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Abstract: Problem statement: Mathematical modeling of different natural and technical objects and 
processes is one of the most important directions that needs high performance computing with huge 
memory. To reduce the computational time and expenses we need to carry out the calculations on 
specialized subunits. Approach: We described a self-organizing approximation method and 
introduced a new methodology of structural synthesis of specialized parallel processing subunits for 
realizing a group method of data handling algorithms. Results: The design procedure of the parallel 
subunit in addition to the selection of the computing units for this device has been introduced. 
Conclusion/Recommendations: The Group Method of Data Handling  proved to be most effective to 
solve small and medium-sized problems with continuous output. It was tested on wide range of 
artificial and real-world problems.  
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INTRODUCTION 

 
 One of the most common problems in engineering 
design and control is the problem of mathematical 
modeling. Consider the object under investigation as 
“black box” with several input variables (inputs) and 
one output variable (output). The purpose of modeling 
is to find some means of predicting the value output for 
any values of input, based on a set of learning data. 
 One of the methods of the mathematical modeling 
used for this purpose is the Group Method of Data 
Handling (GMDH) (Ivakhnenko, 1971; Farlow, 1984; 
Ivakhnenko et al., 1994; Dolenko et al., 1996). 
 There were many papers published and several 
books devoted to group method of data handling and 
its applications. GMDH can be considered as further 
propagation of inductive self-organizing methods to 
the solution of more complex practical problems 
(Ivakhnenko and Ivakhnenko, 1995). Most of GMDH 
algorithms use the polynomial reference functions. 
This method involves sorting, that is successive 
testing of models selected out of a set of candidate 
models according to specified criterion. Nearly all 
known GMDH algorithms use polynomial support 
functions. General connection between input and 
output variables can be found in the form of functional 
Volterra series, whose discrete analogue is known as 
the Kolmogorov-Gabor polynomial (Madala and 
Ivakhnenko, 1994): 
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y a a x a x x a x x x
= = = = = =

= + + +∑ ∑∑ ∑∑∑  

 
Where: 
X(x1,x2,…,xM) = The vector of the input variables 
A(a1, a2,…, aM) = The vector of the summands 

coefficients 

 
 In the iterative multilayered GMDH algorithm the 
iteration rule remains unchanged for all sequence, as 
shown in Fig. 1, the first layer tests the models that can 
be derived from the information contained in any two 
columns of the sample. The second uses information 
from four columns, the third from any eight columns, 
and so forth. the exhaustive-search termination rule is 
that in each layer the optimal models are selected by the 
minimum of external criterion e.g.: 

 
m

1 k1 2
k 2i 2i

i 1

E (y y ) / m
=

= −∑  (1) 

 
Where: 

1
kE  = Selection criterion for kth partial description of the 

first layer 
y2i = The value of the function f(x1,x2) on 2ith point 

initial the experimental data m-number of testing 
points 
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Fig. 1: Multilayered iteration algorithm 
 

MATERIALS AND METHODS 
 
Basics of the method: The idea of GMDH is the 
following: we are trying to build an analytical function 
(called ”model”) which would behave itself in such a 
way that the predicted value of the output would be as 
close as possible to its actual value. For many 
applications such an analytical model is much more 
convenient than the “distributed knowledge” 
representation that is typical for neural network 
approach. 
 The most common way to deal with such problem 
is to use linear regressing approach. In this approach, 
first of all we must introduce a set of basis functions. 
The answer will then be sought as a linear combination 
of the basis functions. For example, powers of input 
variables along with their double and triple cross-
products may be chosen as bases functions.  
 To obtain the best solution, we should try all 
possible combinations of terms and choose those which 
give best predictions. The decision about quality of 
each model must be made using some numeric 

