
Journal of Computer Science 6 (3): 253-260, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Rafa E. Al-Qutaish, Department of Software Engineering, Alzaytoonah University of Jordan,
 Airport Street, Amman 11733

253

UML Diagrams Generator: A New CASE Tool to Construct the Use-Case

and Class Diagrams from an Event Table

Mohammad I. Muhairat, Rafa E. Al-Qutaish and Akram A. Abdelqader
Department of Software Engineering, Alzaytoonah University of Jordan,

Airport Street, Amman 11733, Jordan

Abstract: Problem statement: Building UML diagrams is a very important and time consuming task
for both requirements and design phases. However, some of these diagrams, such as use-case and class
diagrams can be considered as a transition between the two phases. Approach: Through this study, the
event table will be used to derive the use-case and class diagrams. Results: A new CASE tool to
automate the proposed approach will be introduced, that is, the UML diagrams generator (UMLdg).
Conclusion: It is clearly noted that the proposed CASE tool (UMLdg) gives an ideal and reasonable
methodology to construct the intended use-case and class diagrams from any comprehensive event
table. Furthermore, this tool will save the time for the building process of such diagrams.

Key words: Requirements specification, software design, CASE tool, UML, use-case diagram, class

diagram

INTRODUCTION

 Nowadays, there are many different techniques
(approaches) to identify the use-cases, for examples:

• Listing of all users and define their needs

(Bennett et al., 2005; Larman, 2004; Liang, 2003;
Reed, 2001; Schach, 2003)

• Defining all system functions and adding new
functions that user may be need (Bennett et al.,
2005; Larman, 2004; Reed, 2001; Satzinger et al.,
2004; Schach, 2003)

• List all Graphical User Interfaces that may be used
by users (Cockburn, 2000; Larman, 2004)

• Defining of all users’ goals in using the system
(Chung and Supakkul, 2004; Larman, 2004; Lee
and Xue, 1999; Liang, 2003; Satzinger et al., 2004)

 Many analysts used the fourth approach to get an
initial list of use-cases. However, the most used
approach for defining a use-case model is event
decomposition technique (Larman, 2004; Reed, 2001;
Satzinger et al., 2004). This technique focusing on
events a system must respond to and looking at how a
system responds.
 An event is an occurrence at specific time and
place, can be described and should be remembered by
the system (Larman, 2004; Reed, 2001; Satzinger et al.,
2004).

 Building the use-case and class diagrams is a very
important task since it represents a transition between
the requirements and design phases. However, building
such diagrams is a time consuming process and needs a
complete understanding of the requirements. In this
paper, we introduce an approach to derive the use-case
and class diagrams from an event table. In addition, a
new CASE tool for automating the new approach will
be discussed. The new approach with the new CASE
tool will facilitate and speed the generation process of
these diagrams. Taking into account that this approach
will completely depend on the availability of a
comprehensive event table which to be built from the
available requirements.

MATERIALS AND METHODS

Event table: Since 1980s, the event analysis technique
(McMenamin and Palmer, 1984; Yourdon, 1988; Page-
Jones, 1999) has been the preferred one of event
analysis during the requirements engineering. The
results of event analysis are documented in an event
table. In the structured approach, event analysis
recognizes a basic set of processes. While in the object-
oriented approach, each event discourses an essential
use-case (Stumpf and Teague, 2005). Furthermore, an
event table can be created from the external events to
support the use-case diagrams (Purhonen, 2002). In
addition, the event table has been used by Gargantini

J. Computer Sci., 6 (3): 253-260, 2010

254

and Heitmeyer (1999) to generate a suite test
sequences. Moreover, Snoeck and Dedene (2001) have
proposed a new form of event table called object-event
table to be a useful technique for modeling interaction
between domain object types.
 Business modeling help analyst to understand the
business process. As result of that modeling, business
events are identified and documented in an event table.
Event table is a list of actions that lists events in rows
and the information about each event in columns.
Analyst can use event table to define use-case model
and domain class model. However, analyst has to make
some decisions when building a use-case model. The
first one is to combined business events into one use-
case. For example, the business events of adding,
deleting, updating customer information, analyst can
combined them in one use-case, that is, Maintain
Customer Information. Also, analyst makes decisions to
split one business event into multiple use-cases. For
example, the business event customer withdraws his
cash, analyst can split it to two use-cases, that is,
Withdraw Cash and Identify Customer and he can
identify the relationship between them, for example;
Withdraw Cash<<include>>Identify Customer.
 As a result of this splitting, the traditional event
table contains the following core elements (columns):

