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Abstract: Problem statement: The problem in cryptanalysis can be described as an unknown and the 
neural networks are ideal tools for black-box system identification. In this study, a mathematical black-
box model is developed and system identification techniques are combined with adaptive system 
techniques, to construct the Neuro-Identifier. Approach: The Neuro-Identifier was discussed as a 
black-box model to attack the target cipher systems. Results: In this study this model is a new addition 
in cryptography that presented the methods of block (SDES) crypto systems discussed. The 
constructing of Neuro-Identifier mode achieved two objectives: The first one was to construct emulator 
of Neuro-model for the target cipher system, while the second was to (cryptanalysis) determine the key 
from given plaintext-ciphertext pair. Conclusion: Present the idea of the equivalent cipher system, 
which is identical 100% to the unknown system and that means that an unknown hardware, or software 
cipher system could be reconstructed without known the internal circuitry or algorithm of it. 
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INTRODUCTION 
 
 Block cipher systems belong to symmetric 
cryptographic systems, where the same key is used for 
encryption and decryption process. The major 
difference between block ciphers and other symmetric 
cryptographic systems are that; block ciphers are 
characterized by the fact that the decipherment of a bit 
of data depends not only on the key but also on some of 
the other bits of data. The principles behind the design 
of most block ciphers are the concepts of diffusion and 
confusion. The idea of confusion is to make the relation 
between a cryptogram and the corresponding key a 
complex one. This aims to make it difficult for the 
statistics to point out the key as having comes from any 
particular area of the key space. The concept of 
diffusion is to spread the statistics of message into 
statistical structure, which involves long combinations 
of the letters in the cryptogram and hence whitening all 
the statistical feature of the neutral language. In this 
study, a brief discussion of block ciphers background 
and techniques is presented. DES cipher is chosen as a 
case study of block cipher because, it was (and still) the 
challenge of most of the researchers over the last 25 
years. Security of cryptographic systems is directly 

related to the difficulty associated with inverting 
encryption transformations of the system. The 
protection afforded by the encryption procedure can be 
evaluated by the uncertainty facing an opponent in 
determining the permissible keys (Bruce, 1996). The 
cryptanalysis problem can be described as an 
identification problem and the goal of the cryptography 
is to build a cryptographic system that is hard to 
identify (Pieprzyk and Jennifer, 1989; Alallayah et al., 
2010). System identification is concerned with inferring 
models from observation and studying system behavior 
and properties. System identification deals with the 
problem of building mathematical models of dynamical 
systems based on observed data from the system 
(Alallayah et al., 2010; Lennart, 1987). Artificial 
Neural Networks (ANNs) are simplified models of the 
central nervous system. They are networks of highly 
interconnected neural computing elements that have the 
ability to respond to input stimuli. Among the 
capabilities of ANN, are their ability to learn adaptively 
from dynamic environments to establish a generalized 
solution through approximation of the underlying 
mapping between input and output (Simon, 1998; 
Patterson, 1998; Sarle, 2002). Neural networks can be 
regarded as a black-box that transforms an input vector 
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of m-dimensional space to an output vector in n-
dimensional space. This makes them ideal tools for 
black-box system identification (Ball et al., 2002; 
Zbikowski and Dzielinski, 1995). In this study, you will 
implement a simplified version of the DES block cipher 
algorithm. Naturally enough, it is called SDES and it is 
designed to have the features of the DES algorithm but 
scaled down so it is more tractable to understand. A 
survey of previous cryptographic work especially for 
DES is presented. The proposed Emulation mode using 
Neuro-Identifier (NID) against SDES is described in 
detail with the results obtained during the study. 
 
System identification: There are two approaches for 
system identification (Alallayah et al., 2010; Lennart, 
1987), depending on the available information, which 
describe the behavior of the system. The first approach 
is the State-Space approach (internal description), 
which describes the internal state of the system and is 
used whenever the system dynamical equations are 
available. The second approach is the Black-Box 
approach (input-output description) which is used when 
no information is available about the system except its 
input and output (Saggar et al., 2007). Figure 1 shows 
an unknown system with xm input signals and yn output 
signals. The central concept in identification problems 
is identifiability (Lennart, 1987). The problem is 
whether the identification procedure will yield a unique 
value of the parameter (q) and/or whether the resulting 
Model (M) is equal to the true system, i.e., a model 
structure is globally identified at: 
 
(θ *) if: M(θ) = M(θ *), θ Є DM => θ = θ* (1) 
 
