
Journal of Computer Science 6 (11): 1301-1325, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Sandeep K. Singh, Department of Computer Science and Engineering and Information Technology,
 JIIT A-10 Sector 62, Noida, India

1301

An Event-Based Methodology to Generate Class Diagrams and its Empirical Evaluation

1Sandeep K. Singh, 2Sangeeta Sabharwal and 1J.P. Gupta

1Department of Computer Science and Engineering and Information Technology,
JIIT A-10 Sector 62, Noida, India

2Division of Information Technology, NSIT Sector, 3,
Dwarka, New Delhi, India

Abstract: Problem statement: Event-based systems have importance in many application domains
ranging from real time monitoring systems in production, logistics, medical devices and networking to
complex event processing in finance and security. The increasing popularity of Event-based systems
has opened new challenging issues for them. One such issue is to carry out requirements analysis of
event-based systems and build conceptual models. Currently, Object Oriented Analysis (OOA) using
Unified Modeling Language (UML) is the most popular requirement analysis approach for which
several OOA tools and techniques have been proposed. But none of the techniques and tools to the best
of our knowledge, have focused on event-based requirements analysis, rather all are behavior-based
approaches. Approach: This study described a requirement analysis approach specifically for event
based systems. The proposed approach started from events occurring in the system and derives an
importable class diagram specification in XML Metadata Interchange (XMI) format for Argo UML
tool. Requirements of the problem domain are captured as events in restricted natural language using
the proposed Event Templates in order to reduce the ambiguity. Results: Rules were designed to
extract a domain model specification (analysis-level class diagram) from Event Templates. A
prototype tool ‘EV-ClassGEN’ is also developed to provide automation support to extract events from
requirements, document the extracted events in Event Templates and implement rules to derive
specification for an analysis-level class diagram. The proposed approach is also validated through a
controlled experiment by applying it on many cases from different application domains like real time
systems, business applications, gaming. Conclusion: Results of the controlled experiment had shown
that after studying and applying Event-based approach, student’s perception about ease of use and
usefulness of OOA technique has significantly improved. Their project reported showed positive
feedback about Event-based approach. These results reinforced the evidence that by analyzing events
that are likely to happen in a system, one can derive class diagram information from requirements.

Key words: Event meta-model, event template, object-oriented analysis, software requirements

engineering, use cases and UML

INTRODUCTION

 Event-based systems are rapidly gaining
importance in many application domains ranging from
real time monitoring systems in production, logistics,
medical devices and networking to complex event
processing in finance and security. In our day to day
life, we often use thermostat, computerized
topographical imaging scanner, microwave oven, ECG
monitor, cardiac pacemaker and automatic luggage
movement system at airport; robots at workplace. All
these automated systems have one thing in common
that they all fall in the category of event-based systems.

We call them as event-based systems due to fact that
unlike typical business applications where long
descriptive and narrative text is needed to understand
the behavior of a system, functionality of these systems
can be understood on the basis of events, their flows
and interdependencies.
 The popularity of event-based system is evident
from the fact that an entire book is devoted to complex
event processing (Luckham, 2002). The increasing
popularity of these event-based systems has opened
new challenging issues for them. The issue that this
study addresses is to propose a process for requirements
analysis of event-based systems and build conceptual

