
Journal of Computer Science 6 (12): 1535-1540, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Meghdad Mirabi, Department of Computer Science, Faculty of Computer Science and Information Technology,
 University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

1535

Controlling Label Size Increment of Efficient XML Encoding and

Labeling Scheme in Dynamic XML Update

Meghdad Mirabi, Hamidah Ibrahim, Ali Mamat, Nur Izura Udzir and Leila Fathi

Department of Computer Science,
Faculty of Computer Science and Information Technology,

University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Abstract: Problem statement: In order to facilitate XML query processing, labeling schemes are used
to determine the structural relationships between XML nodes. However, labeling schemes have to
reliable the existing nodes or recalculate the label values when a new node is inserted into the XML
document during XML update process. EXEL as a labeling scheme is able to remove relabeling for
existing nodes during XML update process. Also, it is able to compute the structural relationship
between nodes effectively. However, for the case of skewed insertions where nodes are always inserted
at a fixed place, the label size of EXEL scheme increases very fast. Approach: This study discussed
how to control the increment of label size for the EXEL scheme. In addition, EXEL does not consider
the process of deleting labels. We also study how to reuse the deleted labels for future label insertions.
Results: We proposed an algorithm which is able to control the label size increment. Conclusion: It
required less storage size to store the inserted binary bit string and thus can improve query
performance.

Key words: Bit string, reuse of deleted label, skewed insertion, XML relabeling

INTRODUCTION

 XML (Bray et al., 2006) has been proposed as a de
facto standard to represent and exchange the data on the
Internet. Generally, XML documents can be
represented as an XML tree or XML graph. Elements in
XML document can be labeled based on the structure of
XML document to facilitate XML query processing. In
order to improve the XML query processing time, the
structural relationships between XML nodes must be
determined. In other words, XML query processing
requires the information of the structural relationships
among XML nodes. The basic structural relationships
are Parent-Child (P-C) and Ancestor-Descendant (A-D)
and the core operation of XML query processing is to
find all occurrences of structural relationships in an
XML document. However, labeling schemes have to re-
label the existing nodes or recalculate the label values
when a new node is inserted into the XML document in
dynamic XML update process. Recently, more
researches are focused on how to update the labels
when nodes are inserted into the XML tree (Min et al.,
2007; 2009; Wu et al., 2004; Amagasa et al., 2003;
O’Neil et al., 2004; Li and Ling, 2005; Li et al., 2006a;
2006b; 2008; Li and Moon, 2001; Yun and Chung,

2008; Ko and Lee, 2006; 2010). However, how to
process the deleted labels is a new challenge in
dynamic XML update (Li et al., 2006b; 2008; Yun and
Chung, 2008; Ko and Lee, 2006; 2010).
 In dynamic XML updating process, one of the
important issues is the label update cost in inserting and
deleting a node into or from the XML tree. Thus, the
maintenance of the XML document order is very
important when update is performed. Several researches
have been suggested to solve the problem of relabeling
the existing nodes in dynamic update process of XML
(Min et al., 2007; 2009; Wu et al., 2004; Amagasa et al.,
2003; O’Neil et al., 2004; Li and Ling, 2005; Li et al.,
2006a; 2008; 2006b; Li and Moon, 2001; Yun and
Chung, 2008; Ko and Lee, 2006; 2010).
 Efficient XML Encoding and Labeling (EXEL)
(Min et al., 2007; 2009) as an insert-friendly order-
based bit string labeling scheme is able to remove
relabeling for existing nodes during XML update
process. Also, it is able to compute the structural
relationship between nodes effectively. Thus, we can
use EXEL to make a label for a new inserted node in
XML tree without violating the ordering of the indexed
and encoded nodes of XML tree. However, for the case
of skewed insertion where nodes are always inserted at

J. Computer Sci., 6 (12): 1535-1540, 2010

1536

a fixed place, the label size of EXEL scheme increases
very fast. This study discusses how to control the
increment of label size for the EXEL scheme. In
addition, EXEL does not consider the process of
deleting labels. We also study how to reuse the deleted
labels for future label insertions to control the label size
increment and improve the query performance.

