
Journal of Computer Science 6 (3): 261-268, 2010
ISSN 1549-3636
© 2010 Science Publications

261

Design and Implementation of Parallel Subunit for

Synthesis Mathematical Models

Issa M. Shehabat
King Saud University, KSA-Riyadh-Huraimla 11962, P.O. Box 300, Saudi Arabia

Abstract: Problem statement: Mathematical modeling of different natural and technical objects and
processes is one of the most important directions that needs high performance computing with huge
memory. To reduce the computational time and expenses we need to carry out the calculations on
specialized subunits. Approach: We described a self-organizing approximation method and
introduced a new methodology of structural synthesis of specialized parallel processing subunits for
realizing a group method of data handling algorithms. Results: The design procedure of the parallel
subunit in addition to the selection of the computing units for this device has been introduced.
Conclusion/Recommendations: The Group Method of Data Handling proved to be most effective to
solve small and medium-sized problems with continuous output. It was tested on wide range of
artificial and real-world problems.

Key words: Self-organizing algorithms, GMDH, parallel subunit

INTRODUCTION

 One of the most common problems in engineering
design and control is the problem of mathematical
modeling. Consider the object under investigation as
“black box” with several input variables (inputs) and
one output variable (output). The purpose of modeling
is to find some means of predicting the value output for
any values of input, based on a set of learning data.
 One of the methods of the mathematical modeling
used for this purpose is the Group Method of Data
Handling (GMDH) (Ivakhnenko, 1971; Farlow, 1984;
Ivakhnenko et al., 1994; Dolenko et al., 1996).
 There were many papers published and several
books devoted to group method of data handling and
its applications. GMDH can be considered as further
propagation of inductive self-organizing methods to
the solution of more complex practical problems
(Ivakhnenko and Ivakhnenko, 1995). Most of GMDH
algorithms use the polynomial reference functions.
This method involves sorting, that is successive
testing of models selected out of a set of candidate
models according to specified criterion. Nearly all
known GMDH algorithms use polynomial support
functions. General connection between input and
output variables can be found in the form of functional
Volterra series, whose discrete analogue is known as
the Kolmogorov-Gabor polynomial (Madala and
Ivakhnenko, 1994):

M M M M M M

0 i i ij i j ijk i j k
i 1 i 1 j 1 i 1 j 1 k 1

y a a x a x x a x x x
= = = = = =

= + + +∑ ∑∑ ∑∑∑

Where:
X(x1,x2,…,xM) = The vector of the input variables
A(a1, a2,…, aM) = The vector of the summands

coefficients

 In the iterative multilayered GMDH algorithm the
iteration rule remains unchanged for all sequence, as
shown in Fig. 1, the first layer tests the models that can
be derived from the information contained in any two
columns of the sample. The second uses information
from four columns, the third from any eight columns,
and so forth. the exhaustive-search termination rule is
that in each layer the optimal models are selected by the
minimum of external criterion e.g.:

m

1 k1 2
k 2i 2i

i 1

E (y y) / m
=

= −∑ (1)

Where:

1
kE = Selection criterion for kth partial description of the

first layer
y2i = The value of the function f(x1,x2) on 2ith point

initial the experimental data m-number of testing
points

J. Computer Sci., 6 (3): 261-268, 2010

262

Fig. 1: Multilayered iteration algorithm

MATERIALS AND METHODS

Basics of the method: The idea of GMDH is the
following: we are trying to build an analytical function
(called ”model”) which would behave itself in such a
way that the predicted value of the output would be as
close as possible to its actual value. For many
applications such an analytical model is much more
convenient than the “distributed knowledge”
representation that is typical for neural network
approach.
 The most common way to deal with such problem
is to use linear regressing approach. In this approach,
first of all we must introduce a set of basis functions.
The answer will then be sought as a linear combination
of the basis functions. For example, powers of input
variables along with their double and triple cross-
products may be chosen as bases functions.
 To obtain the best solution, we should try all
possible combinations of terms and choose those which
give best predictions. The decision about quality of
each model must be made using some numeric