• Event: An event which causes the system to do

something
• Source: The source of an event (an actor for an EE

and the system for a TIE and CIE)
• Action: The system functionality which we need
• Object: The object affected by this action

 For the purpose of building a complete use-case
model and domain class model, we need to extend the
traditional table and make some modification to contain
other elements, as the following:

• Input message: For external events, the message is

data entering the system and for internal events, the
message is reaching point in time (timer) that
makes the system process

• General source or special source: It is the type of
an event source which is used to define a
generalization/specialization relationship between
sources

• Output message: It is the output which is produced
by the system, if exist

• Includes: Which is used to determine the existence
of includes relationship between actions

• Extends: Which is used to determine the existence
of extends relationship between actions

• Specializes: Which is used to determine the
existence of specializes relationship between
actions

• Destination: It is an actor which receives the result
of an event execution

 Figure 1 illustrates the three types of events along
with examples. However, there are three types of
events, that is:

• External Events (EE): An event that occurs outside

of the system, usually initiated by external actor or
user

• Temporal Internal Events (TIE): An event that
happens when the system reaches a specific point
in time

• Conditional Internal Events (CIE): An event occurs
when something happens inside the system and the
system must initiate some process to response for
this event

Use-case diagram: The system or subsystem behaviors
can be captured by the use-case diagram. However, the
use-case diagram represents the interaction between the
actors and some functionality (called use-cases). An
actor may be an external person, another software
system, a hardware device, or process interacting with
the system, subsystem or class to achieve a useful goal
(Boggs and Boggs, 2002; Rumbaugh et al., 2004).
Actors can participate with one or more use-cases via
exchanging messages.
 An abstract actor description is shared and
augmented by one or more specific actor descriptions,
that is, an actor can be defined in generalization hierarchy.

Fig. 1: Types of events with examples

J. Computer Sci., 6 (3): 253-260, 2010

255

An actor is denoted as a small stick person with the
name below it. An use-case is a consistent unit of
externally visible functionality provided by a classifier
(called the subject) and expressed by sequences of
messages exchanged by the subject and one or more
actors of the system unit (Boggs and Boggs, 2002;
Rumbaugh et al., 2004). In addition to association with
actors, a use-case can participate in several
relationships; Table 1 for the details of these
relationships.

Class diagram: A class can be used to represent a
discrete concept within the application being modeled
in order demonstrate things of a particular kind
(Rumbaugh et al., 2004). Also, a class shows a set of
objects with similar structure, behavior and
relationships. Every class contains a set of attributes
along with the related operations. In addition, a class
defines a set of objects that have states and behaviors.
The State is described by attributes and associations.

Table 1: Use-case relationships
Relationship Function Notation
Association To indicate the communication

 between actors and use-cases.
Extend To indicate the insertion of additional << extends>>
 behavior into a base use-case.
Include To describe a behavior that is inserted <<includes>>
 explicitly into a base use-case.
Use-case To indicate the communication between a
generalization features to it. General use-case with more
 specific use-case that inherits and adds

Table 2: Class relationships
Relationship Function Notation
Association A connection between objects or classes
Dependency A relationship between two model
 elements (class, package)
Generalization A relationship between more specific
 and more general classes
Realization Relationship between a specification
 and its implementation (interface, class)
Usage Represents that one element requires <<kind>>
 another element for its functioning

Fig. 2: Example of class notation

Attributes are generally used for pure data values
without identity, such as numbers and strings and
associations are used for connections among objects
with identity. Whereas, the behaviors are described by a
set of operations; a method (or function in C++) is the
implementation of an operation. The notation for a class
is a rectangle with sections for the name of the class,
attributes and operations, as shown in Fig. 2.
 Relationships among class diagram are association,
generalization and various kinds of dependency,
including realization and usage, as shown in Table 2.