criterion. (Accurate choice of the criterion is separate 
problem.) However, it is clear that full testing for a 
problem with many inputs and a wide set of a basis 
functions is practically impossible, as it would take too 
much time and it would require too much computer 
memory, to reduce computational expenses, one should 
reduce the number of basis functions (and the number 
of input variables), which are used to build the tested 
models. To do that, one must change from one-stage 
procedure of model selection to a multi-stage 
procedure. 
 Let us take two input variables and let us combine 
a set of basis functions. For example, if we denote input 
variables as x1 and x2, let the set of basis functions be 
{1,x1,x2, x1.x2}.(1 corresponds to constant bias and 
must be always included in the set). Now we check 24-
1=15 possible models and choose one that is the best. 
(Any one of the tested models is often called partial 
description or PD). After that, we take another pair of 
input variables and repeat operation, resulting in one 
more PD with its own value of criterion. Doing the 
same for each possible pair of n input variables, we 
obtain n*(n-1)/2PDs, each with its own value of the 
used criterion. 
 Then we compare these values and choose several 
PDs which give better approximation for the output 
variable. Usually we select a pre-defined number F of 
best PDs that must be preserved at the next step of 
algorithm.  
 The values predicted by the preserved PDs (Called 
Survivors), serve at the next iteration as input variable 
along with initial input variables of the whole system. 
All the described actions are repeated again with the 
broadened set of input variables and then the next 
iteration goes, and so on. 
 This method involves sorting, that is successive 
testing of model selected out of a set of candidate 
models according to a specified criterion. Nearly all 
known GMDH algorithms use polynomial support 
functions. 
 
GMDH algorithms realization: A parallel computing 
can be implemented for realizing all algorithms that 
have multilayered structures and many different 
multiprocessor systems were designed such as multi-
section and two-section pipeline architectures 
(Dmitrienko et al., 1998). To get the greatest gain in 
productivity of the pipeline systems, in this work, it is 
recommended to carry out calculations in specialized 
processing units (subunit) by entering in ALU structure 
additional hardware, multiplication units, division units, 
addition units, subtraction units and cache memory. The 
function of each subunit is determined: Each of them 
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forms on each ith (i>1) layer a system of Gauss 
equations for all learning subsample points that are 
represented as: 
 

i i i i 1 i i 1
p1,...pd 0 p1,...pd 1 p1,...pd p1 2 p1,...pd p2

d d
i i 1 i i 1 i 1
d p1,...pd pd kj,p1,...,pd pk pj

k 1 j 1
j k

y a , a , y a , y ...

a , y a y y

− −

− − −

= =
≤

= + + + +

+∑∑
 (2)  

 
Where: 
i = Points to the selection layer 

i 1
pqy − , q = 1, q = The best partial descriptions (i-1)st 

layer  
 i i

0,p1,...pd dd,p1,...pda ,...,a  = Definable coefficients  

 
 Conditional Gauss equations on the learning 
subsample points i 1i 2iy ,x ,x ,i i,m=  for Eq. 2 could be 

written as: 
  

i i i i 1
p1,...,pd 11 21 0,p1,...,pd 1,p1,000,pd p1 11 21

d d
i i 1 i 1
kj,p1,...,pd pk 11 21 pj 11 21
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j k

1
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y (x ,x ) a a y (x ,x ) ...

a y (x ,x )y (x ,x )

..........................................

y (x ,x ) a

−

− −

= =
≤

= + + +

=

∑∑
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1,p1,000,pd p1 1m 2m
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i i 1 i 1
kj,p1,...,pd pk 1m 2m pj 1m 2m

k 1 j 1
j k

a y (x ,x ) ...

a y (x ,x )y (x ,x )

−

− −

= =
≤

+ + +

∑∑

 (3) 

 
where, 2

dm d c 1,≥ + +  2
dC -combination of d by 2. 

 From the equation system (3) with 2
dm d c 1> + +  

we got a system of normal gauss equations: 
 

d d
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d d
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Where: 

i i i
0 0,p1,...pd 1 1.p1,...ppd dd dd,p1,..pda a ,a a ,...,a a≡ ≡ ≡  

m

1q 2q
q 1

1
y y(x ,x )

m =

= ∑  

m
i 1

p1 p1 1q 2q
q 1

1
y y (x ,x )

m
−

=

= ∑  

m
i 1
pd 1q 2q

q 1

1
ypd y (x ,x )

m
−

=
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m

i 1 i 1
p1 pj pk 1q 2q pj 1q 2q

q 1

1
y y y (x ,x )y (x ,x ),k, j 1,m, j k

m
− −

=
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p1 1q 2q p1 1q 2q

q 1

1
yy y(x ,x )y (x ,x )

m
−

=
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m

i 1 i 1 i 1
pk pj p1 pk 1q 2q pj 1q 2q p1 1q 2q

q 1

1
y y y y (x ,x )y (x ,x )y (x ,x )

m
− − −

=
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m

i 1 i 1
pk pj pd pd pk 1q 2q pj

q 1

i 1 i 1
1q 2q pd 1q 2q pd 1q 2q

1
y y y y y (x ,x )y

m

(x ,x )y (x ,x )y (x ,x )