Where: 
M = A model structure 
q = A parameter vector, ranging over a set of values 

DM (Zbikowski and Dzielinski, 1995) 

 
Input-output descriptions: The input-output 
description of a system gives a mathematical 
relationship between the input and output of the system. 
In developing this description, the knowledge of the 
internal structure of a system may be assumed to be 
unavailable; the only access to the system is by means 
of the input and output terminals (Tsong, 1999; 
Alallayah et al., 2010). Under this assumption, a system 
may be considered a Black-Box as shown in Fig. 1. 
Clearly what one can do to a black box, is to apply 
inputs and measure their corresponding outputs and 
then try to abstract key properties of the system from 
these input-output pairs. An input-output model 
assumes that the new system output can be predicted by 
the past inputs and outputs of the system (Saggar et al., 
2007; Liu and Truong, 1995).  

 
 
Fig. 1: System with m inputs and n outputs 
 
 A Black-Box model of system identification 
assumes no prior knowledge about the system except it’s 
input and output, i.e., no matter what analysis is used, it 
always lead to the same input-output description.  
 Moreover, a Black-Box model allows finite-
dimensional identification techniques to be applied, 
which may require in nonlinear system identification. In 
developing the input-output description, before an input 
is applied, the system must be assumed to be relaxed or 
at rest and that the output is excited solely and uniquely 
by the input applied thereafter and the system is said to 
be causal if the output of the system at time k does not 
depend on the input applied after time k (Tsong, 1999). 
The system can be described as follows: 
 
y(k) = H x (2) 
 
where, H is some function that specifies uniquely the 
output y in terms of the input x of the system. 
Although the subject of system identification is well 
developed for linear systems, the same is not true for 
the nonlinear case. However, linearization of 
nonlinear systems can be obtained by several methods, 
among them is the approximate linearization 
technique for nonlinear systems (Cinar, 1996; 
Alallayah et al., 2010; Saggar et al., 2007). 
 For Single-Input Single-Output (SISO), the input-
output model identification problem is to devise a 
mathematical model which, when excited with the input 
sequence [x(k), k = 1,2,…, m], will produce an 
estimated output [y(k), k = 1,2,…, n ], such that: 
 
y(k) = f(y(k-1),y(k-2),…,y(k-n),x(k-1),x(k-2),…, 
 x(k-m))  (3)  
 
Where: 
[x(k), y(k)] = Representing the input-output pairs of 

the system at time k 
n and m = Positive integers representing the number 

of past outputs and the number of past 
inputs respectively 

f = A static nonlinear function which maps 
the past inputs and outputs to a new 
output. f is called describing function 

 
 That means; for any discrete-time, unknown 
nonlinear system there would be suitable positive 
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integers (m and  n) and a multidimensional mapping 
f(.) in such a way that the system output at a given 
instant could be approximated by Eq. 3. If a system 
is linear f is a linear function and Eq. 3 can be 
rewritten as (Simon, 1998; Pieprzyk and Jennifer, 
1989; Alallayah et al., 2010): 
 
y(k) = a1y(k-1)+a2y(k-2),…+any(k-n)+b1x(k-1)+b2 

x(k2), .…+bmx(k-m)  (4) 
 
where, ai (i = 1,2,…,n) and bi (i = 1,2,…,m) are real 
constants. Equation 4 can be rewritten in matrix 
notation: 
 

n m

i k
t 0 j 0

y(k) k(y 1) j (x j)
= =

= α − β −∑ ∑  (5) 

 
 For Multi-Input Multi-Output (MIMO), y(k) and 
x(k) are of dimensions m and p respectively, equation 
(5) can be rewritten as (Alallayah et al., 2010): 
 

n m

i j
t 0 j 0

y(k) A k(y 1) B k(x j)
= =

= − −∑ ∑  (6) 

 
where, Ai and Bj an (m × m) and (m × p) matrices 
respectively. 
 
Cryptographic system: An encryption algorithm is a 
single parameter family of invertible transformations 
(mappings) of the message space (M) into the 
cryptogram (ciphertext) space (C) using finite length 
key k from keyspace (K). See a reversible encryption 
algorithm (Schaefer, 1996; Bruce, 1996) in Eq. 2: 
 
 Ek: M → C 
  
Such that:  
 
 Ek (m) = c, k ∈K, m∈ M, c∈C  (7) 
 
 An inverse decryption algorithm:  
 
Dk = E-1

k : Dk: C→ M  
 
 Such that:  
 
Dk(c) = D k[Ek (m)] = m  (8) 
 
 The keys should uniquely define the enciphered 
message i.e.: 
 
 Ek1 (m) ≠ Ek2 (m) if k1 ≠ k2 (9) 

 According to the previous discussion of the 
properties of the system and the definition of a 
cryptographic system, it might be concluded that: A 
cryptographic system is, relaxed, causal, time invariant 
and nonlinear system. 
 
