
Journal of Computer Science 6 (12): 1424-1429, 2010
ISSN 1549-3636
© 2010 Science Publications

1424

Achieving Goals through Architectural Design Decisions

Lena Khaled

Department of Software Engineering,
Faculty of Sciences and Information Technology,

Zarqa Private University, Amman, Jordon

Abstract: problem statement: the main problem in building any system is that many decisions appear
through its design. These decisions are affected mainly by the goals that the architect wants to achieve.
These goals shape the architectural design of a system; the architect needs to know the best decisions
to use them through building the design of a system. Approach: Design fragments used to solve the
problem, design decisions controlled by fragments. Fragments themselves need to be controlled to
mange the quality that results from them so quality management activities deal in controlling the
fragments. Results: Using design fragments helped the architect to choose the most important design
decisions to achieve high quality. Conclusion: Goals are affected mainly with quality attributes.
Choosing the right decisions made building the good quality software.

Key words: Quality attributes, architectural design decisions, software architecture, architectural

significant requirement, architectural knowledge

INTRODUCTION

 Architectural design (also called software
architecture) plays a very important role in a software
life cycle. It represents a bridge between requirement
and implementation. By defining the abstraction of the
system, architectural design describes certain properties
of the system while hiding other properties; this
representation provides the guidelines for building the
overall system, permits the designers to satisfy the
requirement of the customer and suggests a plan for the
software construction. We conclude that architectural
design is very important to the life of software for
several reasons. First, it communicates between all
stakeholders which are interested in the development of
software. Second, it highlights the early design
decisions that are found on software engineering work
(Garland, 2000). So Architectural Design Decisions
(ADDs) are the results of a design process during the
initial construction of software (Jansen and Bosch,
2005). This leads to make it the main part that directly
influences the construction of the final architectural
design of the software.
 Every software built upon decisions needs to
measure the specific qualities to achieve a specific goal,
so we need metrics to determine whether the software
has achieved the goal or not.
 This study presents how architectural design
decisions affect on achieving goal that software is built
upon. This is done through defining a design fragment

concept and the role of quality control on these
fragments.

Related works: Many researchers work on
architectural design and its relation with achieving goal.
(Liu and Yu, 2001) work on the early stage of
architectural design. They explored that goal oriented
and scenario based models are combined together
during architectural design. They proposed that
designers should have notations to help visualize the
incremental refinement of an architecture, such notations
are used to represent scenario oriented architecture UCM
which is an abbreviation to Use Case Map.
 Perry and Wolfs (1992) built the foundation for the
software architecture. They first developed a perception
for software architecture and on the basis of this
development they presented a model of software
architecture which consists of three components:
elements, forms and rationale then they discussed these
components on architectural styles.
 Another study is (Bachman et al., 2003), in that
study, the researchers worked on quality requirements
and architectural design decisions. They proposed that
quality attribute models are linked between a
specification of a quality attribute requirement and a
design fragments which is focused on achieving their
requirement. Each quality attribute has a collection of
parameters to determine whether the requirements are
met or not. These parameters can bind values of quality
requirement, through design decisions, here the

J. Computer Sci., 6 (12): 1424-1429, 2010

1425

researchers presented a series of steps that enable
moving from a single quality attribute requirement to
design fragment focused on achieving that requirement.
These steps are demonstrated through an application of
embedded system.
 Ahmad et al. (2009) focused on finding intrusion
characteristic for IDS using decision tree machine
learning of data mining, their conclusion is by
combination of IDS and firewall they can detect
intrusion and prevent it. Ab-Rahman et al. (2009)
solving a problem through using network, failure can
cause a specific problem. To ensure reliability of
network a specific architectural design is built. Khaled
(2010) describes the role of agent through building the
architecture of any design to achieve the high quality.
Omar and Ajitha (2008) made a comparison study
between two approaches to make a right decision at a
specific time.
 This study works on defining design fragments and
its relation to architectural design decisions and how
this fragment has worked to achieve the goal. It shows
also how quality management controls the building of
design fragments.