criterion. (Accurate choice of the criterion is separate
problem.) However, it is clear that full testing for a
problem with many inputs and a wide set of a basis
functions is practically impossible, as it would take too
much time and it would require too much computer
memory, to reduce computational expenses, one should
reduce the number of basis functions (and the number
of input variables), which are used to build the tested
models. To do that, one must change from one-stage
procedure of model selection to a multi-stage
procedure.
 Let us take two input variables and let us combine
a set of basis functions. For example, if we denote input
variables as x1 and x2, let the set of basis functions be
{1,x1,x2, x1.x2}.(1 corresponds to constant bias and
must be always included in the set). Now we check 24-
1=15 possible models and choose one that is the best.
(Any one of the tested models is often called partial
description or PD). After that, we take another pair of
input variables and repeat operation, resulting in one
more PD with its own value of criterion. Doing the
same for each possible pair of n input variables, we
obtain n*(n-1)/2PDs, each with its own value of the
used criterion.
 Then we compare these values and choose several
PDs which give better approximation for the output
variable. Usually we select a pre-defined number F of
best PDs that must be preserved at the next step of
algorithm.
 The values predicted by the preserved PDs (Called
Survivors), serve at the next iteration as input variable
along with initial input variables of the whole system.
All the described actions are repeated again with the
broadened set of input variables and then the next
iteration goes, and so on.
 This method involves sorting, that is successive
testing of model selected out of a set of candidate
models according to a specified criterion. Nearly all
known GMDH algorithms use polynomial support
functions.

GMDH algorithms realization: A parallel computing
can be implemented for realizing all algorithms that
have multilayered structures and many different
multiprocessor systems were designed such as multi-
section and two-section pipeline architectures
(Dmitrienko et al., 1998). To get the greatest gain in
productivity of the pipeline systems, in this work, it is
recommended to carry out calculations in specialized
processing units (subunit) by entering in ALU structure
additional hardware, multiplication units, division units,
addition units, subtraction units and cache memory. The
function of each subunit is determined: Each of them

J. Computer Sci., 6 (3): 261-268, 2010

263

forms on each ith (i>1) layer a system of Gauss
equations for all learning subsample points that are
represented as:

i i i i 1 i i 1
p1,...pd 0 p1,...pd 1 p1,...pd p1 2 p1,...pd p2

d d
i i 1 i i 1 i 1
d p1,...pd pd kj,p1,...,pd pk pj

k 1 j 1
j k

y a , a , y a , y ...

a , y a y y

− −

− − −

= =
≤

= + + + +

+∑∑
 (2)

Where:
i = Points to the selection layer

i 1
pqy − , q = 1, q = The best partial descriptions (i-1)st

layer
 i i

0,p1,...pd dd,p1,...pda ,...,a = Definable coefficients

 Conditional Gauss equations on the learning
subsample points i 1i 2iy ,x ,x ,i i,m= for Eq. 2 could be

written as:

i i i i 1
p1,...,pd 11 21 0,p1,...,pd 1,p1,000,pd p1 11 21

d d
i i 1 i 1
kj,p1,...,pd pk 11 21 pj 11 21

k 1 j 1
j k

1
p1,...,pd 11 21 0,p1,...,pd

y (x ,x) a a y (x ,x) ...

a y (x ,x)y (x ,x)

..

y (x ,x) a

−

− −

= =
≤

= + + +

=

∑∑

i i i 1
1,p1,000,pd p1 1m 2m

d d
i i 1 i 1
kj,p1,...,pd pk 1m 2m pj 1m 2m

k 1 j 1
j k

a y (x ,x) ...

a y (x ,x)y (x ,x)

−

− −

= =
≤

+ + +

∑∑

 (3)

where, 2

dm d c 1,≥ + + 2
dC -combination of d by 2.