Related works: Wu et al. (2004) have proposed a
scalable prime based labeling scheme which uses the
property of prime number to label the XML nodes.
Each node is labeled by an integer which can only be
divided exactly by its own ancestor label in XML tree.
The structural relationship between nodes in this
scheme depends on whether the label of a descendant
node is divisible by the label of an ancestor or not.
Prime number labeling scheme uses the Simultaneous
Congruence (SC) values in Chinese reminder theorem
to decide the document order. However, prime needs to
recalculate the SC values based on the new ordering of
the nodes.
 To solve the relabeling problem of region number
labeling scheme, Amagasa et al. (2003) have extended
a region by using float-point values for the start value
and end value of intervals. However, this solution is
unable to remove the relabeling in the case of frequent
insertions.
 ORDPATH as a prefix insert-friendly XML node
label scheme (O’Neil et al., 2004) is able to insert
nodes at any position of XML documents. ORDPATH
is similar to the Dewey labeling scheme. It only uses
odd numbers during initialization of labels. Even and
negative numbers are reserved for later insertion into
XML tree. Also, due to compressed binary
representation of node labels in ORDPATH, the
structural relationship between two nodes is determined
by the substring comparison. It does not almost need to
re-label existing nodes during node insertion process
but binary representation length of labels is large and
becomes longer by data insertion frequently. In
addition, ORDPATH has the problem of skewed
insertion.
 QED (Li and Ling, 2005; Li et al., 2008) and
CDBS (Li et al., 2006a) remove the need of relabeling
the nodes when the XML document is updated. In
addition, they can be applied to different labeling
schemes which need to maintain the order. Most
important feature of QED and CDBS is that the labels
are compared based on lexicographical order rather
than numerical order. The main problem of CDBS is
overflow. If the numbers of inserted nodes are large, the
length field size is not enough for new label. However,
relabeling all of existing nodes is required. Even by

increasing the size of length field, it still cannot able to
remove relabeling completely and it will waste storage
space. This problem is called overflow problem. In
addition, in contrast with QED which the last 2 bits of
the neighbor label must be modified, only the last 1 bit
needs to be modified in CDBS. Thus, update cost of
CDBS is smaller than update cost of QED.
 In addition, deleted labels can be reused during
insertion operation of nodes to decrease the storage size
cost and improve XML query processing performance.
Li et al. (2006b) have proposed an algorithm to reuse
deleted labels and control the increment of storage size
when nodes are inserted into and deleted from XML
document frequently. Relabeling the existing nodes is
not required in the proposed algorithm. The QED (Li
and Ling, 2005; Li et al., 2008) labeling approach is
unable to guarantee inserting the labels with smallest
size when some labels are deleted. Li et al. (2006b)
have suggested a reuse algorithm to modify QED
labeling approach to find the smallest label
lexicographically between two labels.
 In order to overcome the overflow problem of
CDBS, Compact Dynamic Quaternary String (CDQS)
(Li et al., 2008) encoding approach is devised which is
able to remove relabeling in updating the leaf node
completely. CDQS also can be applied into different
labeling schemes like CDBS and QED. In addition,
Li et al. (2008) have proposed some techniques to
update interval nodes efficiently but it is not able to
completely remove the relabeling in interval node
updates. In addition, to reuse all CDQS deleted labels, a
new algorithm is devised. One solution to label the
XML document which can remove relabeling in
updating process is to leave some unused values for
future insertion (O’Neil et al., 2004; Li and Moon,
2001). However, when the unused values are used up
later, they have to re-label the existing nodes, the
proposed algorithms (Li and Ling, 2005; Li et al.,
2006a; 2006b; 2008) do not need to leave some unused
values for future insertion.
 The interval property of node labels in region
number labeling scheme causes relabeling the existing
nodes in XML update. Although reserving space for
future node insertion is as a solution to avoid relabeling
in existing nodes, when a large number of data is
inserted relabeling is required (O’Neil et al., 2004; Li
and Moon, 2001). If we can process a large XML
insertion with a small space, we are able to solve the
problem of relabeling in existing node of XML tree.
Yun and Chung (2008) have devised the Nested Tree
Structure according to this motivation to avoid
relabeling for interval based number labeling schemes
in updating process. In this approach, each XML