RESULTS

Deriving the use-case diagram: This process consists
of five steps a use-case diagram, that is:

• Identify the actors for each event or action from the

sources and destinations
• Identify the relationships between actors, if exists.

There is only one type of relationship between
actors, that is, a generalization/specialization
relationship

• Identify the use-cases. The analyst can derive the
use-case from the action which proceeded by an
actor

• Identify the relationships between use-cases, if
exists. As we mentioned above, there is three type
of relationships between use-cases (includes,
extends and use-case generalization)

• Integrate all use-cases and actors with all
relationships types in one use-case diagram

 From a given event table we can map the use-cases
and the actors, as in Fig. 3.
 However, this mapping could be implemented
using the two types of events, that is, External Event
(EE) and Internal Event (TIE, CIE). Figure 4 and 5
illustrate examples of both types, respectively.

Fig. 3: Mapping the use-cases and actors from an event
table

J. Computer Sci., 6 (3): 253-260, 2010

256

Fig. 4: Example of mapping a use-case and actor from

an EE

Fig. 5: Example of mapping a use-case and actor from

a TIE and CIE

Deriving the class diagram: This process consists of
the following five steps to build a class diagram:

• Identify the classes for each event or action from

the sources and objects
• Identify the relationships between sources and

objects, if exists. There are many types of
relationships between classes as mentioned above
in Table 2. Our application, by default, will
generate association relationship with 1…n
multiplicity and the analyst will change it manually
by necessity

• Identify the attributes. The analyst can derive the
attributes from t he input and output messages
Also, the input messages can be used to define a
method parameters list and the output messages
can be used to define a method return values

• Identify operations which can be directly derived
from an action. Also, in event table, we will write
all actions in an uncomplicated way. For example,
(create, search, cancel) not (maintain) which
consist of (create, update and delete)

• Integrate all classes with all relationships types in
one class diagram

 From a given event table we can map the classes,
attributes, operations with their parameter list and
return values, as in Fig. 6.

Fig. 6: Mapping a class diagram from an event table

Fig. 7: Example of mapping a class diagram from an

EE

Fig. 8: Example of mapping a class diagram from a

TIE and CIE

 However, this mapping could be implemented
using the two types of events, that is, External Event
(EE) and Internal Event (TIE, CIE). Figure 7 and 8
illustrate examples of both types, respectively.

The UMLdg CASE tool description: Figure 9 shows
the inputs and the outputs of the UML diagrams
generator (UMLdg) CASE tool. However, we can note
that the outputs are divided into two distinct types, that
is, the event-based use-case and event-based class
diagrams which are to be constructed based on an
individual event and the integrated use-case and
integrated class diagrams which to be constructed based
on the whole events.

J. Computer Sci., 6 (3): 253-260, 2010

257

Fig. 9: The UMLdg inputs and outputs

Fig. 10: Snapshot of the UMLdg main screen

 The UMLdg CASE tool has been built to generate
the use-case and class diagrams using the entered event
table. However, this new CASE tool contains the
following features (functionalities), Fig. 10:

• Build events table
• Build event based use-case diagram
• Generate use-case diagram
• Build event based class diagram
• Generate class diagram

Fig. 11: Snapshot of the ‘build event table’ screen

 To build an event table, we need to enter all the
elements of each event as the following: event, input
message, general source, special source, action, object,
output message, includes action, extends action,
specialization action and destination; Fig. 11. For the
details of these elements refer to materials and methods
section above.
 After the event table has been completely entered,
the other features can be used. However, the ‘build
event based use-case diagram’ button will produce the
related use-case(s), actor(s) and relationship(s) for each
event and the ‘build event based class diagram’ button
will produce the related class(s) for each event.
Furthermore, the ‘generate use-case diagram’ and
‘generate class diagram’ will produce the integrated
use-case diagram and class diagram for the whole event
table, respectively.