− −

=

− −

= ∑
 (8) 

 
 Solving a system of normal linear gauss Eq. 4 for 
each of the partial descriptions (2), we find 

i i i
0,p1,...,pd 1,p1,....pd dd,pa,...,pda ,a ,....a -coefficients for these 

descriptions. Then the produced models estimate the 
set of checking subsample points using a selection 
criterion (1): 
 

m1
i i i i 1
p1,...pd q 0,p1,...,pd 1,p1,...,pd p1 1q 2q

q 1

d d
i i 1 i 1 2
kj,p1,...,pd pk 1q 2q pj 1q 2q

k 1 j 1
j k

E (y (a a y (x ,x ) ...

a y (x ,x )y (x ,x )))

−
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− −

= =
≤

= − + + +

+

∑

∑∑
 (9) 

 
where, m1-number of checking subsample points. 
 We can write the system of normal Gauss Eq. 4 for 
the subunit in the following form: 
 

k1 k p(i 1) k q(i 1)
1 1 2 1

k 2 k p(i 1) k q(i 1)
1 2 2 2

y a y a y

y a y a y

− −

− −

= +

= +
  (10) 

 
Where:  
 

N1 p(i 1)k1
j j

j 1

y y y
−

=

=∑  (11) 

 
N1 q(i 1)k2

j j
j 1

y y y
−

=

=∑  (12) 

 
N1 p(i 1) p(i 1)p(i 1)

1 j j
j 1

y y y
− −−

=
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N1 p(i 1) q(i 1)q(i 1) p(i 1)
1 2 j j

j 1

y y y y
− −− −

=

= =∑  (14) 

 
N1 q(i 1) q(i 1)q(i 1)

2 j j
j 1

y y y
− −−

=

=∑  (15) 

 
Where: 
N1 = Number of learning points 
i = Number of the layer (i>1) 
yj = The value of the function in the jth point 

of the initial data learning subsample 
p(i 1) q(i 1)

j jy ,y
− −

 = The values of best partial descriptions 

yp(i-1), yq(i-1) 
 
 In the jth point in the initial data on (i-1)st layer. 
 The next important function of the subunit is 
solving a system of Eq. 10: 
 

k1 k q(i 1)
k 2 1
1 p(i 1) p(i 1)

1 1

y a y
a

y y

−

− −= −  (16) 

 
k1 p(i 1)

k2 2
p(i 1)

k 1
2 q(i 1) 2

q(i 1) 1
2 p(i 1)

1

y y
y

y
a

(y )
y

y

−

−

−
−

−

−
=

−
 (17) 

 
 After determining the coefficients (16), (17) we get 
the model of ith selection layer: 
 

p(i 1) q(i 1)ki k k
1 2 qpy a y a y

− −
= +  (18) 

 
which is evaluated on the checking subsample point, by 
using the following criterion: 
 

( )2 2
2N N

p(i 1) q(i 1)k k
jmul 1 2jmul jmul

j 1 j 12 2

1 1
j y a y a y

N N

− −

= =

δ = δ = − −∑ ∑  

 
Where: 
N2 = The number of checking subsample 

points 

jδ  = Square error in the jth point of the 

checking subsample 

jmuly  = The value of the function of the jth point 

of checking subsample initial data 
(i 1)

pjmuly
−

, 
(i 1)

qjmuly
−

 = The values of the partial descriptions 
(i 1)

py
−

, 
(i 1)

qy
−

 on the jth point of checking 

subsample initial data 

The design of parallel subunit: We must pass from 
the formal representations (10-19) of the working 
algorithm of the subunit to its parallel tear form, which 
presented by (Voevodin, 1986). Assuming that the 
parallel system has five processing elements that 
perform binary multiplication, two of them performing 
also the division operation in addition to five processor 
elements that perform the addition and subtraction 
operations.  
 Then we have: 
 