 From the equation system (3) with 2
dm d c 1> + +

we got a system of normal gauss equations:

d d

0 1 p1 d pd ij pk pj
k 1 j 1

j k

d d

p1 0 p1 1 p1 p2 d pd p1 ij pk pj p1
k 1 j 1

j k

pd pd 0 pd pd 1 p1 pd pd d pd pd pd

i

y a a y ... a y a y y

yy a y a y y ... a y y a y y y

..

yy y a y y a y y y ... a y y y

a

= =
≤

= =
≤

= + + + +

= + + + +

= + + + +

∑∑

∑∑

d d

j pk pj pd pd
k 1 j 1

j k

y y y y ,
= =

≤

∑∑

 (4)

Where:

i i i
0 0,p1,...pd 1 1.p1,...ppd dd dd,p1,..pda a ,a a ,...,a a≡ ≡ ≡

m

1q 2q
q 1

1
y y(x ,x)

m =

= ∑

m
i 1

p1 p1 1q 2q
q 1

1
y y (x ,x)

m
−

=

= ∑

m
i 1
pd 1q 2q

q 1

1
ypd y (x ,x)

m
−

=

= ∑

m

i 1 i 1
p1 pj pk 1q 2q pj 1q 2q

q 1

1
y y y (x ,x)y (x ,x),k, j 1,m, j k

m
− −

=

= = ≤∑ (5)

m

i 1
p1 1q 2q p1 1q 2q

q 1

1
yy y(x ,x)y (x ,x)

m
−

=

= ∑ (6)

m

i 1 i 1 i 1
pk pj p1 pk 1q 2q pj 1q 2q p1 1q 2q

q 1

1
y y y y (x ,x)y (x ,x)y (x ,x)

m
− − −

=

= ∑ (7)

m

i 1 i 1
pk pj pd pd pk 1q 2q pj

q 1

i 1 i 1
1q 2q pd 1q 2q pd 1q 2q

1
y y y y y (x ,x)y

m

(x ,x)y (x ,x)y (x ,x)

− −

=

− −

= ∑
 (8)

 Solving a system of normal linear gauss Eq. 4 for
each of the partial descriptions (2), we find

i i i
0,p1,...,pd 1,p1,....pd dd,pa,...,pda ,a ,....a -coefficients for these

descriptions. Then the produced models estimate the
set of checking subsample points using a selection
criterion (1):

m1
i i i i 1
p1,...pd q 0,p1,...,pd 1,p1,...,pd p1 1q 2q

q 1

d d
i i 1 i 1 2
kj,p1,...,pd pk 1q 2q pj 1q 2q

k 1 j 1
j k

E (y (a a y (x ,x) ...

a y (x ,x)y (x ,x)))

−

=

− −

= =
≤

= − + + +

+

∑

∑∑
 (9)

where, m1-number of checking subsample points.
 We can write the system of normal Gauss Eq. 4 for
the subunit in the following form:

k1 k p(i 1) k q(i 1)
1 1 2 1

k 2 k p(i 1) k q(i 1)
1 2 2 2

y a y a y

y a y a y

− −

− −

= +

= +
 (10)

Where:

N1 p(i 1)k1
j j

j 1

y y y
−

=

=∑ (11)

N1 q(i 1)k2

j j
j 1

y y y
−

=

=∑ (12)

N1 p(i 1) p(i 1)p(i 1)

1 j j
j 1

y y y
− −−

=

=∑ (13)

J. Computer Sci., 6 (3): 261-268, 2010

264

N1 p(i 1) q(i 1)q(i 1) p(i 1)
1 2 j j

j 1

y y y y
− −− −

=

= =∑ (14)

N1 q(i 1) q(i 1)q(i 1)

2 j j
j 1

y y y
− −−

=

=∑ (15)

Where:
N1 = Number of learning points
i = Number of the layer (i>1)
yj = The value of the function in the jth point

of the initial data learning subsample
p(i 1) q(i 1)

j jy ,y
− −

 = The values of best partial descriptions

yp(i-1), yq(i-1)