Goals and qualities: Understanding goals and their
relations to qualities is an important part of building the
architectural design of any system; we cannot easily
build an architectural design for any system or even
specify the architectural design decisions to it without
understanding the concepts of both goals and qualities.
Therefore, quality attributes and goals drive the
architectural design of the system (Bass et al., 2009).
 Achieving high quality attributes through
architectural design needs an early method used to
generate and refine qualities, which is called Quality
Attribute Workshop (QAW). QAW is a method that
connects system stakeholders early in life cycle of the
software to discover the driving quality attributes of the
software and clarify system requirements before the
software architecture has been created (Barbacci et al.,
2002). This gets qualities that are mapped to business
goals scenarios for the qualities which are built by
stakeholders according to the main goals. All these
scenarios specify whether a system satisfies the user’s
requirements or not (Bass et al., 2009; Barbacci et al.,
2002). Quality attributes must be well understood and
expressed early in the development of a system’s life
cycle, so the architect can design an architecture that
will satisfy these qualities.

Quality attributes: In manufacturing, the concept of
the quality is that the developed product should meet its

specification, but the popular vision of the quality is
that it is an intangible attribute. Terms of bad or good
quality represent how people talk about something
vague which they don’t propose to define. Quality
attributes describe the property of the system that refers
to its fitness for use. The term, non-functional
requirement, is a synonym for quality attributes
(Somerville, 2006; Kan, 2002).
 A Quality Attribute Requirement (QAR) is
specified to show the characteristics of the system that
indicate its fitness for use. An Architectural Significant
Requirement (ASR) is any requirement that influence
the choice of architectural decisions; it is sometimes
called the architectural drivers. Most architectural
drivers tend to be quality attribute requirements
(Berenbach et al., 2009).
 The international standard on software product
qualities classifies software quality as six main
attributes: functionality, reliability, usability, efficiency,
maintainability and portability. Despite the fact that
there are many quality attributes, reliability and
maintainability are the main quality criterions and many
of these attributes are created at business levels and are
better viewed as business goals (Gross and Yu, 2001;
Jalote, 2008). Figure 1 illustrates the relation between
goal and quality attributes.

Goals: According to (Liu and Yu, 2001), we can define
a goal as a state of events in the world that users would
like to achieve and it will be either a business goal or a
system goal.
 Business goals are the parts that drive the methods
of the design and are the elements that shape the
architecture. They are about a business or state of
business and they contact the individuals or
organizations wishing to achieve the goal.
 The important thing is that all business goals that
correspond to quality attributes will view and measure
the end of the system (Barbacci et al., 2002; Gross and
Yu, 2001).
 System goals are about what the target system
should achieve, which generally, describe the functional
requirements of the target system (Liu and Yu, 2001).

 Fig. 1: The relation between goals and attributes

J. Computer Sci., 6 (12): 1424-1429, 2010

1426

Architectural design decisions: Architectural design
decisions can be defined as descriptions of the choices
and considered alternatives which are described as an
addition, subtraction and modification to the software
architecture, the rationale, design rules, design
constraints and additional requirement that realize one
or more requirements on a given architecture (Johannes,
2008).
 With the definition of architectural design
decisions we use the following important elements:

• With alternatives: we mean other solutions to the

requirement. The choice is the decision part which
leads to the architectural design decisions

• With addition, subtraction and modification: they
are all changes that are made to the software
architecture by architectural design decisions

• Rationale is a brief description of each ADD
written behind the decisions

• Rules and constraints are considerations for further
decisions

 We conclude that architectural design decisions are
decisions that directly influence the design of software
architecture (Johannes, 2008).
 Figure 2 represents the distinctions between
architectural decisions and design decisions. The
similarities and differences between each concept are:

• Design decisions are decisions that directly

influence the design of the system
• Architectural decisions are decisions that directly

influence the software architecture like decisions
that address Architectural Significant Requirement
(ASR). Architectural decision that are not
Architectural design decisions are those decisions
that affect the software architecture indirectly

• Architectural design decisions are decisions that
directly influence the design of the software
architecture. For example, choosing the
architectural style for a design is an architectural
design decisions

Fig. 2: Similarities and differences between decisions

in a Venn diagram

Achieving architectural design decisions: Previously
we explained how software architecture is based on the
requirements for the system.
 Many software architecture design methods present
and they all use different methodologies for designing
the software architecture.
 Figure 3 represents how the architectural decisions
are made through the process of the software
architectural design. It shows that making decisions is a
cyclic process; this means that those decisions are
achieved through reputations till achieving right
decisions.
 Figure 3 shows ADD as a result of the design process
during the initial construction of the design. It shows that
the main input of the design process is the requirement of
the software so the initial design of the software
architecture is built in order to satisfy the requirements of
the system. If the quality output of the software
architecture is not sufficient then the architectural design
decision is modified to build the architecture according to
the user’s requirements. This is done through a number of
tactics by adapting one or more architectural styles or
patterns to improve the design.