Neuro-Identifier (NID): Identification of a system 
consists of finding a model relationship. Consider the 
system described in Eq. 3. Identification then consists 
of determining the system orders and approximation of 
the unknown function by neural network model using a 
set of input and output data (Blankenship and Ghanadan, 
1996; Leaster and Sjoberg, 2000; Lester and Jonas, 
1998). The procedure begins with the choice of neural 
model which is defined by its architecture and an 
associated learning algorithm. This choice can be made 
through trial and error. Once the neural model is chosen 
and system input-output data are available, learning can 
begin. Different structures are trained and compared 
using learning set and simulation set of data and a 
criterion (error goal) (Thomas, 2008; Jiang and Zhou, 
2006). The optimal structure then, is the one having the 
fewest units (neurons) for which the criterion is met. 
Neuro-Identifiers (NIDs) are basically Multi-Layer 
Feed-Forward artificial neural networks (MLFF) with 
an input layer (buffer layer), a single or multiple 
nonlinear hidden layer with biases and a linear/or 
nonlinear output layer (Yu et al., 2000; Saggar et al., 
2007). The results of research have shown that linear 
identifiers are not capable of identifying nonlinear 
systems. Hybrid identifiers can identify simple 
nonlinear systems but not complex ones (Bin and Babri, 
1998; Yu et al., 2000; Tanomaru, 1994). Figure 2 
shows the structure of the multi-layer feed-forward 
neural network identifier NID, with two nonlinear 
hidden layers, which is used in this research. The size 
of the neural network (number of neurons in the hidden 
layer) is crucial in designing the whole structure. There 
is no mathematical formulation to calculate the optimal 
size of such networks. However, with many free units 
the NID will learn faster, avoid local minima and 
exhibit a better generalization performance (Simon, 
1998; Zbikowski and Dzielinski, 1995). The essential 
constraint on increasing the size of hidden layers is the 
limitation of the hardware architecture used in the 
experimental study. 
 
Training algorithm: The Levenberg-Marquardt (LM) 
algorithm is (MLFF), the most ideally used 
optimization algorithm. It outperforms simple gradient 
descent and other conjugate gradient methods in a 
wide variety of problems. This document aims to 
provide   an   intuitive   explanation   for  this  algorithm. 
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Fig. 2: Multi-layer feed forward neuro-identifier 

architecture 
 
The LM algorithm is first shown to be a blend of 
vanilla gradient descent and Gauss-Newton iteration. 
Subsequently, another perspective on the algorithm is 
provided by considering it as a trust-region method 
(Alallayah et al., 2010; Leaster and Sjoberg, 2000). 
 
Algorithm: 
 
1- Initialize network (Weights and Biases)   
2- For each training pair 3-7 until performance criteria. 
3- Sums weighted input and apply activation function to 
compute output: 
 
h0i = ∑ I = 1 Xi Wij + bi.  hi = f(h0j ) 
 
4- Compute output of network:  
 
 yy = bp +∑ I =1 hi Wpi.  y = f(yy ) 
5- Calculate error term. δ = (y-yd ) 
6- Calculate correction term: 
  
 Wb = [w1b1 w2b2 … wpbp ] 
 
 ∆Wb = (JT.J +ηI)-1. (-JT.δ) 
 
7- Update biases and weights: 

 
 Wij (new) = wij (old)+ ∆ Wb 

 
8- End. 

 
Using NID in cryptanalysis: Cryptographic systems 
are a 2-input, 1-output systems, it takes a plaintext 
character (or bit /block of bits) and a key character to 
produce a ciphertext character. Hence a 2-neurons input 
layer is used to present the training data to the identifier, 
while a single neuron output layer is used. The 
described neural network identifier was used to identify 

cryptographic systems in two approaches with the 
following objectives: 
 
 Emulation approach: Construct of a neuro-model for 
the target unknown cipher system (Alallayah et al., 
2010): 
 
• Encryption cipher: 

• Input data: TP, TK. -Desired output data: TC  
• Decryption cipher:  