Data: 

(i 1) (i 1) (i 1)

1 N1 1mul N2mul 1p pN1 p1mul

(i 1) (i 1) (i 1) (i 1) (i 1)

pN2mul q1 qN1 q1mul qN2mul

y ,..., y , y ,..., y , y ,....,y , y ,...,

y ,y ,...,y ,y ,...,y

− − −

− − − − −
 

  
Parallel-tier form:  

Tier 1:  
(i 1)

1 p1y y
−

, 
(i 1)

1 q1y y
−

, 
(i 1) (i 1)

p1 p1y y
− −

, 
(i 1) (i 1)

p1 q1y y
− −

, 
(i 1) (i 1)

q1 q1y y
− −

 

Tier 2: 
(i 1)

2 p2y y
−

, 
(i 1)

2 q2y y
−

, 
(i 1) (i 1)

p2 p2y y
− −

, 
(i 1) (i 1)

q2 p2y y
− −

, 
(i 1) (i 1)

q2 q2y y
− −

 

Tier 3: 
(i 1)

3 p3y y
−

, 
(i 1)

3 q3y y
−

, 
p(i 1) p(i 1)

3 p3y y
− −

, 
(i 1) (i 1)

p3 q3y y
− −

, 
(i 1) (i 1)

q3 q3y y
− −

, 
(i 1)

1 p1y y
−

+
(i 1)

2 p2y y
−

,…, 
(i 1) (i 1)

q1 q1y y
− −

+ 
(i 1) (i 1)

q2 q2y y
− −

 

Tier N1: 
N1 2(i 1) (i 1) (i 1) (i 1) (i 1)

N1 N1 jpN1 qN1 qN1 qN1 pj
j 1

y y , y y ,..., y y , y y
−− − − − −

=

+∑  

N1 2(i 1) (i 1) (i 1) (i 1) (i 1)

N1 1 p(N1 1) qj qj q(N1 1) q(N1 1)
j 1

y y ,..., y y y y
−− − − − −

− − − −
=

+∑  

Tier N1+1: 
N1 (i 1) (i 1)(i 1)

p1 pj pj
j 1

y y y
− −−

=

=∑ , 
N1 (i 1) (i 1)(i 1)

1q pj qj
j 1

y y y
− −−

=

=∑  

Tier N1+2: 
k1

1 (i 1)
1p

y
c

y −=  , 
(i 1)
1q

2 (i 1)
1p

y
c

y

−

−=  

Tier N1+3: (i 1)
1 2pc y − , (i 1)

1 1qc y −  

Tier N1+4: p(i 1)
3 1 2c k2 c y ,−= − (i 1) (i 1)

2q 2 1qc4 y c y− −= −  

Tier N1+5: k
2 3 4a c c=  

Tier N1+6: k
2 2a c  

Tier N1+7: 
(i 1)
1qk k k

1 1 2 2 2(i 1)
1p

y
a c a c1 a c

y

−

−= − = −  

Tier N1+8: 
(i 1)k

1 p1mula y
−

, 
(i 1)k

1 p2mula y
−

,…,
(i 1)k

1 p5mula y
−

 

TierN1+9: 
(i 1)k

2 q1mula y
−

, 
(i 1)k

2 q2mula y
−

,…,
(i 1)k

2 q5mula y
−

, 1muly −  
(i 1)k

1 p1mula y
−

,…,
(i 1)k

5mul 1 p5muly a y
−

−   

Tier N1+10: 
(i 1)k

1 p6mula y
−

,…,
(i 1)k

1 p10mula y
−

, 
(i 1)k

1mul 1 p1muly a y
−

− −  
(i 1)k

2 q1mula y
−

,…, 
(i 1) (i 1)k k

5mul 1 2p5mul q5muly a y a y
− −

− −  
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Tier N1+11: ( )2(i 1) (i 1)k k
1 2mul 1 2p1mul q1muly a y a y

− −
δ = − − ,…, 

( )(i 1) (i 1)k k
5 5mul 1 2p5mul q5muly a y a y

− −
δ = − − ,

(i 1)k
6mul 1 p6muly a y

−
− ,…,

(i 1)k
10mul 1 p10muly a y

−
−   

Tier N1+12: 
(i 1)k

2 q6mula y
−

,…,
(i 1)k

2 q10mula y
−

. 

