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Abstract: Problem statement: A lot of data can be obtained by system simulation using transaction 
level models without affecting the performance of the system. Due to huge amount of the raw data, we 
often need to post-process them to extract valuable information. Profiling capabilities of commercial tools 
provide predefined functionalities and don’t allow users to add or modify for their own purpose. 
Approach: This study proposed a general frame study for the automation of post-processing simulation 
results using Boolean representation. The proposed frame study consists of Boolean expresser, 
manipulator and analyzer. Results: The frame study was illustrated with a case study of deadline miss 
detection. Conclusion: The frame study was practical as it provides flexibility, generality and ease of use. 
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INTRODUCTION 
 
 System simulation using Transaction Level Models 
(TLMs) (Ghenassia, 2005) is gaining more popularity 
for analyzing and optimizing a system. A lot of raw 
data can be obtained without affecting the performance 
of the system. However, often we need to post-process 
the raw data to extract valuable information from them 
due to their huge amount. 
 To automate post-processing, we need to represent 
all the system events by a unified form. However, 
characteristics of events are not uniform. For example, 
hardware events like bus transactions can be easily 
represented by Boolean but software behaviors are not. 
They may be converted into linear temporal logic 
(Pnueli, 1977) or computation tree logic (Clarke and 
Emerson, 1981). Such logical representations are good 
for formal verification but impose limitations on 
expressiveness. 
 Therefore, this study proposes a general frame 
study for post-processing that adopts Boolean 
representation. All the system events are represented as 
Boolean along with manipulators, which is the main 
contribution of this study. The Boolean representation 
itself traces only when and whether an event occurs. Its 
semantics is interpreted by manipulators. The Boolean 
representation is simple to use but expressive enough to 
represent the simulation results for analysis purpose. 

 Figure 1 shows the proposed frame study that has 
three components: Boolean expresser, manipulator and 
analyzer. First, the Boolean expresser converts the 
simulation results into the Boolean representation. The 
manipulator interprets the semantic of the Boolean 
representation and manipulates it to provide the 
analyzer with inputs. Finally, the analyzer generates 
analysis results. The Boolean expresser and the 
analyzer can be reused as libraries and the manipulator 
handles the application specific features. 
 Typical situation of using our frame study is as 
follows. Simulation models of hardware and software 
have been built. Simulations are conducted many times 
varying parameters of hardware and software or 
modifying a part of software. To analyze results of each 
run of simulation, our frame study is used. 

 

 
 
Fig. 1: Proposed framework 
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Fig. 2: Motivating example 
 
Motivation and related studies: Figure 2 shows a 
motivating example, a Gannt chart of FuncA, FuncB 
and FuncC. The gray box indicates that the function is 
being executed. FuncA is executed periodically and 
triggers FuncB on a certain condition. FuncC runs right 
after FuncB finishes. Suppose that we are to measure 
the execution time between T1 and T2. T1 is the start 
time of FuncA just before FuncB starts and T2 is the 
end time of FuncC. 
 To automate measuring such a point, a 
specification method is necessary. Conventional 
software profilers provide execution time of each 
function or statement (Stewart and Arora, 2003). Since 
functions and statements have regular structure, they 
don’t need to be specified explicitly. However, in this 
example, we need a specification method because the 
point to be measured is application specific. 
 Instrumentation can be used for measuring 
application specific points. The instrumentation code is 
inserted into the target program to be measured either 
statically at compile-time (Stewart and Arora, 2003) or 
dynamically at run-time (Corliss et al., 2005). 
Measurement can be done by post-processing the raw 
data or by the executable assertion (Pinter and Majzik, 
2005; Drusinsky et al., 2005) implemented in the 
instrumentation code. 
 The drawbacks of the instrumentation are that it 
can be applied only for the software and that it may 
cause distortions because it should be inserted into and 
executed with the target program. Even small overheads 
of the instrumentation code may result in a distortion of 
the operating sequences of the system. More 
instrumentation codes can facilitate debugging and 
optimizing, but they result in additional distortions, 
which inhibit the insertion of as many instrumentation 
codes as required. Thus, there have been studies to 
reduce the overhead of the instrumentation (Metz et al., 
2003). Hardware-assisted measurement does not cause 
distortion, but its precision and scope are limited 
(Stewart and Arora, 2003). 