• Input data: TC, TK. -Desired output data: TP  
 
Cryptanalysis approach: Input data: TP, TC. Desired 
Output data: TK. 
 The first objective is to construct a neuro-model 
which imitates the internal (transfer) function of the 
cryptographic system (hardware or software). After 
training and on convergence, the constructed model will 
resemble the target system completely. The 
construction of such a model will be useful in studying 
the behavior of the unknown system and it can be used 
as a real system in encryption and decryption in cases 
where the real system cannot be. The aim of the second 
objective, is to obtain clearly a pure cryptanalysis target 
(total break). This could be done by introducing 
plaintext-cipher text as input to the system, which 
yields the key as output. The training data is built using 
the target cipher system algorithm by applying selected 
input signals (characters or bits) and collecting the 
output response of the system. The resulting data are 
split into two groups; the first group is used to train the 
neural network, while the second group is used to test 
(simulate) the trained network.  
 
Block ciphers (SDES): IBM initiated a cryptographic 
research concentrating on nonlinear block ciphers in the 
late 1960’s and has produced several important 
cryptographic systems. In January 1977, the National 
Bureau of Standard (NBS) adopted one of these as the 
national data encryption standard (DES). IBM systems 
have their roots in Shannon’s brilliant 1949 paper 
connecting cryptography with information theory 
(Whitfield and Hellman, 1979). Shannon suggested 
using product ciphers to build a strong system out of 
simple, individually weak components. He suggested 
using products of the form B1Mb2M…,BnM, where M 
is a mixing transformation and Bi is simple 
cryptographic transformations. High-speed electronic 
circuitry allows the product system to be implemented 
almost as economically as single BM pairs. The data 
are encrypted in number of “rounds” (iterations) each 
consisting of a single pair BiM and each using the same 
hardware. The same key is used in encryption and 
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decryption process. The fundamental building block of 
DES is a single combination of substitution followed by 
permutation (diffusion and confusion) on the text based 
on the key. This is known as a round. DES has 16 
rounds; i.e., it applies the same combination of 
substitution and permutation 16 times (Thomas, 2008). 
The output of the ith round become the input to the (i+1) 
round. Block ciphers probably of the most important 
cryptographic primitives. Although they are used for 
many different purposes, their essential goal is to 
ensure confidentiality. This study is concerned by their 
quantitative security, that is, by measurable attributes 
that reflect their ability to guarantee this confidentiality. 
Well know results. Starting with Shannon’s Theory of 
Secrecy, we move to practical implications for block 
ciphers, recall the main schemes on which nowadays 
block ciphers are based and introduce the Luby-Rackoff 
security model (Nalini and Rao, 2006). We describe 
distinguishing attacks and key-recovery attacks against 
block ciphers (Ball et al., 2002). The system uses a 
transformation of the bits within a block for the fixed 
mixing transformation T and substitution on four bits 
groups of the block for the simple cryptographic 
transformation Si. Any k-bit S-box can be 
implemented as 2 k word memory with k-bit words. 
The Neuro-Identifier (NID), as described above, has 
been used in this research in block cryptosystem 
identification, as a black-box model. The objective of 
the attack, is to determine the key from the given 
plaintext-ciphertext pair. Black-box attack has been 
applied to SDES. SDES encryption takes a 10 bit raw 
key (from which two 8 bit keys are generated as 
described in the handout) and encrypts an 8 bit 
plaintext to produce an 8 bit ciphertext. Implement the 
SDES algorithm in a class called SDES.  
 
Definitions: 
 
K = (k0k1…...k9) where k1 ∈ {0, 1} key  
M = (m0m1…...m7) where m1 ∈ {0, 1} message 
P4 = (1,3,2,0) shifting sequence = (1,2) 
P8 = (5,2,6,3,7,4,9,8) P10 = (2,4,1,6,3,9,0,8,7,5) 
IP = (1,5,2,0,3,7,4,6) IP-1 = ( 3,0,2,4,6,1,7,5) 
 

0 1

1032 0123

3210 2013
SB SB

0213 3010

3132 2103

   
   
   = =
   
   
      

 

 
Algorithm: 
Simplified DES algorithm (SDES): 
 
1. P10 (K) ⇒ s = (s0s1s2s3s4) (s5s6S7S8S9) 

2. Shift(K)  ⇒ t = (s1s2s3s4s0s6s7s8s9s5) 
3. Ps(t)  ⇒ k1 = (t5t2t6t3t7t4t9t8) 1st subkey 
4. Shift (t,2)  ⇒ u = (t2t3t4t0t1t7t8t9t5t6) 
5. P8(u) ⇒k2 = (u5u2u6u3u7u4u9u8)  1st subkey 
6. IP(m) ⇒ m = (m1m5m2m0m3m7m4m6) 
7. IP-1  ⇒ n = (n3n0n2n4n6n1n7n5) 
8. T(m) ⇒ m = (m4m5m6m7m1m2m3) 