J. Computer Sci., 6 (12): 1535-1540, 2010

1537

element is considered as an XML data update unit and
is expressed by a sub-tree. In order to label the sub-tree,
each node in the sub-tree is labeled by new number and
then the sub-tree is labeled as a leaf node of the XML
tree. Thus, the structural relationship between a node in
the inserted sub-tree and other nodes which are not in
the inserted sub-tree is determined by comparing the
label of sub-tree and the label of other nodes. In order
to obtain the structural relationship between nodes in
the inserted sub-tree, the new labels which are marked
in the sub-tree are used. This approach is called Nested
Tree Structure because if the data insertion occurs in
the previous inserted sub-tree, a new sub-tree is formed
in the inserted sub-tree. As the data insertions like this
occur continually, the structure of the whole of tree is
nested by sub-trees. In addition, Yun and Chung (2008)
have proposed an algorithm to release nested trees in
the process of sub-tree deletion as much as possible.
 IBSL as a binary string based prefix scheme (Ko
and Lee, 2006; 2010) is able to remove relabeling and
recalculation in XML updating process. Also, in order
to handle reusability of the deleted labels, Ko and Lee
(2010) have proposed an algorithm to decrease the cost
of storage size when the large number of labels are
inserted and deleted without worrying about
degradation of query performance. An algorithm for
inserting a sibling as well as sub-tree into XML tree
without the need to relabeling the nodes are proposed in
(Ko and Lee, 2006; 2010) but the proposed algorithm
does not support inserting a node as a parent into XML
tree like (Min et al., 2007; 2009; Li and Ling, 2005;
Li et al., 2006a; 2006b; 2008).
 EXEL (Min et al., 2007; 2009) removes relabeling
the nodes for updating. EXEL is able to insert a sibling
or a parent as well as a child into the XML tree without
the need to relabeling the nodes. EXEL can save time in
update operations because of complete avoidance of
relabeling the XML tree. However, the problem of
EXEL is the increment of label size when node
insertions and deletions are performed frequently.

MATERIALS AND METHODS

 Here we present the EXEL scheme and show how
update to the XML can be done without relabeling the
existing nodes and then our proposed algorithm is
presented to control the label size increment of the
EXEL scheme for the case of skewed insertions and
process of reusability of the deleted labels.

EXEL labeling and encoding scheme: According to
(Min et al., 2007; 2009), EXEL as an insert friendly bit
string order based labeling scheme is able to remove

relabeling for existing nodes during XML update
process. Also, it is able to compute the structural
relationship between nodes effectively. Thus, we use
EXEL to make a label for a new inserted node in XML
data without any violating on the ordering of the
existing nodes of XML data. EXEL uses bit string to
encode the XML data. This bit string is ordinal as well
as insert friendly. The definition of lexicographical
order (<) of bit string is defined as follows:
 Lexicographical Order (<):

• 0 is smaller than 1 (0<1) lexicographically
• Bit string a is equal to bit string b

lexicographically, if a and b are the same (a = b)
• For bit strings α1, α2, b1 and b2, α1b1<α2b2, iff

(α1<α2) or (α1 = α2 and b1< b2) or (α1 = α2 and b1 is
null (empty string)), where length (α1) = length (α2)

 According to the above definition, for each bit
string s which ends with ‘0’, the largest bit string
among bit strings which are smaller than s
lexicographically is the s’s longest prefix p (i.e., s =
p0). However, we cannot generate any bit string which
is greater than the prefix p and smaller than s. For
example, there is not any bit string which can be
inserted between ‘1110’ and its longest prefix bit string
‘111’. Thus, if the last bits of any two consecutive bit
strings are ‘1’, we can insert a new one between the bit
strings without any changes on them.
 The key idea to remove relabeling during updating
process of a node in the XML tree is property 1.

Property 1: For two bit strings a1 and b1, if a1<b1
lexicographically, then a < b lexicographically.
 The algorithm of generating the bit string for nodes
is shown in Fig. 1 which is the enhanced binary
encoding algorithm in (Min et al., 2007; 2009). This
algorithm obeys the property 1.
 In order to encode N ordinal values, the bit string
generation algorithm needs N

2[(log) 1]+ bits for each bit

string. Thus, the total size for encoding N value is N
N
2[(log) 1]+ for example, in order to encode 18 values,

the size of the longest bit string is 6 and the total size is
6×18 = 108. Table 1 shows the enhanced bit string
encoding of 18 numbers based on bit string generation
algorithm.

Fig. 1: Algorithm of bit string generation

J. Computer Sci., 6 (12): 1535-1540, 2010

1538

Fig. 2: MakeNewBitString algorithm

Fig. 3: Insertion of a new node between two existing

nodes

Table 1: Enhanced binary encoding scheme in EXEL for 18 numbers
Decimal number Bit string
1 000001
2 000011
3 000101
4 000111
5 001001
6 001011
7 001101
8 001111
9 010001
10 010011
11 010101
12 010111
13 011001
14 011011
15 011101
16 011111
17 100001
18 100011

 EXEL uses MakeNewBitString algorithm which is
shown in Fig. 2 to make a new bit string between two
preexisting bit strings.

Example 1: As shown in Fig. 3, assume that we use
MakeNewBitString algorithm to make a binary bit string
between two existing nodes with binary bit strings
“001001” and “001011”, the inserted binary string is
“0010101”. We cannot find any other binary bit strings
which are ended with “1”, are between “001001”
and “001011” lexicographically with the small size.