 Therefore, system simulation using TLMs 
(Ghenassia, 2005) is getting more attention. The use of 
simulation results makes it possible to measure the 
performance of a system non-intrusively without any 
limitations on the precision and scope. We can obtain a 
lot of raw data by the simulation. Because of huge 
amount of simulation results, often we need post-
processing them to extract valuable information. 
 There are commercial simulation tools (SoC 
Designer, http://www.arm.com; Innovator. 
http://www.synopsys.com; System Generator. 
http://www.arm.com; CoMET. 
http://www.vastsystems.com) providing analysis 
capability. They provide predefined individual analysis 
facilities. They don’t provide a way to specify 
application specific measurement. Practitioners often 
use their own scripts for application specific 
measurement. In most cases, they are designed case by 
case. There is no general frame study to our best 
knowledge. 
 

MATERIALS AND METHODS 
 
 This study describes two examples of the Boolean 
representation: function call trace of software and bus 
transactions. The way to convert the call trace and bus 
transactions into the Boolean representation described 
in this section is not the only way. The frame study 
allows for the users to add their own Boolean expresser. 
Hardware traces of registers and signals don’t need to 
be converted as they are already generated in Boolean 
form. However, sometimes we don’t need every trace 
of registers and signals. The example of bus 
transactions is provided as an example of abstracting 
the simulation results. 
 The Boolean expresser converts simulation results 
into Boolean representation. Details of how to convert 
depend on the format of simulation results but the 
principle is same. The Boolean representation contains 
only when and whether events occur. 
 We found the Boolean expression is enough to 
express all the events for analysis purpose. There may 
be a simulation result that is not intuitively converted to 
the Boolean representation. A typical example is 
software trace. It is usually represented as a call trace. 
We often don’t need all the information contained in 
the call trace. For an example of Fig. 2, what we need is 
when and which function is being executed, not which 
function calls which function. For that purpose, we may 
convert the call trace into the Boolean representation by 
representing which function is being executed as a 
signal whose value is true. More precisely, start of 
function is represented as a rising edge and end of 
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function is represented as a falling edge. In the same 
manner, other events can also be converted into the 
Boolean representation. 
 An example of converting the function call trace to 
the Boolean representation is as follows. In order to 
convert the function call trace to a Boolean 
representation, a set of call traces C and a set of 
function names N should be provided from the 
simulation. Three kinds of information are contained in 
the i-th element ci: the name of the function ni, a flag fi 
to indicate whether the function is called or returned 
and a timestamp ti. The name ni should be an element of 
N and the flag fi should be either ‘C’ or ‘R’, where ‘C’ 
and ‘R’ indicate call and return, respectively. Then, the 
procedure for converting the function call trace to a 
Boolean representation is given as follows: 
 
1. For the given set of call traces C = {c0, c1, c2, …, 

cn} and the given set of function names N 
 where ci = (ni, fi, ti), ni ∈ N, fi ∈ {‘C’, ‘R’} 
2. Make a set of signals S  
 For ∀n∈ N, add a signal with name n into S 
3. For ∀ci∈ C 
 If f i is ‘C’ 
 Make a rising edge of the signal s named ni at 

ti where s∈ S  
 If f i is ‘R’ 
 Make a falling edge of the signal s named ni at 

ti where s∈ S 
 
 Figure 3 shows an example of the conversion 
procedure. The software in this example includes 
FuncA, FuncB, FuncC and FuncD. FuncA calls FuncB 
and FuncC consecutively and FuncC calls FuncD. 
Then, the set of function names N would be {‘FuncA’, 
‘FuncB’, ‘FuncC’, ‘FuncD’}. Function call traces from 
the execution of the software are shown on the upper 
right-hand side of Fig. 3. Each line corresponds to ci 
and each column corresponds to ni, fi and ti, 
respectively. For example, the first three rows are 
interpreted as follows: FuncA is called at T1, FuncB is 
called at T2 and then at T3, the function call trace 
returns to FuncA as FuncB is completed. The function 
call trace is represented as Boolean values like the 
waveform shown in Fig. 3. The function call of FuncA 
at T1 is represented as a rising edge of the signal FuncA 
at T1, the function call of FuncB at T2 is a rising edge 
of the signal FuncB at T2 and a return to FuncA from 
FuncB at T3 is represented as a falling edge of the 
signal FuncB at T3. 
 Bus transactions can be converted in a similar way 
for the given set of traces B and the set of transaction 
names N. A transaction means an explicit data 