 In the jth point in the initial data on (i-1)st layer.
 The next important function of the subunit is
solving a system of Eq. 10:

k1 k q(i 1)
k 2 1
1 p(i 1) p(i 1)

1 1

y a y
a

y y

−

− −= − (16)

k1 p(i 1)

k2 2
p(i 1)

k 1
2 q(i 1) 2

q(i 1) 1
2 p(i 1)

1

y y
y

y
a

(y)
y

y

−

−

−
−

−

−
=

−
 (17)

 After determining the coefficients (16), (17) we get
the model of ith selection layer:

p(i 1) q(i 1)ki k k
1 2 qpy a y a y

− −
= + (18)

which is evaluated on the checking subsample point, by
using the following criterion:

()2 2
2N N

p(i 1) q(i 1)k k
jmul 1 2jmul jmul

j 1 j 12 2

1 1
j y a y a y

N N

− −

= =

δ = δ = − −∑ ∑

Where:
N2 = The number of checking subsample

points

jδ = Square error in the jth point of the

checking subsample

jmuly = The value of the function of the jth point

of checking subsample initial data
(i 1)

pjmuly
−

,
(i 1)

qjmuly
−

 = The values of the partial descriptions
(i 1)

py
−

,
(i 1)

qy
−

 on the jth point of checking

subsample initial data

The design of parallel subunit: We must pass from
the formal representations (10-19) of the working
algorithm of the subunit to its parallel tear form, which
presented by (Voevodin, 1986). Assuming that the
parallel system has five processing elements that
perform binary multiplication, two of them performing
also the division operation in addition to five processor
elements that perform the addition and subtraction
operations.
 Then we have:

Data:

(i 1) (i 1) (i 1)

1 N1 1mul N2mul 1p pN1 p1mul

(i 1) (i 1) (i 1) (i 1) (i 1)

pN2mul q1 qN1 q1mul qN2mul

y ,..., y , y ,..., y , y ,....,y , y ,...,

y ,y ,...,y ,y ,...,y

− − −

− − − − −

Parallel-tier form:

Tier 1:
(i 1)

1 p1y y
−

,
(i 1)

1 q1y y
−

,
(i 1) (i 1)

p1 p1y y
− −

,
(i 1) (i 1)

p1 q1y y
− −

,
(i 1) (i 1)

q1 q1y y
− −

Tier 2:
(i 1)

2 p2y y
−

,
(i 1)

2 q2y y
−

,
(i 1) (i 1)

p2 p2y y
− −

,
(i 1) (i 1)

q2 p2y y
− −

,
(i 1) (i 1)

q2 q2y y
− −

Tier 3:
(i 1)

3 p3y y
−

,
(i 1)

3 q3y y
−

,
p(i 1) p(i 1)

3 p3y y
− −

,
(i 1) (i 1)

p3 q3y y
− −

,
(i 1) (i 1)

q3 q3y y
− −

,
(i 1)

1 p1y y
−

+
(i 1)

2 p2y y
−

,…,
(i 1) (i 1)

q1 q1y y
− −

+
(i 1) (i 1)

q2 q2y y
− −

Tier N1:
N1 2(i 1) (i 1) (i 1) (i 1) (i 1)

N1 N1 jpN1 qN1 qN1 qN1 pj
j 1

y y , y y ,..., y y , y y
−− − − − −

=

+∑

N1 2(i 1) (i 1) (i 1) (i 1) (i 1)

N1 1 p(N1 1) qj qj q(N1 1) q(N1 1)
j 1

y y ,..., y y y y
−− − − − −

− − − −
=

+∑

Tier N1+1:
N1 (i 1) (i 1)(i 1)

p1 pj pj
j 1

y y y
− −−

=

=∑ ,
N1 (i 1) (i 1)(i 1)

1q pj qj
j 1

y y y
− −−

=

=∑

Tier N1+2:
k1

1 (i 1)
1p

y
c

y −= ,
(i 1)
1q

2 (i 1)
1p

y
c

y

−

−=

Tier N1+3: (i 1)
1 2pc y − , (i 1)