J. Computer Sci., 6 (11): 1301-1325, 2010

1302

models. Conceptual model aids in requirements
analysis and understanding of problem domain. Several
conceptual modeling tools and techniques have been
proposed like Entity-Relationship (ER) model,
Extended Entity-Relationship (EER) model, E²R
diagram, Higher-Order Entity Relationship Model
(HERM), Conceptual Schema Language (CSL),
DATAID-1, REMORA methodology, Booch method,
Object Modeling Technique (OMT), Object-Oriented
Software Engineering (OOSE) and Unified Modeling
Language (UML) out of which UML is currently the
most popular OO conceptual modeling technique
(Luckham, 2002). Rational Unified Process (RUP) is a
unified process that proposes rules for effectively using
UML for analysis and design (Booch et al., 2005;
Kruchten, 2003).
 After an exhaustive survey of tools and techniques
of requirement analysis, we have found to the best of
our knowledge that none of the existing approaches or
tools have neither focuses on requirements analysis of
event based systems nor have used events as basis for
requirement analysis and conceptual modeling.
Approaches are largely based either on natural language
(Abbott, 1983; Jacobson et al., 1999; Turk and Vanier,
1993; Coad and Yourdon, 1990; Shlaer and Mellor,
1998; Ross, 1988; Song et al., 2005; Ilieva and
Ormandjieva, 2005; Mustafa and Awofala, 2004) for
which various tools have also been developed
(Becker et al., 2000; Barber and Graser, 2000; Harmain
and Gaizauskas, 2003; Overmyer et al., 2001; Wahono
and Far, 2002; Drake et al., 1993; Perez-Gonzalez et al.,
2005) or on Use cases (Anda and Sjberg, 2003; Liang,
2003; Liu et al., 2003; 2004; Roussev, 2003). NLP
based techniques have their own limitations and at the
same time Use Cases have been critically reviewed in
the recent past (Some, 2005; 2007b; Wiegers, 2005;
Ferg, 2003; Samarasinghe and Some, 2005). It is also
cited that Use Case modeling is not an effective
technique for projects related to data warehouses, batch
processing, embedded control software,
computationally intensive applications and real time
systems (Samarasinghe and Some, 2005).
 Due to lack of approaches exclusively for event-
based systems and limitations and critical reviews of
the existing approaches, we present an iterative
approach for requirements analysis of event-based
systems by taking events as the starting point. Events
have been chosen as a starting point due to several
reasons (a) it is more realistic to use events than
processes for requirement analysis and conceptual
modeling of event-based systems. (b) It is event
modeling only that introduces rigor and discipline in
Use Case modeling by helping to determine list of Use

Cases (Satzinger et al., 2006). (c) Events act upon many
classes and conversely, the same class may be acted
upon by a variety of seemingly unrelated events. Thus,
events help the analysts or OO design team to
determine which events should be allocated to
operations on data centric persistent classes. (d) In
carrying out OOA using the parallel conceptual
modeling technique i.e., Use Case modeling, a large
number of diagrams need to be made before arriving at
a final class diagram. Scenarios are extracted from
documented Use Case templates to build sequence,
activity and collaboration diagrams from which final
class diagram is realized. On the contrary, our approach
derives analysis level class diagram from events
without need to draw other diagrams. (e) Events use a
technology-independent stimulus-response modeling
technique, while deferring interaction design. (f)
Analysis of expected and unexpected events helps to
capture the essence of business policy at an early stage
of project. Thus, event modeling lets a user create
analysis specification that has more value to business in
the long run. Due to these arguments in favor of events,
this study proposes a novel application of Event
modeling in OOA of requirements.
 The main contribution of the work is in proposing,
validating and automating event-based approach to
build analysis level class diagram from the natural
language requirements of event-based systems. An
Event-Meta model is proposed which forms the
foundation for event-based OOA. Requirements are
captured in restricted natural language using the
proposed Event Templates in order to reduce the
ambiguity. Rules are also made to extract a domain
model specification (i.e., analysis-level class diagram
details) from Event Templates. The proposed approach
is validated through a controlled experiment by
applying it on many cases from different application
domains like real time systems, business applications,
gaming. The objective of the controlled experiment is to
compare the perceived ease of use and usefulness of the
proposed event-based approach with a more
conventional and industry standard Use Case based
approach. Results have shown that Event-based OOA
has improved user’s perception significantly. A
prototype tool ‘EV-ClassGEN’ is also developed to
provide automation support to extract events from
requirements, document the extracted events in Event
Templates and implement rules to derive specification
for an analysis-level class diagram.

Related work: There are various techniques that have
been used in the past to extract components from the
requirements for building class and object model.

J. Computer Sci., 6 (11): 1301-1325, 2010

1303

Techniques proposed have either used natural language
processing approach or employed Use cases to identify
classes. Some of these approaches have been automated
by building their prototype tools.