Tier N1+13: 
(i 1) (i 1)k k

6mul 1 2p6mul q6muly a y a y
− −

− − ,…, 10muly −  
(i 1) (i 1)k k

1 2p10mul q10mula y a y
− −

− , 
(i 1)k

1 p11mula y
−

,…, 
(i 1)k

2 p15mula y
−

 

Tier N1+14: 6 7 10, ,...,δ δ δ , 
(i 1)k

11mul 1 p11muly a y
−

− ,…, 15muly −  
(i 1)k

2 p15mula y
−

 

Tier N1+15: 1 6δ + δ , 2 7δ + δ ,…, 5 10δ + δ , 
(i 1)k

2 q11mula y
−

,…, 
(i 1)k

2 q15mula y
−

 

Tier N1+3m+7: 
2 2 2

(i 1) (i 1)k k
(N 4)mul 1 2p(N 4)mul q(N 4)muly a y a y ,...,

− −

− − −− −  

2 2

(i 1) (i 1)k k
N mul 1 2pN mul qN muly a y a y

− −
− −  

Tier N1+3m+8: 
2N 4−δ , 

2N 3−δ ,…,
2Nδ  

Tier N1+3m+9: 
2 21 6 N 4 2 7 N 3... − −δ + δ + + δ + δ + δ + δ ,…, 

25 10 N...δ + δ + + δ  

Tier N1+3m+10: 
2 21 6 N 4 2 7 N 3... − −δ + δ + + δ + δ + δ + δ , 

2 23 8 N 4 4 9 N 1... ...− −δ + δ + + δ + δ + δ + + δ  

Tier N1+3m+11: 
2N

j
j 1=

δ∑  

Tier N1+3m+12: 

2N

j
j 1

2N
=

δ
δ =
∑

 

 
RESULTS AND DISCUSSION 

 
 The first (N1+1) tiers form the equation system 
(10). On the first and second tiers, only the first two 
summands of the (11-15) equations are computed. On 
the N1

st tiers not only corresponding summands are 
computed, but also summands from the previous tiers 
added. This addition ends on the (N1+1)st tier, 
corresponding to (11-15) equations and produces 

k1 k2 (i 1) (i 1) (i 1) (i 1)
1p 1q 2p 2qy ,y , y , y y , y .− − − −=  the tiers from third to 

N1−st have the maximum height of the algorithm 
parallel form and equal 10 and needs for realizing for 
the algorithm five processor elements, that performs 
the multiplication operation and five two input 
addition units. On the first N1 tiers 5N1 multiplication 
operations are performed, for performing 5N1 
multiplication operations the initial data only is 
required, so with the best performance requirements to 

the subunit the first (N1+1) tiers could be replaced by 
two. On the first tier all the multiplication operations 
with the help of 5N1 multiplication units and on the 
second performing simultaneous addition of N1 
summands.  
 On the tiers from (N1+2)nd to the (N1+7)th 

corresponding to (16), (17) equations, determined the 
coefficients k k

1 2a ,a  of (4.9), equations that are synthesis 

on the ith tier of the learning subsample points. On these 
tiers not more than two processor elements are used, 
however on the (N1+2)nd tier performed two division 
operations.  
 On the tiers from (N1+8)th to the last(end) 
determined the mean-square error for the model (18) on 
the checking subsample points. Forming these tiers we 
assumed that the number of checking subsample points 
N2 is a multiple of 5 (e.g., N2 = 5 m, m is an integer). 
This is a general assumption, taking into account that if 
N2 ≠ 5 m we can use this parallel form of the algorithm, 
but some of the processor elements that are used with 
N2 = 5 m, will not be used. 
 With N1 = 5(m-1) the height of the algorithm of the 
parallel form can be decreased by 1 because of 
performing a part of addition operations of (N1+3m+9)th 
and (N1+3m+10)th tiers on the N1+3m+8 tier. We 
mention that when it is necessary we can perform all 
multiplication operations that are related to the values 
of the model (18) on the checking subsample points on 
the tiers (N1+8)th-(N1+3m+6)th could be performed on 
one tier, but 2N2 processor elements are required. With 
the availability of additional N2 3-input addition units 
that are necessary for computing the values 