9. Arrange n in diagram D = 7 64 5

6 75 4

n nn n

n nn n
 

10. D+k1= 7 10 6 134 11 5 12 00 0301 02

6 15 7 16 10 1311 125 14 4 17

n k n kn k n k p pp p

n k n k p pp pn k n k

+ ++ +
+ ++ +

 

11. SB0 [(p00p03), (p01p02)] = q0q1 SB1[(p10p13), 
  [(p11p12)] = q2q3 

12. P4(q) ⇒ (q1q3 q2q0 
13. S1(nq) ⇒ (n0+q1, n1+q3, n2+q2, n3+q0, n4+n5+ n6+ n7) 
14. Repeat step 10-13using 2nd sub key k2 instead 

tofroms2 
15. Encrypt (IP-1°S2°T°S1°IP) 
16. Decrypt (IP-1°S2°T°S1°IP) 
 
Training of SDES cipher: During the training, the error 
goal (sum squared error) is defined as (0.00001 = 10−5), 
which gives 100% accuracy. After the training process 
has finished and the Neuro-Identifier has converged to 
the defined error goal, the Weights (W) and Biases (B) 
matrices are saved to be used later in the simulation 
phase. As an experimental result obtained from this 
research, emulation modes (encryption and decryption 
modes), a sub set of the training data was sufficient to 
capture the behavior of the algorithm. Table 1 shows 
the results of NID training for SDES cipher in both 
modes (encryption and decryption modes). Table 2 
shows the results of NID training for SDES cipher in 
Cryptanalysis modes. Figure 3 shows the error curve of 
NID training for SDES cipher in encryption of 
emulation mode. Figure 4 shows the error curve of NID 
training for SDES cipher in cryptanalysis mode. 
 
Simulation of SDES cipher: The simulation phase 
includes execution of the trained neural identifier in 
both approaches (cryptanalysis and emulation) using 
the saved Weights (W) and Biases (B) and the 
simulation data set (SP, SK, SC). Simulation of SDES 
cipher  in both  approaches (cryptanalysis and 
emulation)  gives  100%  accuracy for any length of key. 
 
Table 1: That the creation of emulation models in SDES Cipher 
Cipher  Train  No. No. of Execution 
system Mode set NN size epoch flops time (sec) 
SDES Encry. 1024 32*32 1640 4.871 e11 1.943 e4 
  Decry 1024 32*32 2861 9.735 e11 2.932 e5 
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Table 2: That the creation of cryptanalysis models in SDES 
Cipher   No.  No. Execution  
system Train set NN size  epoch.  of flops  time (sec) 
SDES 1024 32*32 7869 9.4887 e15 8.3243 e11 

 

 
 
Fig. 3: Error curve emulation for SDES cipher 
 

 
 
Fig. 4: Error curve cryptanalysis for SDES cipher 
 

 
 
Fig. 5: Actual and behaviors of simulated NID response 

for SDES cipher. 
 
The possible key of SDES cipher is any combination of 
lowercase alphabetic characters with maximum length 
of (1024 = 32*32) which is the size of the training set. 

Figure 5 shows actual and simulated key of length (300 
characters) for SDES cipher. 
 

CONCLUSION 
 
• The Levenberg-Marquardt (LM) algorithm from 

neural network is used to train the Neuro-Identifier 
which gives good approximation capabilities, faster 
convergence, more stable performance surface. 
This study present the idea of the equivalent cipher 
system, which is identical 100% to the unknown 
system and that means that an unknown hardware, 
or software cipher system could be reconstructed 
without known the internal circuitry or algorithm 
of it. 

• Most of identification techniques can identify 
certain cipher systems, but not all of them, the 
presented method is a generalized method that 
could identify many cipher system and build the 
equivalent system from the input-output 
observations. 

• Emulation cryptography is a generalized method 
that could be used to all cryptographic systems. 
The only changeable parameter is the size of the 
hidden layers which should be made large enough 
to accommodate the key space of the target cipher 
system. The total number of neurons in the hidden 
layers is at most equal to the number of training 
samples, giving that the training samples are 
sufficient to describe the target system behavior. 
The feature of generalization is due to the 
characteristic of modeling. 
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