Techniques and tools based on natural language
processing of requirements: Abbott (1983) and
Booch et al. (2005) proposed a technique that used
singular nouns and nouns of direct reference to identify
objects and plural and common nouns to identify
classes. This approach became the basis for many OOA
approaches and tools. Turk and Vanier (1993) have
used computerized classification systems and thesauri
for the purpose of object oriented analysis of the valid
Slovenian earthquake code. In 1991-1992, pioneers like
Coad and Yourdon, (1990); Shlaer and Mellor (1988)
and Ross (1988) identified certain categories like
persons, role and organization, which define application
domain entities and help experienced analysts to
identify classes or objects. Song et al. (2005) have
presented a Taxonomic Class Modeling (TCM)
methodology that can be used for identification of
domain classes during object-oriented analysis in
business applications. Ilieva and Ormandjieva (2005), a
methodology is proposed for the natural language
processing of textual descriptions of the requirements
of an unlimited natural language and their automatic
mapping to the object-oriented analysis model.
Sentences in the text are analyzed and semantic
network is built from which OO model (class model) is
derived. In another approach (Mustafa and Awofala,
2004), process mapping and clustering techniques from
cell manufacturing are used for deriving object-oriented
classes from requirements. All the approaches reviewed
above points out to basic disadvantages associated with
natural language processing of requirements like
completeness, accuracy, ambiguity. Therefore, there is
always an open need to research on a novel approach to
carry out OOA. This has been the motivation for the
work carried out in this study.
 Several authors have used the techniques described
above to develop automation support for the analysts.
Some of the popular tools are A Methodology for
Automatic Object Identification from System
Specification (MOSYS) (Becker et al., 2000),
Reference Architecture Representation Environment
(RARE) (Barber and Graser, 2000), Class Model
Builder (CM-Builder) (Harmain and Gaizauskas, 2003),
Linguistic assistant for Domain Analysis (LIDA)
(Overmyer et al., 2001), OOExpert (Wahono and Far,
2002), Automated User Requirements Acquisition
(AURA) (Drake et al., 1993), A Graphic Object
Oriented Analysis Laboratory (GOOAL) (Perez-

Gonzalez and Kalita, 2002; Perez-Gonzalez et al.,
2005).

Techniques based on use cases: In work carried out in
(Anda and Sjberg, 2003) authors present a Use case-
driven development process for OOA and its validation.
However it is reported in empirical findings that this
technique leads to problems, such as the developers
missing requirements and mistaking requirements for
design. A variant of the use case-driven approach is
used in which instead of the scenarios the goals of
each Use case without descriptions are used to
identify classes (Liang, 2003). An approach with a set
of artifacts and methodologies, to automate the
transition from requirements to detail design is
presented in (Liu et al., 2003). Roussev (2003), a
process is proposed for generating formal object-
oriented specifications in OCL and class diagrams from
the Use case model of a system through a clearly
defined sequence of model transformations.
 Liu et al. (2004), a methodology and a CASE tool
named Use-Case driven Development Assistant
(UCDA) is presented to automate natural language
requirements analysis and class model generation based
on the Rational Unified Process (RUP).
 Although Use Case based approaches have been
quite popular but several arguments against Use Case
have been cited in the literature. Author in (Liu et al.,
2004) has cited that Use Cases do not alone solve the
problem. It is scenario that specifies concrete sequences
of actions for the requirement. An overall advantage
can be achieved by integration of scenario-based
approaches with functional requirements. Even work in
(Some, 2005) has emphasized that Use case based
requirements engineering approach can be enhanced by
integrating Use Case with Scenarios. Another book
(Wiegers, 2005) has also cited that Use Case approach
is ill suited for projects involving data warehouses,
batch processing, hardware products with embedded
control software, computationally intensive
applications, understanding real time systems, systems
that involve complex business rules to make decision
and for specifying time triggered function. Work in
(Ferg, 2003) has pointed out that Use Case approach
discourages the requirements analysts from examining
the problem domain, by focusing only on what happens
at the system boundary. Several articles have also
pointed out problems with Use cases related to
understanding, clarity, invisible scope creep; its
document centric, time consuming and declarative
nature and its inability to differentiate dynamic and
static elements of the specification. Although
improvisation of Use case based requirements analysis

J. Computer Sci., 6 (11): 1301-1325, 2010

1304

approach have been done (Samarasinghe and Some,
2005; 2006; 2007a; 2007b; Satzinger et al., 2006) by
either automating Use Case based model generation,
improving Use Case Templates or enhancing Use Case
based analysis with scenarios but these solutions have
not proposed any other alternative, their staring point is
still a Use Case.
 Due to lack of approaches exclusively for event-
based systems and limitations and critical reviews of
the existing approaches, we present an iterative
approach for requirements analysis of event-based
systems by taking events as the starting point. Work
described in (Poo, 1999; Muhairat et al., 2010) can be
considered comparable with our proposed approach.
Poo (1999), author has proposed the extension of the
Use Case Modeling approach to include business
policies modeling.
 Events in use cases formed the basis for identifying
and specifying classes and business rules. A process
known as Event Scripting is used to document event
and from it, objects and their relationships are
identified. Business rules identified with the events are
attached to objects as part of their definitions in class
specifications. For each event identified in the Use
Case, an Event Script is written. Components of event
script like Source, Participants Sets, Pre-Event
Conditions and changes help the analysts to identify
classes and objects, their attributes, operations and
business rules. These identified components form a
class specification. Unlike this approach, our work
starts directly from events identification, his approach
starts from the core step of identifying Use Cases,
documenting each Use Case in Use Case Template,
then extracting events from the scenarios of Use Case
description and documenting each event using the
proposed event script. Then from event scripts, class
diagram components are extracted. Table 1 gives a
critical comparison between Poo’s perspective and our
proposed approach. Muhairat et al. (2010), authors have
used traditional event table proposed in McMenamin
and Palmer’s event partitioning approach (Yourdon,
1988). They have modified the event table to include