Software architecture and ADD: Software
architecture is the structure of the system which
includes elements, the visible parts of these elements
and the relationship between these elements. It is one
of the main disciplines of software engineering
which study the high level abstract view of the system.

Fig. 3: Software design process

J. Computer Sci., 6 (12): 1424-1429, 2010

1427

Software architecture is created, maintained and
evolved in a very complex environment (Johannes,
2008).
 Figure 4 illustrates that software architecture
depends on the requirements that explain what the
system should do while software architecture describes
how this is reached. All information and knowledge
about the decisions on architecture are totally set in into
software architecture, so all the knowledge about the
design disappears into software architecture. This
causes some problems like:

• Obsolete design decisions are not removed and this

allows unexpected behaviors to happen
• Design decisions affect multiple parts of the design

so that associated knowledge is distributed across
different parts of the design making it hard to find
and change

Fig. 4: The road map of software architecture

Fig. 5: The role of a design fragment on a design

decisions

 The notion of Architectural Knowledge (AK)
includes the knowledge involved with software
architecture; it improves the quality of the architecture
and the process that made it. Some researchers define
AK as the following formula (Johannes, 2008):

AK= design decisions + design

 The lost architecture knowledge leads to evolution
problems, blocks the reuse of the system and increases
the complexity of the system.

Design fragments: A design fragment is an
architectural fragment defining asset of architectural
entities. An architectural entity can be part of multiple
design fragments. The primary use for design fragment
is to define the scale of a solution of design decisions
(Fairbanks, 2007). Figure 5 represents the role of a
design fragment on a design decisions. Each decision
has: main concept, problem and set of solutions. Each
solution has its own rationale and the realization part
(which is meant a design fragment).
 A design fragment on the other hand needs a real
control to make the necessary decisions like schedules.
At the same time it needs a sufficient information or
data to enforce these decisions. Sometimes a design
fragment composition concept arises; this is done when
a design fragment needs to change another design
fragment.

 MATERIALS AND METHODS

 Quality activities are the main methods that are
used to achieve a high quality of a system. Three main
activities are defined through management: quality
planning, quality control and quality assurance.
 To achieve high quality, the project must be
planned in advance by deciding which quality factors
are important for the project and select standards and
procedures from the quality manual that are appropriate
to meet the quality goals of the system. The resulted
goal must be measured by metrics; GQM can be used as
one type of metric which focuses on goals. This
measurement process is a part of the quality control
process which checks that the quality control factors are
being achieved.

RESULTS

 To build a complete software system we need
decisions. To make these decisions right, a new concept
appears, that is what we call a design fragment. In addition
to needing quality control to mange it, design fragment
also needs data to make control on these fragments.

J. Computer Sci., 6 (12): 1424-1429, 2010

1428

Fig. 6: Achieving goals through architectural design

decisions

Quality control in this case checks the process to ensure
that the high quality of the software is achieved, so
managing the control makes sure that the software
developer has followed project quality standers and
procedures.
 Every software system that is built upon these
decisions needs metrics to measure the quality in order
to make a decision about the system if it has achieved
the specific goal or not. Goal Question Metric (GQM)
is one type of the metrics. Figure 6 summarizes the idea
of this study and explains the relation between the goal
and ADD.

DISCUSSION

 From Fig. 6 we can remark the following points on
measurement:

• Measurement is a mechanism to evaluate any

product; it allows evaluating the quality of the
specific process or products

• The effectiveness of the measurement must focus
on a specific goal. This means that measurement
must be defined in a top-down approach

• Measurement must identify with the environment
of the organization and its goals

CONCLUSION

 A goal is a condition that deals with the world that
the stakeholders would like to achieve. Achieving goals
are affected by decisions that are made through building
the architectural design. This study describes in detail
the process that is used to achieve goals through
architectural design decisions; it illustrates the concept
of a design fragment and its role on building the design
decisions. Completing the final goal needs to be

measured. This study shows the position of
measurement in the process.

REFRENCES

Ab-Rahman, M.S., S.A.C. Aziz and K. Jumari, 2009.