1 1qc y −

Tier N1+4: p(i 1)
3 1 2c k2 c y ,−= − (i 1) (i 1)

2q 2 1qc4 y c y− −= −

Tier N1+5: k
2 3 4a c c=

Tier N1+6: k
2 2a c

Tier N1+7:
(i 1)
1qk k k

1 1 2 2 2(i 1)
1p

y
a c a c1 a c

y

−

−= − = −

Tier N1+8:
(i 1)k

1 p1mula y
−

,
(i 1)k

1 p2mula y
−

,…,
(i 1)k

1 p5mula y
−

TierN1+9:
(i 1)k

2 q1mula y
−

,
(i 1)k

2 q2mula y
−

,…,
(i 1)k

2 q5mula y
−

, 1muly −
(i 1)k

1 p1mula y
−

,…,
(i 1)k

5mul 1 p5muly a y
−

−

Tier N1+10:
(i 1)k

1 p6mula y
−

,…,
(i 1)k

1 p10mula y
−

,
(i 1)k

1mul 1 p1muly a y
−

− −
(i 1)k

2 q1mula y
−

,…,
(i 1) (i 1)k k

5mul 1 2p5mul q5muly a y a y
− −

− −

J. Computer Sci., 6 (3): 261-268, 2010

265

Tier N1+11: ()2(i 1) (i 1)k k
1 2mul 1 2p1mul q1muly a y a y

− −
δ = − − ,…,

()(i 1) (i 1)k k
5 5mul 1 2p5mul q5muly a y a y

− −
δ = − − ,

(i 1)k
6mul 1 p6muly a y

−
− ,…,

(i 1)k
10mul 1 p10muly a y

−
−

Tier N1+12:
(i 1)k

2 q6mula y
−

,…,
(i 1)k

2 q10mula y
−

.

Tier N1+13:
(i 1) (i 1)k k

6mul 1 2p6mul q6muly a y a y
− −

− − ,…, 10muly −
(i 1) (i 1)k k

1 2p10mul q10mula y a y
− −

− ,
(i 1)k

1 p11mula y
−

,…,
(i 1)k

2 p15mula y
−

Tier N1+14: 6 7 10, ,...,δ δ δ ,
(i 1)k

11mul 1 p11muly a y
−

− ,…, 15muly −
(i 1)k

2 p15mula y
−

Tier N1+15: 1 6δ + δ , 2 7δ + δ ,…, 5 10δ + δ ,
(i 1)k

2 q11mula y
−

,…,
(i 1)k

2 q15mula y
−

Tier N1+3m+7:
2 2 2

(i 1) (i 1)k k
(N 4)mul 1 2p(N 4)mul q(N 4)muly a y a y ,...,

− −

− − −− −

2 2

(i 1) (i 1)k k
N mul 1 2pN mul qN muly a y a y

− −
− −

Tier N1+3m+8:
2N 4−δ ,

2N 3−δ ,…,
2Nδ

Tier N1+3m+9:
2 21 6 N 4 2 7 N 3... − −δ + δ + + δ + δ + δ + δ ,…,

25 10 N...δ + δ + + δ

Tier N1+3m+10:
2 21 6 N 4 2 7 N 3... − −δ + δ + + δ + δ + δ + δ ,

2 23 8 N 4 4 9 N 1... ...− −δ + δ + + δ + δ + δ + + δ

Tier N1+3m+11:
2N

j
j 1=

δ∑

Tier N1+3m+12:

2N

j
j 1

2N
=

δ
δ =
∑

RESULTS AND DISCUSSION

 The first (N1+1) tiers form the equation system
(10). On the first and second tiers, only the first two
summands of the (11-15) equations are computed. On
the N1

st tiers not only corresponding summands are
computed, but also summands from the previous tiers
added. This addition ends on the (N1+1)st tier,
corresponding to (11-15) equations and produces

k1 k2 (i 1) (i 1) (i 1) (i 1)
1p 1q 2p 2qy ,y , y , y y , y .− − − −= the tiers from third to