exchange between a master and a slave (Ghenassia, 
2005). The converted form has a higher abstraction 
level than the TLM in that it does not trace the data 
being exchanged. It is sometimes sufficient to trace the 
kind of transactions that are taking place with 
timestamps. In this case, fi is ‘S’ or ‘E’, where ‘S’ and 
‘E’ indicate the start and end of the transaction, 
respectively. The procedure is defined as follows: 
 
1. For the given set of bus traces B = {b0, b1, b2, …, 

bn} and the given set of transaction names N 
 where bi = (ni, fi, ti), ni ∈ N, fi ∈ {‘S’, ‘E’} 
2. Make a set of signals S  
 For ∀n∈ N, add a signal with name n into S 
3. For ∀bi∈ B 
 If f i is ‘S’ 
 Make a rising edge of the signal s named ni at 

ti where s∈ S  
 If f i is ‘E’ 
 Make a falling edge of the signal s named ni 

at ti where s∈ S 
 
 Figure 4 shows an example of converting bus 
transactions to Boolean values. The bus trace in this 
example abstracts bus activities as three transactions: 
Request, Read and Write. In a Request transaction, the 
master requests bus access to the arbiter, while during 
the Read and Write transactions, the master performs 
data transfers on the bus. An example of bus transaction 
traces is shown in Fig. 4. The bus transactions are 
interpreted and converted in a similar manner as the 
function call trace. The waveform in the lower part of 
Fig. 4 shows the converted values of the bus 
transactions. 
 

 
 
Fig. 3: An example of converting function call trace to 

Boolean values 



J. Computer Sci., 6 (12): 1505-1510, 2010 
 

1508 

 
 
Fig. 4: An example of converting bus transactions to 

Boolean values 
 

 
 

Fig. 5: Assertion checker 
 
 Two examples of the analyzer are described: the 
assertion checker and the utilization monitor. The 
analyzer described in this section can be reused for any 
application. The inputs to the analyzer should be 
provided by the user according to the application. The 
inputs to the analyzer are explained in the subsequent 
section. 
 The assertion checker is designed for detecting 
deadline misses. In this study, measurer and graphical 
displayer are also implemented. The assertion checker 
automatically detects whether a study load meets the 
deadline or not. A study load denotes a tuple of 
hardware and software tasks that have to be executed in 

order for a specific purpose. It should be noted that the 
formal definition of a tuple is a set that can contain an 
element more than once and the elements appear in a 
certain order. If a system comprises multiple study 
loads, every study load needs its own assertion checker 
so that its deadline can be verified. 
 Figure 5 illustrates the operations of an assertion 
checker. The inputs to the assertion checker are the 
signals Study load, Enable and Deadline. The signal 
study load indicates whether the study load to be 
checked is active or not. A rising edge indicates the 
start and a falling edge indicates the end of the study 
load. The signal Enable indicates whether the study 
load occupies all the necessary resources of the system 
or not. When its value is false, the study load is in the 
state of waiting for resources. For example, if a study 
load consisting of software tasks is preempted by an 
Interrupt Service Routine (ISR), the study load cannot 
be performed while the ISR is performed even though it 
is incomplete. This case would be represented as a false 
value of the signal Enable while the signal Study load is 
true. A rising edge of the signal Deadline indicates the 
deadline of the study load. The assertion checker 
determines a deadline miss by comparing a falling edge 
of the signal Study load and a rising edge of the signal 
Deadline. The signal Enable is not used for determining 
a deadline miss, but it is used for calculating the net 
processing time by the measurer described in the next 
paragraph. 
 The measurer calculates the statistics of the 
processing time, net processing time and slack of the 
study load. The processing time is the interval between 
a rising edge and a falling edge of the signal Study load. 
The net processing time is the processing time only 
when the signal Enable is true. Slack is the interval 
between a falling edge of the signal Study load and a 
rising edge of the signal Deadline. If a deadline miss 
occurs, the slack is calculated to be zero in this study. 
 The graphical displayer displays the status of the 
system graphically. A green bar indicates that a study 
load is actually performed, while a blue bar indicates 
that the study load waits for resources. If both the 
signals Study load and Enable are true, a green bar is 
displayed. A blue bar is displayed if the signal Enable is 
false and the signal Study load is true. If the signal 
Study load is false, nothing is displayed. A rising edge 
of the signal Deadline is displayed as a red pulse. 
 The utilization monitor is used for monitoring the 
variation of utilization with time. Generally, it is used 
for monitoring resources such as the CPU or bus. 
Figure 6 illustrates the operations of the utilization 
monitor. 
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Fig. 6: Utilization monitor 
 