1 2 N2, ,...,δ δ δ  and N2-input addition unit to produce 

the sum 
N2

j
j 1=

δ∑  the last 3m+5 tiers can be replaced by 5 

tiers. The minimal height of the algorithm parallel form 
with the account of two-tier exchange of the first 
(N1+1) tiers will be 13. But, the load of such system 
will be very small, because of the use of not more than 
two processor elements on the seven tiers of the 
algorithm. 
 The number of addition and multiplication/division 
operations on each tier for an algorithm of N1+3m+12 
height is shown in Table 1. 
 With N1 = N2 = 15 we have 36 tiers of the parallel 
algorithm. On these tiers 240 operations are performed, 
127 multiplication and division operations and 113 
addition and subtraction operations. 
 From the parallel computing of multiplication and 
addition operations follows the necessary of timing 
both operations using two types of computing devices. 
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However stands another question about implementing 
one or two universal mul/div devices or multiplier with 
built-in one or two divisors. By entering one divider, 
the number of tiers increased by 1, so the two division 
operations on the (N1+2)-nd tier will be computed 
sequentially. But entering two dividers, one of them 
will be used only one time on the (N1+2)-nd tier and the 
second four tiers. This selection must be based on the 
requirements to the problem-oriented computing 
devices, taking into account both the performance and 
the cost of the system. In this work we use two 
universal mul/div devices, which need approximately 
the same time to perform both operations. 
 In this work the largest time needed for 
multiplication and addition operations and the addition 
operations also needs the least time, then the selection 
of optimal multiplication devices directly Affect the 
subunit characteristics. Learning the available 
multipliers shows that: 
 Learning the available multiplication and division 
units (Kung, 1991; Veshinchouk and Cherkasky, 1990) 
shows that the best by the means of performance are 
matrix ones (Kung, 1991; Veshinchouk and Cherkasky, 
1990). So some tiers perform only addition operations 
(Table 1a, b, and c) the best adders are the parallel ones 
(Gex, 1971; Saveliev, 1987). 
 Knowing the times τmul, τdiv, τadd (τmul ≈ τdiv = τ, 
τadd<0.1τ) needed to perform the arithmetic 
operations(multiplication, division and addition) in 
parallel subunit, we can evaluate its performance and 
the load coefficients of processing units according to 
their functionality algorithm. 
 Form parallel-tier algorithm of the subunit and 
Table 1a, b, and c we can see that, the computational 
units of the subunit have to perform not less than five 
addition operations at the time τ. In this case the total 
number of algorithm tiers n can be calculated by the 
following expression: 

1 2 mul add

3
n N N 12 n n

5
= + + = +  

Where: 
N1,N2 = Number of learning and checking subsample 

points consequently 
nmul = Number of tiers with multiplication operations 
nadd = Number of tiers which perform only addition 

operations 
 
 On the first N1+7 tiers performs 5N1+6 
multiplication and division operations and 5(N1-1)+3 
addition operations on the tiers from N1+8 to n-3N2+1 
multiplication and division operations and 2N2+10 
addition operations. Ignoring other operations we can 
calculate kper -performance coefficient of the parallel 
subunit in comparison with serial computers.: 
 

1 2 1 2 add
Per

1 2 5 add

(5N 3N 7) (5N 2N 8)
K

3
(5N N ) 7

5 +

+ + τ + + + τ=
+ τ + τ

 

 
 And also kmul the load coefficient of multiplier 
(multiplier/divider): 

 

1 2
mul

1 2 add

(5N 3N 7)
k

3
5(N N 5) 7

5

+ + τ=
+ + τ + τ

 

 
 Since add 0.1τ < τ , then all the addition operations on 

any tier could be performed by one adder. And its load 
coefficient kadd can be calculated by the following 
equation: 

 

1 2 add
mul

1 2 add

(5N 2N 8)
k

3
(N N 5) 7

5

+ + τ=
+ + τ + τ

 