N1−st have the maximum height of the algorithm
parallel form and equal 10 and needs for realizing for
the algorithm five processor elements, that performs
the multiplication operation and five two input
addition units. On the first N1 tiers 5N1 multiplication
operations are performed, for performing 5N1
multiplication operations the initial data only is
required, so with the best performance requirements to

the subunit the first (N1+1) tiers could be replaced by
two. On the first tier all the multiplication operations
with the help of 5N1 multiplication units and on the
second performing simultaneous addition of N1
summands.
 On the tiers from (N1+2)nd to the (N1+7)th

corresponding to (16), (17) equations, determined the
coefficients k k

1 2a ,a of (4.9), equations that are synthesis

on the ith tier of the learning subsample points. On these
tiers not more than two processor elements are used,
however on the (N1+2)nd tier performed two division
operations.
 On the tiers from (N1+8)th to the last(end)
determined the mean-square error for the model (18) on
the checking subsample points. Forming these tiers we
assumed that the number of checking subsample points
N2 is a multiple of 5 (e.g., N2 = 5 m, m is an integer).
This is a general assumption, taking into account that if
N2 ≠ 5 m we can use this parallel form of the algorithm,
but some of the processor elements that are used with
N2 = 5 m, will not be used.
 With N1 = 5(m-1) the height of the algorithm of the
parallel form can be decreased by 1 because of
performing a part of addition operations of (N1+3m+9)th
and (N1+3m+10)th tiers on the N1+3m+8 tier. We
mention that when it is necessary we can perform all
multiplication operations that are related to the values
of the model (18) on the checking subsample points on
the tiers (N1+8)th-(N1+3m+6)th could be performed on
one tier, but 2N2 processor elements are required. With
the availability of additional N2 3-input addition units
that are necessary for computing the values

1 2 N2, ,...,δ δ δ and N2-input addition unit to produce

the sum
N2

j
j 1=

δ∑ the last 3m+5 tiers can be replaced by 5

tiers. The minimal height of the algorithm parallel form
with the account of two-tier exchange of the first
(N1+1) tiers will be 13. But, the load of such system
will be very small, because of the use of not more than
two processor elements on the seven tiers of the
algorithm.
 The number of addition and multiplication/division
operations on each tier for an algorithm of N1+3m+12
height is shown in Table 1.
 With N1 = N2 = 15 we have 36 tiers of the parallel
algorithm. On these tiers 240 operations are performed,
127 multiplication and division operations and 113
addition and subtraction operations.
 From the parallel computing of multiplication and
addition operations follows the necessary of timing
both operations using two types of computing devices.

J. Computer Sci., 6 (3): 261-268, 2010

266

However stands another question about implementing
one or two universal mul/div devices or multiplier with
built-in one or two divisors. By entering one divider,
the number of tiers increased by 1, so the two division
operations on the (N1+2)-nd tier will be computed
sequentially. But entering two dividers, one of them
will be used only one time on the (N1+2)-nd tier and the
second four tiers. This selection must be based on the
requirements to the problem-oriented computing
devices, taking into account both the performance and
the cost of the system. In this work we use two
universal mul/div devices, which need approximately
the same time to perform both operations.
 In this work the largest time needed for
multiplication and addition operations and the addition
operations also needs the least time, then the selection
of optimal multiplication devices directly Affect the
subunit characteristics. Learning the available
multipliers shows that:
 Learning the available multiplication and division
units (Kung, 1991; Veshinchouk and Cherkasky, 1990)
shows that the best by the means of performance are
matrix ones (Kung, 1991; Veshinchouk and Cherkasky,
1990). So some tiers perform only addition operations
(Table 1a, b, and c) the best adders are the parallel ones
(Gex, 1971; Saveliev, 1987).
 Knowing the times τmul, τdiv, τadd (τmul ≈ τdiv = τ,
τadd<0.1τ) needed to perform the arithmetic
operations(multiplication, division and addition) in
parallel subunit, we can evaluate its performance and
the load coefficients of processing units according to
their functionality algorithm.
 Form parallel-tier algorithm of the subunit and
Table 1a, b, and c we can see that, the computational
units of the subunit have to perform not less than five
addition operations at the time τ. In this case the total
number of algorithm tiers n can be calculated by the
following expression:

1 2 mul add

3
n N N 12 n n

5
= + + = +

Where:
N1,N2 = Number of learning and checking subsample

points consequently
nmul = Number of tiers with multiplication operations
nadd = Number of tiers which perform only addition

operations

 On the first N1+7 tiers performs 5N1+6
multiplication and division operations and 5(N1-1)+3
addition operations on the tiers from N1+8 to n-3N2+1
multiplication and division operations and 2N2+10
addition operations. Ignoring other operations we can
calculate kper -performance coefficient of the parallel
subunit in comparison with serial computers.:

1 2 1 2 add
Per

1 2 5 add

(5N 3N 7) (5N 2N 8)
K

3
(5N N) 7

5 +

+ + τ + + + τ=
+ τ + τ

 And also kmul the load coefficient of multiplier
(multiplier/divider):

1 2
mul

1 2 add

(5N 3N 7)
k

3
5(N N 5) 7

5

+ + τ=
+ + τ + τ

 Since add 0.1τ < τ , then all the addition operations on

any tier could be performed by one adder. And its load
coefficient kadd can be calculated by the following
equation:

1 2 add
mul

1 2 add

(5N 2N 8)
k

3
(N N 5) 7

5

+ + τ=
+ + τ + τ

Table 1a: the number of Addition, Multiplication and division operations on the tiers 1 to N1+7
Tier/NQ 1 2 3 4 … N1 N1+1 N1+2 N1+3 N1+4 N1+5 N1+6 N1+7
Number of mul/div operations 5 5 5 5 … 5 0 2(div) 2 0 1(div) 1 0
Number of addition operations 0 0 5 5 … 5 5 0 0 2 0 0 1

Table 1b: the number of Addition, Multiplication and division operations on the tiers N1+ 8 to N1+ 15
Tier N1+8 N1+9 N1+10 N1+11 N1+12 N1+13 N1+14 N1+15 …
Number of mul/div operations 5 5 5 5 5 5 5 5 …
Number of addition operations 0 5 5 5 0 5 5 5 …

Table 1c: the number of addition, multiplication and division operations on the tiers N1+ 3m +6 to N1+ 3m + 12
Tier N1+3m+6 N1+3m+7 N1+3m+8 N1+3m+9 N1+3m+10 N1+3m+11 N1+3m+12
Number of mul/div operations 5 0 5 0 0 0 1(div)
Number of addition operations 5 5 5 2 2 1 0

J. Computer Sci., 6 (3): 261-268, 2010

267

Table 2: The numerical characteristics of the subunit
N1 15.000 30.000 100.000 1000.000 15.000 30.000 100.000 1000.000
N2 15.000 30.000 100.000 1000.000 15.000 30.000 100.000 1000.000
Nadd 113.000 218.000 708.000 7008.000 113.000 218.000 708.000 7008.000
Nmul 27.000 247.000 807.000 8007.000 127.000 247.000 807.000 8007.000
N 36.000 60.000 172.000 1612.000 36.000 60.000 172.000 1612.000
nmul 29.000 53.000 165.000 1605.000 29.000 53.000 165.000 1605.000
nadd 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000
τadd/τ 0.100 0.100 0.100 0.100 0.050 0.050 0.050 0.050
kmul 0.872 0.930 0.977 0.998 0.874 0.931 0.978 0.998
kadd 0.380 0.406 0.427 0.436 0.193 0.204 0.214 0.218
Tser 1383.000 2688.000 8778.000 87077.000 2653.000 5158.000 16848.000 167148.000
Tsubunit 297.000 537.000 1657.000 16057.000 587.000 1067.000 3307.000 32107.000
kper 4.657 5.006 5.298 5.423 4.520 4.834 5.095 5.206

Fig. 2: The parallel subunit

 The numerical characteristics of the parallel
subunit, that performs on each algorithm tier not less
than five multiplication operations or two division
operations and five addition operations with different
values of N1,N2 and add /τ τ are shown in Table 2.