Fig. 4: ModifiedMakeNewBitString algorithm

If we want to generate a binary bit string between
“001001” and “0010101”, the binary bit string
generated by the algorithm is “00101001”. Also, the
binary bit string between “0010101” and “001011”
generated by the algorithm is “00101011”.
 According to the example 1, it is observed that for
each binary bit string insertion, the size of bit string
increases 1 bit. In other words, the label size increases
linearly (O(N)) using MakeNewBitString algorithm.

The proposed algorithm: The MakeNewBitString
algorithm generates a new binary bit string by
increasing 1 bit in the label size. In order to control the
label size increment, we modify the MakeNewBitString
algorithm. The proposed algorithm which is shown in
Fig. 4 is a modified version of the MakeNewBitString
algorithm.

Example 2: Assume that we want to insert a new node
between two nodes which are labeled with “001001”
and “001011” as shown in Fig. 5. If we use the
proposed algorithm to generate a binary bit string
between “001001” and “001011”, the inserted binary
bit string is “0010101” similar to the previous
algorithm. We cannot find any other binary bit strings
which are ended with “1” and are between “001001”
and “ 001011” lexicographically with the small size.
However, if we want to insert a binary bit string
between “001001” and “0010101”, the binary bit string
generated by the proposed algorithm is “0010011”. The
result is different with the previous one which is
“00101001”. It saves 1 bit in the label size and can
reduce label size.

J. Computer Sci., 6 (12): 1535-1540, 2010

1539

 Based on Example 2, it is observed that the size of
inserted binary bit string increases 1 bit in worst case
for each binary bit string insertion in the proposed
algorithm. In other words, the label size increases
linearly (O(N)) in worst case while it increases always
linearly (O(N)) in the previous algorithm.
 In addition, the proposed algorithm is able to
control the size of new inserted label in EXEL in the
update environment with both insertions and deletions
frequently. Example 3 shows this fact.

Fig. 5: Insertion of a new node between two existing

nodes

Fig. 6: Deleting and Inserting nodes frequently

Fig. 7: The behavior of skewed insertions

Example 3: Assume that the two binary bit strings
“001001” and “001011” are deleted. Now, we want to
generate two new binary bit strings between “000111”
and “001101” as shown in Fig. 6. If we use the
MakeNewBitString algorithm to generate two new
binary bit strings, the new binary bit strings will be
“0011001” and “00110011” while the two new binary
bit strings generated by the proposed algorithm will be
“001001” and “001011”. Thus, the proposed algorithm
is able to reuse deleted nodes for future binary bit string
insertion as well as control the label size.
 Another problem of the MakeNewBitString
algorithm is its behavior in skewed insertions. In
skewed insertions, nodes are always inserted at a fixed
place. Thus, the label size increases 1 bit for each
insertion using the MakeNewBitString algorithm. We
can control label size increment using the proposed
algorithm. Example 4 presents the behavior of the
proposed algorithm in the skewed insertions.

Example 4: Assume that we want to insert three binary
bit strings between “110101” and “110111” as shown in
Fig. 7. If we use the MakeNewBitString algorithm to
generate new binary bit strings, “1101101”,
“11011001” and ”110110001” are the three new binary
bit strings while if we use the proposed algorithm to
generate new bit strings, “1101101”, “1101011” and
“11010101” are the binary bit strings.
 Based on example 4, it is observed that label size
increment in the proposed algorithm for skewed
insertions is equal or less than the inserted label size in
the MakeNewBitString algorithm.

RESULTS AND DISCUSSION

 The comparison of the proposed algorithm with the
MakeNewBitString algorithm in terms of label size
increment is shown in Table 2.
 Based on Table 2, it is observed that the size of the
inserted binary bit string increases 1 bit in worst case
for each binary bit string insertion in the proposed
algorithm. In other words, the label size increases
linearly (O(N)) in worst case while it increases always
linearly (O(N)) in the previous algorithm.

