set and computational
statistics of the schedule are the output. The proposed
framework for the scheduler simulator is mainly
developed to be used as a teaching tool. Evaluation of
the performance of real-time schedulers can be done as
well. Evaluation criteria are based on the mean
response time, number of deadline misses, processor
utilization, number of preemptions and context
switches. The Web-based deployment of the simulator
enables the user a platform-, machine- and software-
independent utilization of the technical resource.

DISCUSSION

Advantages of proposed simulator: Platform
independent access and use of the simulator for
learning, user-friendly interface that requires minimal
training/re-training, users will be able to access only the
latest implementation of the simulator with no
ambiguity of versions of the application, ease of
maintenance from a programming/maintenance group

perspective and run simulation to view the chronogram
(timing diagram) and understand the way the tasks are
scheduled in real-time using the selected scheduling
policy.

CONCLUSION

 This study discussed the various existing real-time
scheduling algorithms at the beginning. Various
existing Real-Time Scheduling Simulation frameworks
and their features were studied. The Web-enabled
framework proposed in this study gives the developer
the possibility to evaluate the schedulability of the real
time application. Numerous benefits were quoted in
support of the Web-based deployment technique
employed. The framework which is proposed can be
used as an invaluable teaching tool. Further, the GUI of
the framework will allow for easy comparison of the
framework of existing scheduling policies and also
simulate the behavior and verify the suitability of
custom defined schedulers for real-time applications.
 Future work includes implementation of
multiprocessor and aperiodic real-time schedulers in the
simulator for exploring the full spectrum of real-time
scheduling theory and development of co-processor
architecture to complete the teaching tool.

J. Computer Sci., 6 (4): 374-380, 2010

380

REFERENCES

Bini, E. and G.C. Buttazzo, 2004. Schedulability

analysis of periodic fixed priority systems. IEEE
Trans. Comput., 53: 1462-1473.
http://www.computer.org/portal/web/csdl/doi?doc=
abs/trans/tc/2004/11/t1462abs.htm

Blumenthal, J., F. Golatowski, J. Hildebrandt and
D. Timmermann, July 2002. Framework for
validation, test and analysis of real-time scheduling
algorithms and scheduler implementations.
Proceedings of the 13th IEEE International
Workshop on Rapid System Prototyping, July 1-3,
IEEE Computer Society, Washington, DC., USA.,
pp: 146.

 http://portal.acm.org/citation.cfm?id=828240
Cooling, J.E. and P. Tweedale, 1997. Task scheduler

co-processor for hard real-time systems.
Microprocessor. Microsystems, 20: 553-566.

Diaz A., A. Batista and O. Castro, 2007. Realtss: A real
time scheduling simulator. Proceeding of the 4th
International Conference on Electrical and
Electronics Engineering, Sept. 5-7, IEEE Xplore
Press, Mexico City, Mexico, pp: 165-168. DOI:
10.1109/ICEEE.2007.4344998

Korousic-Seljak, B., 1994. Task scheduling policies for
real-time systems. Microprocessor. Microsystems.,
18: 501-511.

Krishna, C.M. and. K.G. Shin, 1997 Scheduling
algorithms for multiprogramming in a hard real-
time environment. J. Assoc. Comput. Mission.,
20: 46-61.

 http://portal.acm.org/citation.cfm?id=321743

Kumar, A.N, M.B. Miola and V.A. Nabuco, 2001.
Teaching real-time with a scheduler simulator.
Proceeding of the 31st ASEE/IEEE Frontiers in
Education Conference, Oct. 10-13, IEEE Computer
Society, Washington, DC, USA., pp: 15-19.
http://portal.acm.org/citation.cfm?id=1254605

National Instruments Corporation, 2005. LabVIEW™
Fundamentals.
http://www.ni.com/pdf/manuals/374029a.pdf

Ramamritham, K. and J.A. Stankovic, 1994. Scheduling
algorithms and operating systems support for real-
time systems. http://www.imd.uni-
rostock.de/ma/gol/rtsys/articulos/sch_os_support_rt
s(1).pdf

Sha, L., R. Rajkumar and J.P. Lehoczky, 1990. Priority
inheritance protocols: An approach to real-time
synchronization. IEEE Trans. Comput., 56: 1175-
1185. http://portal.acm.org/citation.cfm?id=626613

Sha, L., T. Abdelzaher, K. Arzen, A. Cervin and
T. Baker et al., 2004. Real time scheduling theory:
A historical perspective. Real-Time Syst., 28: 46-61.
http://portal.acm.org/citation.cfm?id=78904

Shih, C.S., L. Sha and J. Liu, 2001. Scheduling tasks
with variable deadlines. Cheddar: A flexible real
time scheduling framework, Proceedings of the 7th
Real-Time Technology and Applications
Symposium, May 30-June 01, IEEE Computer
Society, Washington, DC, USA., pp: 120.
http://portal.acm.org/citation.cfm?id=883774

Singhoff, F., J.F. Legrand L. Nana and L. Marce, 2004.
Cheddar: A flexible real time scheduling
framework. ACM SIGADA Lett., 24: 1-8.
http://portal.acm.org/citation.cfm?id=1032298