DISCUSSION

 As an example, suppose we have an event table
which has been entered to the new UML diagrams
generator (UMLdg) CASE tool, Table 3 contains the
list of events that are related to the library system.
 After the event table has been completely entered
to the UMLdg tool, we can select the first features, that
is, ‘build event based use case diagram’ to build the
use-case diagram which is related to the ‘patron wants
to search for a book title’ event (the first event in
Table 3). Figure 12 shows the resulted event based use-
case diagram.
 In addition, selecting the ‘build event based class
diagram’ for the same event (the ‘patron wants to
search for a book title’ event), will produce the
corresponding class diagram for that event.

J. Computer Sci., 6 (3): 253-260, 2010

258

Table 3: The event table of the library system
 Input General Special Output Includes Extends Specializes Destination
Event message source source Action Object message “Action” “Action” “Action”
Patron want to btitle Patron Member Search book Book bTitle View ---------- Look for ----------
search for a Non-member title bAuthor results a book
book title bPublisher
 bEdition
Patron browse a bISBN Patron Member Browse a Book bISBN View ---------- Look for a ----------
book by ISBN Non-member book bTitle results book
Patron logon pName Patron Member Logon Patron ---------- ---------- ---------- ---------- ----------
 pPassword
Patron logoff pName Patron Member Logoff Patron ---------- ---------- Logon ---------- ----------
 pPassword
Patron make a bTitle Patron Member New Reservation ---------- ---------- Logon ---------- ----------
book reservation bEdition reservation
 rId
 rDate
Clerk check out bTitle Clerk ---------- Check out Loan lId ---------- ---------- ---------- ----------
books bEdition books lDate
 bCopyNo bEdition
 bId bCopyNo
 pId
Clerk check pNo Clerk ---------- Check in Loan lId ---------- ---------- ---------- ----------
in books books lDate
 bTitle
Stocking clerk bTitle Stocking ---------- Add new Book ---------- ---------- ---------- ---------- ----------
enter new book bISBN clerk book
information bEdition
 bAuthor
 bPublisher
 bPubYear
 bCopyNo
 bCategory
Time to print ---------- ---------- ---------- Print Loan ---------- ---------- ---------- ---------- Manager
overdue books overdue
 books
Print book bTitle Manager ---------- Print book --------- ---------- ---------- ---------- ---------- ----------
title report title report
Delete book bTitle Manager ---------- Delete Book --------- ---------- ---------- ---------- ----------
information bEdition book
 bCopyNo
Time to produce ---------- ---------- --------- Print book Reservation --------- --------- --------- --------- Manager
all books reservation
reservation report

Fig. 12: Snapshot of the resulting event-based use-case

diagram for the patron wants to search for a
book title’ event

Figure 13 shows the resulted event-based class diagram.
Furthermore, selecting the ‘build use-case diagram’ and
‘build class diagram’ features of the UMLdg will give

Fig. 13: Snapshot of the resulting event-based class

diagram for the ‘patron wants to search for a
book title’ event

us the integrated use-case and class diagrams for all
events (12 events) in Table 3. Figure 14 and 15 show
the resulted use-case and class diagrams, respectively,
for the whole system (all events).

J. Computer Sci., 6 (3): 253-260, 2010

259

Fig. 14: Snapshot of the integrated use-case diagram

for the library system

Fig. 15: Snapshot of the integrated class diagram for the

library system

CONCLUSION

 Constructing the use-case and class diagrams is a
very important and essential task to go ahead to the
design process. However, the use-case and class
diagrams represent a transition stage between the
requirements and design phases. Furthermore, building
such diagrams is a time consuming task and needs a
complete understanding of the user requirements. In
this paper, we have introduced an approach to derive
the use-case and class diagrams from an event table.
This new approach will facilitate and speed up the
generation process of the use-case and class diagrams.
However, this approach is completely depending on the
availability of a comprehensive event table which
should be built from the available user requirements
during very early tasks. In addition, a new CASE tool to
implement this approach is introduced, that is, the UML
diagrams generator (UMLdg) CASE tool.

 It can be clearly noted from the above sections that
this approach gives an ideal and reasonable
methodology to construct the intended use-case and
class diagrams from any comprehensive event table.
Furthermore, the UMLdg CASE tool will save the time
for the building process of the use-case diagram.
 As a future research, this approach could be
extended in order to generate other UML diagrams such
as activity diagram and sequence diagram. Moreover,
the CASE tool could be extended to include these
diagrams.