Table 2: The comparison of the proposed algorithm with the

MakeNewBitString algorithm
 The proposed algorithm MakeNewBitString algorithm
 ----------------------------- ----------------------------------
 Worst case Best case Worst case and Best case
a O(N) O(1) O(N)
b O(N) O(1) O(N)
c O(N) O(1) O(N)
a: Insertion of new node between two existing nodes; b: Deletion and insertion
of nodes frequently; c: The behavior of skewed insertions

J. Computer Sci., 6 (12): 1535-1540, 2010

1540

CONCLUSION

 This study modifies the MakeNewBitString
algorithm of EXEL encoding and labeling scheme in
order to control the label size increment of inserted
nodes in XML update for skewed insertions. In
addition, the MakeNewBitString algorithm is unable to
reuse the deleted labels for future insertion while the
proposed algorithm can reuse the deleted labels.
However, for each label insertion, the size of new
binary bit string is increased by 1 bit in the
MakeNewBitString algorithm while in the proposed
algorithm the size of inserted label is increased by 1 bit
in the worst case. As a result, the proposed algorithm
requires less storage size than the MakeNewBitString
algorithm to store the inserted binary bit string and thus
can improve query performance.
 As a future study, we intend to evaluate the
behavior of the proposed algorithm and compare it with
the MakeNewBitString algorithm using different XML
dataset for dynamic XML updating process.

REFERENCES

Amagasa, T., M. Yoshikawa and S. Uemura, 2003.

QRS: A robust numbering scheme for XML
documents. Proceeding of the 19th International
Conference on Data Engineering, March 5-8, IEEE
Computer Society, Bangalore, India, pp: 705-707.
DOI: 10.1109/ICDE.2003.1260842

Bray, T., J. Paoli, C.M. Sperberg-McQueen, E. Maler
and F. Yergeau et al., 2006. Extensible markup
language (XML) 1.1. W3C.

http://www.w3.org/TR/xml11/
Ko, H.K. and S.K. Lee, 2006. An efficient scheme to

completely avoid re-labeling in XML updates.
Lecture Notes Comput. Sci., 4255: 259-264. DOI:
10.1007/11912873_27

Ko, H.K. and S.K. Lee, 2010. A binary string approach
for updates in dynamic ordered XML data. IEEE
Trans. Knowl. Data Eng., 22: 602-607. DOI:
10.1109/TKDE.2009.87

Li, C. and T.W. Ling, 2005. QED: A novel quaternary
encoding to completely avoid Re-labeling in XML
updates. Proceeding of the 14th ACM International
Conference on Information and Knowledge
Management, Oct. 31-Nov. 5, ACM Press,
Bremen, Germany, pp: 501-508.
http://portal.acm.org/citation.cfm?id=1099554.1099692

Li, C., T.W. Ling and M. Hu, 2006a. Reuse or never
reuse the deleted labels in XML query processing
based on labeling schemes. Lecture Notes Comput.
Sci., 3882: 659-673. DOI: 10.1007/11733836_46

Li, C., T.W. Ling and M. Hu, 2006b. Efficient
processing of updates in dynamic XML data.
Proceeding of the 22nd International Conference
on Data Engineering. Apr. 3-7, IEEE Computer
Society, Atlanta, Georgia, USA., pp: 13-13. DOI:
10.1109/ICDE.2006.58

Li, C., T.W. Ling and M. Hu, 2008. Efficient updates in
dynamic XML data: From binary string to
quaternary string. VLDB J., 17: 573-601. DOI:
10.1007/s00778-006-0021-2

Li, Q. and B. Moon, 2001. Indexing and querying XML
data for regular path expressions. Proceeding of the
27th International Conference on Very Large Data
Bases, Sept. 11-14, IEEE Press, Roma, Italy,
pp: 361-370.

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.22.862&rep=rep1&type=pdf

Min, J.K., J. Lee and C.W. Chung, 2007. An efficient
encoding and labeling for dynamic XML data.
Lecture Notes Comput. Sci., 4443: 715-726. DOI:
10.1007/978-3-540-71703-4_60

Min, J.K., J. Lee and C.W. Chung, 2009. An efficient
XML encoding and labeling method for query
processing and updating on dynamic XML data. J.
Syst. Software, 82: 503-515. DOI:
10.1016/j.jss.2008.08.014

O’Neil, P., E. O’Neil, S. Pal, I. Cseri, G. Schaller and
N. Westbury, 2004. ORDPATHs: insert-friendly
XML node labels. Proceeding of the 2004 ACM
SIGMOD International Conference on
Management of Data, June 13-18, ACM Press,
Paris, France, pp: 903-908.
http://portal.acm.org/citation.cfm?id=1007568.1007686

Wu, X., M.L. Lee and W. Hsu, 2004. A prime number
labeling scheme for dynamic ordered XML Trees.
Proceeding of the 20th International Conference on
Data Engineering, Mar. 30-Apr. 2, IEEE Computer
Society, Boston, USA., pp: 66-78. DOI:
10.1109/ICDE.2004.1319985

Yun, J.H. and C.W. Chung, 2008. Dynamic interval-
based labeling scheme for efficient XML query and
update processing. J. Syst. Software, 81: 56-70.
DOI: 10.1016/j.jss.2007.05.034