 The input to the utilization monitor is the signal 
Utilization. If the signal is true, it indicates that a 
resource is being used. The timeline is split into 
intervals whose duration is Resolution given by the 
user. In each interval, a bar is displayed; its height is the 
percentage of the summation of time when the signal 
Utilization is true within the interval over Resolution. 
 

RESULTS 
 
 The results presents the case study of the deadline 
miss detection with the manipulator being illustrated. 
We consider a system that comprises the ARM926, 
Vectored Interrupt Controller (VIC), Personal 
Computer Memory Card International Association 
(PCMCIA), memory controller, modem and timer. The 
main function of the system is to transfer the data 
received from the modem to a host via PCMCIA. There 
are two study loads in the system. The modem study 
load receives data from the modem and moves it to the 
system memory. Rx interrupt is generated every one 
Millisecond (Ms) from the modem. The ISR 
(DataRxIsr), task Layer1and task Layer2 should be 
executed sequentially and completed before the next Rx 
interrupt is generated. In addition to the modem study 
load, the PCMCIA study load runs concurrently. When 
the host requests data, the Direct Memory Access 
(DMA) controller of the PCMCIA receives data from 
the system memory. 
 Figure 7 shows the manipulator for the modem 
study load. The manipulator can be considered as a 
behavioral hardware model. To provide the 
assertion checker with the input Study load, a sub 
module is designed. The rising edge of Study load 
should be identical to the rising edge of Data RxIsr 
and its falling edge is the falling  edge of Layer2. 

 
 
Fig. 7: Manipulator for the modem workload 
 

 
 
Fig. 8: Screenshot of the graphical displayer 
 
Note that the sub module can be triggered at both rising 
and falling edges at the same time as it is like a 
behavioral model. The input Enable is made by 
logically OR-ing and inverting the ISR signals from the 
function call trace since the modem study load can be 
preempted by ISRs. The interrupt request signal from 
the modem to the VIC is directly used for the input 
Deadline. As for the PCMCIA study load, its assertion 
can be designed in a similar manner. Utilization 
monitors are added for the bus masters: the instruction 
bus of ARM926 (I-bus), the data bus of ARM926 (D-
bus) and the DMA controller of the PCMCIA (DMA). 
If deadline misses are detected, utilization monitors 
may provide helpful information to investigate their 
causes. 
 Using the proposed technique, we could analyze 
simulation results of size 320 MB in a few min. It took 
438 sec to analyze 24001001 cycles with the traces. The 
analysis speed was measured on an Intel 1.7 GHz 
Pentium M processor with 1.5 GB memory and 
Windows XP. Figure 8 shows a screenshot of the 
graphical displayer. 
 The inputs to the assertion checker are provided by 
logical operations of the Boolean representation. In 
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order to implement logical operations, a logic 
simulation engine was implemented using C++ in this 
study. The logical operations should be specified by the 
user using the Application Programming Interfaces 
(APIs) provided by the logic simulation engine in a 
manner similar to System C (Open SystemC Initiative, 
2005). The Boolean expresser, assertion checker and 
utilization monitor were also implemented using the 
APIs and they can be used in a unified environment. 
 It should be noticed again that commercial 
simulation tools (SoC Designer, http://www.arm.com; 
Innovator. http://www.synopsys.com; System 
Generator. http://www.arm.com; CoMET. 
http://www.vastsystems.com.) provide only predefined 
individual analysis facilities. They don’t provide a way 
to specify application specific measurement, which 
should be done manually. To automate the application 
specific measurement, practitioners often use their own 
scripts, but they are designed case by case. There is no 
general frame study to our best knowledge. 
 