Protection for an immediate split structure of tree-
based EPON Architecture-ideal condition analysis.
Am. J. Eng. Applied Sci., 2: 372-380.
http://www.scipub.org/fulltext/ajeas/ajeas22372-380.pdf

Ahmad, S.N., M.F. Zolkipli and A.N. Abdalla, 2009.
Intrusion preventing system using intrusion
detection system decision tree data mining. Am. J.
Eng. Applied Sci., 2: 721-725.

Berenbach, B., D. Paulish, J. Kazmeier and A. Rudorfer,
2009. Software and Systems Requirements
Engineering: In Practice. 1st Edn., McGraw Hill,
New York, ISBN: 10: 0071605479, pp: 356.

Bachman, F., L. Bass and M. Klein, 2003. Moving from
quality attribute requirement to architectural
decisions. Proceeding of the 2nd International
Software Requirements to Architecture Workshop,
(ISRAW’03), Porltand, Oregon, pp: 1-8.

Barbacci, M.R., R. Ellison, A.J. Lattanze, J.A. Stafford
and C.B. Weinstocks et al., 2002. Quality Attribute
Workshops. 20th Edn., CMU/SEI, Pittsburgh, pp: 40.

Bass, L., P.C. Clements, R. Kazman and R. Nord, 2009.
Architectural business cycle revisited: A business
goals taxonomy to support architecture design and
analysis, the NEWS AT SEI. Software Engineering
Institute.
http://www.sei.cmu.edu/library/abstracts/news-at-
sei/architect20052.cfm

Fairbanks, G., 2007. Design fragment. Ph.D. Thesis,
Carnegie Mellon University. http://reports-
archive.adm.cs.cmu.edu/anon/isri2007/CMU-ISRI-
07-108.pdf

Garland, D., 2000. Software Architecture: A Roadmap.
In: The Future of Software Engineering,
Finkelstein, A. (Ed.). Carnegie Mellon University,
ACM Press, ISBN: 1581132530, pp: 1-9.

Gross, D. and E. Yu, 2001. Evolving system
architecture to meet changing business goals: an
agent and goal-oriented approach. Proceedings of
the 5th IEEE International Symposium on
Requirements Engineering, Aug. 27-31, IEEE
Xplore Press, Toronto, Ont., Canada, pp: 316-317.

DOI: 10.1109/ISRE.2001.948602
Jalote, P., 2008. A Concise Introduction to Software

Engineering. 1st Edn., Springer, New York, ISBN:
10: 1848003013, pp: 272.

J. Computer Sci., 6 (12): 1424-1429, 2010

1429

Jansen, A. and J. Bosch, 2005. Software architecture as
a set of architectural design decisions. Proceeding
of the 5th IEEE/IFIP Working on Software,
(IFIPWS’05), IEEE Xplore Press, Pittsburgh, PA.,
USA., pp: 109-119. DOI: 10.1109/WICSA.2005.61

Johannes, A.G.J., 2008. Architectural design decisions.
Ph.D. Thesis, University of Groningen.
http://www.narcis.info/publication/RecordID/oai:u
b.rug.nl:dbi%2F4899b138bb0a6

Kan, S.H., 2002. Metrics and Models in Software
Quality Engineering. 2nd Edn., Addison Wesley,
USA., ISBN: 10: 0201729156, pp: 560.

Khaled, L., 2010. Driving architectural design through
business goals. Int. J. Comput. Sci. Inform. Syst.,
8: 68-71.

 http://www.doaj.org/doaj?func=abstract&id=563920
Liu, L. and E. Yu, 2001. From requirement to

architectural design-using goals and scenarios.
Proceeding of the ICSE-2001 Workshop: From
Software Requirements to Architectures,
(STRAW’01), Toronto, Canada, pp: 22-30.
http://www.cs.toronto.edu/pub/eric/STRAW01-
R2A.pdf

Omar, M.K. and A. Ajitha, 2008. Two mathematical
modeling approaches for integrating production
and transportation decisions in the process
industry. Am. J. Applied Sci., 5: 1023-1028.

http://www.scipub.org/fulltext/ajas/ajas581023-
1028.pdf

Perry, D.E. and A.L. Wolfs, 1992. Foundations of the
study of software architecture. ACM SIGSOFT

Software Eng. Notes, 17: 40-52. DOI:

10.1145/141874.141884
Somerville, I., 2006. Software Engineering. 8th Edn.,

Addison Wesley, USA., ISBN: 10: 0321313798,
pp: 864.