input message, output message, includes, extends,
specializes, destination and source fields and also
proposed a five step process to build a class diagram.
But our proposed work does not use event table instead
we have made an event template based on our event-
meta model to document event. Our event template
store more detailed information on events in
comparison to event table. We have also defined 11
mapping rules to extract class diagram model
information from event templates. Unlike their output,
our class diagram model information is generated in
standardized XMI format to make it importable, so that
a class diagram can be made using a UML tool. We
have chosen to generate importable XMI file for
ArgoUML tool.

Proposed event meta-model: The concept is
introduced on events, their types and significance.
Significance of an event is explained in terms of what
operations are triggered on the participating classes by
that event. This conceptual background lays the
foundation of Event-based OOA methodology and also
helps analysts to identify events from the problem
domain. Then proposed Event-Meta Model is presented
that has formed the basis for designing event templates.

Event definition and event types: The concept of
event itself has been widely used to model software.
Our approach is adopted from “Event Partitioning”
method that was used to create Data Flow Diagrams
(DFDs) during structured analysis of the system
(Yourdon, 1988). Their idea has been used for
partitioning the requirements during the process of
OOA for investigating the role of Events as starting
point in OOA of event-based systems.
 Technically, an event is a record of system activities
with attributes, significance and relativity (Luckham,
2002). “We define event as a happening (occurrence) at a
specific time and place that can be described and
recorded in the system”. Events trigger all the
processing in a system, so identifying and analyzing
events is a good starting point in requirement analysis.

Table 1: Comparison of perspectives
Poo (1999) approach Proposed approach
Source of event script in each event is identified from use case description. Source of event template is directly events identified from
 requirements, thus eliminating need to first identify Use
 Cases and write description.
It is an extension to use case modeling. It is an alternative to use case modeling.
Structural Content of event script is oriented from perspective of Structural Content of event templates is oriented from
defining and understanding business rules and policies. perspective of deriving static and dynamic view that can be
 modeled in any UML complaint tool.
No temporal or causative relationship is depicted among event scripts. Event templates can be related by temporal, causative and
 containment relationship.
Process of Object/Class identification is not formalized. Our approach is to formalize the process by developing rules
 to automatically transform event templates to static model.

J. Computer Sci., 6 (11): 1301-1325, 2010

1305

Fig. 1: Event Meta model

Events can affect state of objects (attribute or number of
instances), relationships among objects or both. The
proposed approach uses three types of events-External
events, Temporal events and State events (Satzinger et al.,
2006; Yourdon, 1988). External event occurs outside
the system, usually initiated by the external agent
(person or organizational unit or system user). An
external agent either supplies or receives data from the
system. External events carry data to be exchanged
from an external agent to system, from system to an
external agent or from one external agent to another in
the system. For example, ‘Customer places an order’.
Here, customer is an external agent and as a result of
this event, a new order is generated in the system.
Temporal events are generated automatically by the
system on reaching a given point of time. They do not
occur on fixed date. Time of occurrence could also be
relative to some other event occurrence. There is no
need for external agent to trigger temporal events.
Temporal events include internal or external outputs
needed from time to time. For example, ‘System
produces biweekly payroll’. State events occur when
something critical happens inside the system that
triggers the need for processing. These events monitor
system in order to detect or respond to external system,
devices or another object. State events are
consequences of external events. For example, Order
event in the above example, reduces stock in inventory
that results in generating a state event ‘Reorder point
reached for that product’. Time cannot be predicted for
State events. Most of the events in a general application
domain are external and temporal. State events are

more common in the domain of real time systems. For
example in process control system, if vat of chemical is
full, then state event, ‘turn off the fill valve’ is
generated.