REFERENCES

Bennett, S., S. Mcrobb and R. Farmer, 2005. Object-

Oriented Systems Analysis and Design Using
UML. 3rd Edn., McGraw Hill Education, USA.,
ISBN: 978-0077110000, pp: 624.

Boggs, W. and M. Boggs, 2002. Mastering UML with
Rational Rose. 1st Edn., SYBEX Inc., USA.,
ISBN: 978-0782140170, pp: 828.

Chung, L. and S. Supakkul, 2004. Representing NFRs
and FRs: A goal-oriented and use case-driven
approach. Proceedings of the 2nd International
Conference on Software Engineering Research,
Management and Applications, May 4-5, Los
Angeles, CA., USA., pp: 29-41.

Cockburn, A., 2000. Writing Effective Use Cases. 1st
Edn., Addison-Wesley, Boston, MA., USA., ISBN:
978-0201702255, pp: 304.

Gargantini, A. and C. Heitmeyer, 1999. Using model
checking to generate tests from requirements
specifications. ACM SIGSOFT Software Eng.
Notes, 24: 146-162. DOI: 10.1145/318774.318939

Larman, C., 2004. Applying UML and patterns: An
Introduction to Object Oriented Analysis and
Design and Iterative Development. 3rd Edn.,
Prentice Hall, USA., ISBN: 978-0131489066,
pp: 736.

Lee, J. and N. Xue, 1999. Analyzing user requirements
by use cases: A goal-driven approach. IEEE,
Software, 16: 92-101. DOI: 10.1109/52.776956

Liang, Y., 2003. From use cases to classes: A way of
building object model with UML. J. Inform.
Software Technol., 45: 83-93. DOI:
10.1016/S0950-5849(02)00164-7

McMenamin, S.M. and J.F. Palmer, 1984. Essential
Systems Analysis. 1st Edn., Yourdon Press, New
York, USA., ISBN: 978-0917072307 pp: 408.

Page-Jones, M., 1999. Fundamentals of Object-
Oriented Design in UML. 2nd Edn., Addison-
Wesley, Boston, MA., USA., ISBN: 978-
0201699463, pp: 480.

J. Computer Sci., 6 (3): 253-260, 2010

260

Purhonen, A., 2002. Quality Driven Multimode DSP
Software Architecture Development. 1st Edn.,
Julkaisija-Utgivare Publisher, Oulu, Finland,
ISBN: 951-38-6005-1, pp: 154.

Reed, P.R., 2001. Developing Applications with Java
and UML. 1st Edn., Addison Wesley, Boston,
MA., USA., ISBN: 978-0201702521, pp: 504.

Rumbaugh, J., I. Jacobson and G. Booch, 2004. The
Unified Modeling Language Reference Manual.
2nd Edn., Wesley, Boston, MA., USA., ISBN: 978-
0321245625, pp: 752.

Satzinger, J.W., R.B. Jackson and S.D. Burd, 2004.
Object-Oriented Analysis and Design with the
Unified Process. 1st Edn., Thomson Course
Technology, Cengage Learning, Florence, KY.,
USA., ISBN: 978-0619216436, pp: 608.

Schach, S.R., 2003. An Introduction to Object-Oriented
System Analysis and Design with UML and
Unified Process. 1st Edn., McGraw-Hill, USA.,
ISBN: 978-0071215107, pp: 395.

Snoeck, M. and G. Dedene, 2001. Core modelling
concepts in object-oriented conceptual modeling.
Proceeding of the 38th Technology of Object-
Oriented Languages and Systems Conference, Mar.
12-14, Zurich, Switzerland, pp: 170-179. DOI:
10.1109/TOOLS.2001.911769

Stumpf, R. and L. Teague, 2005. Teachings object-
oriented system analysis and design with UML.
Proceedings of the Information Systems Education
Conference (ISECON’05), October 6-9, Columbus,
OH, USA., pp: 1-14.
http://www.csupomona.edu/~rvstumpf/isecon/teac
hing_OO.ppt

Yourdon, E., 1988. Modern Structured Analysis. 1st
Edn., Yourdon Press, Englewood Hills, NJ., USA.,
ISBN: 978-0135986240, pp: 688.