 
Table 1a: the number of Addition, Multiplication and division operations on the tiers 1 to N1+7  
Tier/NQ 1 2 3 4 … N1 N1+1 N1+2 N1+3 N1+4 N1+5 N1+6 N1+7 
Number of mul/div operations 5 5 5 5 … 5 0 2(div) 2 0 1(div) 1 0 
Number of addition operations  0 0 5 5 … 5 5 0 0 2 0 0 1 

 
Table 1b: the number of Addition, Multiplication and division operations on the tiers N1+ 8 to N1+ 15 
Tier N1+8 N1+9 N1+10 N1+11 N1+12 N1+13 N1+14 N1+15 … 
Number of mul/div operations 5 5 5 5 5 5 5 5 …  
Number of addition operations 0 5 5 5 0 5 5 5 … 

 
Table 1c: the number of addition, multiplication and division operations on the tiers N1+ 3m +6 to N1+ 3m + 12 
Tier N1+3m+6 N1+3m+7 N1+3m+8 N1+3m+9 N1+3m+10 N1+3m+11 N1+3m+12 
Number of mul/div operations 5 0 5 0 0 0 1(div) 
Number of addition operations 5 5 5 2 2 1 0 
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Table 2: The numerical characteristics of the subunit 
N1 15.000 30.000 100.000 1000.000 15.000 30.000 100.000 1000.000 
N2 15.000 30.000 100.000 1000.000 15.000 30.000 100.000 1000.000 
Nadd 113.000 218.000 708.000 7008.000 113.000 218.000 708.000 7008.000 
Nmul 27.000 247.000 807.000 8007.000 127.000 247.000 807.000 8007.000 
N 36.000 60.000 172.000 1612.000 36.000 60.000 172.000 1612.000 
nmul 29.000 53.000 165.000 1605.000 29.000 53.000 165.000 1605.000 
nadd 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000 
τadd/τ 0.100 0.100 0.100 0.100 0.050 0.050 0.050 0.050 
kmul 0.872 0.930 0.977 0.998 0.874 0.931 0.978 0.998 
kadd 0.380 0.406 0.427 0.436 0.193 0.204 0.214 0.218 
Tser 1383.000 2688.000 8778.000 87077.000 2653.000 5158.000 16848.000 167148.000 
Tsubunit 297.000 537.000 1657.000 16057.000 587.000 1067.000 3307.000 32107.000 
kper 4.657 5.006 5.298 5.423 4.520 4.834 5.095 5.206 

 

 
 

Fig. 2: The parallel subunit 
 

 The numerical characteristics of the parallel 
subunit, that performs on each algorithm tier not less 
than five multiplication operations or two division 
operations and five addition operations with different 
values of N1,N2 and add /τ τ  are shown in Table 2. 

 The first seven rows in Table 2 show Nadd, Nmul 
numbers of addition and multiplication or division 
operations, n total number of algorithm tiers, nmul 
number of algorithm tiers with addition operations 
corresponding to N1, N2-numbers of learning and 
testing subsequence points.  
 The five rows represent kmul, kadd-the load 
coefficients of multipliers and adders, also Tser, 
TSUBUNIT relatively algorithm execution time in serial 
and parallel computing devices and kper-performance 
coefficient of the designed subunit in comparison with 
serial devices. 
 From the coefficients values Kmul, Kadd, Kper, shown 
in Table 2 with different τadd/τ relations, various N1, N2, 
numbers, it is clear that multipliers play the most 
important role in maximizing the subunit performance. 
The adder is loaded less than half time with τadd/τ = 0.1 

and in 20% greater with τadd/τ = 0.05, so increasing the 
number of parallel multipliers to ten or to twenty, the 
needed 10 or 20 addition operations on the time τ, 
could be performed by one adder, the final structure of 
the parallel subunit is shown in Fig. 2. 
 

CONCLUSION 
 
 Structural synthesis technique of specialized 
computing devices by carrying out parallel calculations 
is developed at hardware-software realization of self-
organizing algorithms at a level of separate 
mathematical models. This technique can be used for 
synthesis specialized computing devices for any known 
functional-oriented computing systems for data 
processing by a group method of data handling. 
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