DISCUSSION 
 
 In this study, a general frame study for automation 
of post-processing simulation results is proposed. The 
proposed frame study is practical as it provides 
flexibility, generality and ease of use. 
 It is flexible in that it can be easily extended to 
various purposes of analysis. There are commercial 
tools providing some of individual components in this 
frame study. For example, SOC Designer 
(http://www.arm.com) provides a facility to monitor 
bus utilizations. However, it does not provide any 
facility for detecting deadline misses. 
 The proposed frame study can be generally applied 
for any features of any applications. Some practitioners 
are using their own scripts that play like the 
manipulator. In most cases, the scripts are designed 
case by case. 
 The Boolean representation is simple to use but 
expressive enough to represent simulation results since 
complex semantics are handled by the manipulator not 
by the Boolean representation. 
 

CONCLUSION 
 
 This study proposes a general framework of post-
processing analysis on system behavior. By employing 
Boolean representation, the proposed technique can 
achieve flexibility, generality and ease of use, which are 
demonstrated with a case study. 
 
 

REFERENCES 
 
Clarke, E.M. and E.A. Emerson, 1981. Design and 

synthesis of synchronization skeletons using 
branching time temporal logic.  Lecture  Notes 
Comput. Sci., 5000: 196-215. DOI: 10.1007/978-3-
540-69850-0_12 

Corliss, M.L., E.C. Lewis and A. Roth, 2005. Low-
overhead interactive debugging via dynamic 
instrumentation with DISE. Proceeding of the 11th 
International Symposium on High-Performance 
Computer Architecture, Feb. 12-16, IEEE Xplore 
Press, San Francisco, pp: 303-314. DOI: 
10.1109/HPCA.2005.18 

Drusinsky, D., M. Shing and K. Demir, 2005. Test-
time, run-time and simulation-time temporal 
assertions in RSP. Proceeding of the International 
Workshop on Rapid System Prototyping. June 8-10, 
IEEE Xplore Press, Montreal, pp: 105-110. DOI: 
10.1109/RSP.2005.50 

Ghenassia, F., 2005. Transaction-Level Modeling with 
SystemC: TLM Concepts and Applications for 
Embedded Systems. 1st Edn., Springer, USA., 
ISBN: 0387262326, pp: 271 

Metz, E., R. Lencevicius and T.F. Gonzalez, 2003. 
Performance data collection using a hybrid 
approach. ACM SIGSOFT Software Eng. Notes, 
30: 126-135. 

Open SystemC Initiative, 2005. Draft Standard 
SystemC Language reference manual version 2.1. 
Open SystemC Initiative (OSCI). 
http://www.cse.iitd.ernet.in/~panda/SYSTEMC/La
ngDocs/LRM_version2.1.pdf 

Pnueli, A., 1977. The temporal logic of programs. In: 
Proceeding of the IEEE Symposium on the 
Foundations of Computer Science, Oct. 31 -Nov. 2, 
IEEE Xplore Press, Providence, RI., USA., pp: 46-57. 
DOI: 10.1109/SFCS.1977.32 

Pinter, G. and I. Majzik, 2005. Automatic generation of 
executable assertions for runtime checking 
temporal requirements. Proceeding of the 9th 
International Symposium on High-Assurance 
Systems Engineering, Oct. 12-14, IEEE Xplore 
Press, Heidelberg, pp: 111-120. DOI: 
10.1109/HASE.2005.6 

Stewart, D.B. and G. Arora, 2003. A tool for analyzing 
and fine tuning the real-time properties of an 
embedded system.  IEEE  Trans. Software Eng., 
29: 311-326. DOI: 10.1109/TSE.2003.1191796 