 The first seven rows in Table 2 show Nadd, Nmul
numbers of addition and multiplication or division
operations, n total number of algorithm tiers, nmul
number of algorithm tiers with addition operations
corresponding to N1, N2-numbers of learning and
testing subsequence points.
 The five rows represent kmul, kadd-the load
coefficients of multipliers and adders, also Tser,
TSUBUNIT relatively algorithm execution time in serial
and parallel computing devices and kper-performance
coefficient of the designed subunit in comparison with
serial devices.
 From the coefficients values Kmul, Kadd, Kper, shown
in Table 2 with different τadd/τ relations, various N1, N2,
numbers, it is clear that multipliers play the most
important role in maximizing the subunit performance.
The adder is loaded less than half time with τadd/τ = 0.1

and in 20% greater with τadd/τ = 0.05, so increasing the
number of parallel multipliers to ten or to twenty, the
needed 10 or 20 addition operations on the time τ,
could be performed by one adder, the final structure of
the parallel subunit is shown in Fig. 2.

CONCLUSION

 Structural synthesis technique of specialized
computing devices by carrying out parallel calculations
is developed at hardware-software realization of self-
organizing algorithms at a level of separate
mathematical models. This technique can be used for
synthesis specialized computing devices for any known
functional-oriented computing systems for data
processing by a group method of data handling.

REFERENCES

Dmitrienko, V.D., N.I. Korsonov, S.Y. Leonov and

I.M. Shehabat, 1998. Self-Organizing Algorithms
and K-Type Dynamic Models. Nauka, ISBN: 5-02-
015253-6, pp: 245.

Dolenko, S.A., Y. V. Orlov and I. G. Persiantsev, 1996.
Practical implementation and use of Group Method
of Data Handling (GMDH): Prospects and
problems. Proceeding of the 2nd International
Conference on Adaptive Computing in Engineering
Design and Control, Mar. 1996, University of
Plymouth, UK., pp: 153-159.

Farlow, S.J., 1984. Self-Organizing Method in
Modeling: GMDH-Type Algorithms. In: Statistics,
Textbooks and Monographs, Barron, R. et al.
(Eds.). Marcel Dekker Inc., ISBN: 0-8247-7161-3
pp: 1-66.

Gex, A., 1971. Multiplier-divider cellular array. Elect.
Lett., 7: 442-444.

Ivakhnenko, A.G., 1971. Polynomial theory of complex
systems. IEEE Trans. Syst. Man Cybern.,
SMC-1: 364-378.

J. Computer Sci., 6 (3): 261-268, 2010

268

Ivakhnenko, A.G., G.A. Ivakhnenko and J.A. Muller,
1994. Self-organization of neuronets with active
neurons. Patt. Recogn. Image Anal., 4: 177-188.

Ivakhnenko, A.G. and G. A. Ivakhnenko, 1995. The
review of problems solved by algorithms of the
Group Method of Data Handling (GMDH). Patt.
Recog. Image Anal., 5: 527-535.

Kung, S.Y., 1991. VLSI Array Processors. Prentice-
Hall, Inc., ISBN: 13: 978-0139427497, pp: 600.

Madala, H. and A.G. Ivakhnenko, 1994. Inductive
Learning Algorithms for Complex Systems
Modeling. CRC Press Inc., Boca Raton, pp: 384.

Saveliev, A.Y., 1987. Applied Theory of Digital
Computers. High School, Moscow, pp: 272.

Veshinchouk, I.M. and N.V. Cherkasky, 1990.
Algorithmetic Operational Devices and Super
Computers. Tekhnika, pp: 197.

Voevodin, V.V., 1986. Mathematical Models and
Method Parallel Processes, Nauka, pp: 296.