Event meta-model: An Event-Meta Model has been
proposed based on the above concept of events and is
shown in Fig. 1. The Event-Meta Model is based on the
principle that events are the core elements of event-
based systems and causes a system to change its state.
Overall functionality of a system is a result of
successful execution of chain of events.
 Users interact with the system through events.
These events trigger the usage in the system (i.e., a Use
Case). Using events, analysts can (a) record changes
that have occurred over a period of time; (b) identify
which object(s) have stimulated events, which object(s)
have been affected by events, what operations have
made the changes and in which state members. Thus,
not only objects but also, changes in their attributes,
invocation of specific operations and relationships
among objects can also be identified by analyzing the
events and participating objects in events. Values
changed in events, give idea of attributes of objects.
 As shown in Fig. 1, an Event forms the core of our
meta-model. Creation and destruction of objects, call to
method as well as response from it are all events. There
are large numbers of events occurring in a system at a
given point of time. Each event is uniquely identified
by giving it a unique ID, name and description. These
are basic attributes for an Event class in our meta-
model. The Meta-Model identifies five types of events-

J. Computer Sci., 6 (11): 1301-1325, 2010

1306

External oriented, Temporal oriented, State oriented,
Simple event and Complex event. Complex events are
aggregation of Simple events. Complex event
represents higher level abstraction in the event-based
system. e.g., Employee administrate customer account
is a complex event that includes simple events like
employee adds new customer account, employee delete
an existing customer account. System is an aggregation
of various Objects.
 Objects interact and collaborate through events to
render the functionality of a system. Every object has a
state which is composed up of Attributes and
Relationships which an object has with other objects in
or outside system. Objects play role of actors in an
event. These objects stimulate each other and the
stimulus is an event. Object that initiates event plays the
role of an Initiator; the one that is affected by event
becomes an Affecter and the one that facilitates the
occurrence of an event is a Facilitator.
 Events have a Response associated with it.
Response can be a Use Case that an event triggers or an
Action. Response generates information that modifies
number of instances, attributes or relationship of an
object with other objects. These are called Changes
caused by events. Events and Response have a cyclic
relationship; an event can trigger a response and a
response in turn can generate new events. We call such
a set of events as Trigger vector. An event can also be
caused by occurrence of some other event (s) and such
events are called Causative events. The information
required for processing an event is called an Input.
Event Meta-Model is the basis of defining the structural
contents of an event template used in our proposed
event-based methodology.

MATERIALS AND METHODS

 Our proposed approach starts from identifying
elementary events from the requirements. An
elementary event always focuses on an elementary
business process. It is performed by one person, at one
place, adds a measurable business value and leaves a
system in a consistent state. From the pool of events,
our proposed methodology generates information for
static conceptual model (analysis level class diagram)
of the system. The steps are as follows:

• Gather requirements from End user/Domain

experts using various modes of information
gathering techniques. These requirements can be
unstructured text or structured into domain
description documents

• Extract elementary events from textual
requirements and generate a list of such events.

Event list is an exhaustive list of all possible events
that have appeared in the textual requirements of
the system

• Analyze and identify other new events with the
help of either problem domain experts or from
events already identified. Categorize each event in
different type and discard events that do not fall in
any of our described categories

• Formalize and document each event from the list in
an Event Template

• Apply mapping rules on event templates to extract
information for static model of the system
comprising of the candidate classes, their methods,
attributes and relationships

 The class diagram specification is generated in step
5 is in an importable standardized XMI format. XMI
files generated by different UML tools have different
tags and are not compatible with each other. E.g. the
class diagram XMI file generated by Rational Rose tool
is not identical to the one generated by Visual
Paradigm. So our approach generates XMI file of class
diagram specification for Argo UML tool so that latter
on the same XMI file can be used for regenerating the
model information in Argo UML tool for the class
diagram. A prototype tool ‘EV-ClassGEN’ is also
developed to provide automation support to extract
events from requirements, document the extracted
events in Event Templates and implement rules to
derive specification for an analysis-level class diagram.
Next we detail the structure of Event Template, its
comparison with Use Case template and the proposed
rules to derive class diagram specification from event
templates.

Event template: In our proposed methodology, events
extracted from textual requirements are documented
using Event Templates. An Event Template inherits its
components from the Event Meta-Model and models
every single interaction details of actors with the
system. The components of Event-Meta Model are
mapped to different fields of an Event Template. The
important components of an Event Template are.

Event ID: It is a unique alphanumeric value given to
each event identified either directly or indirectly from
the requirements. No two events can be assigned same
event id. It helps us in tagging detailed description of an
event template with its id.

Event description: It is a sentence from the
requirements that describes the event identified in
Subject-Verb-Object (SVO) pattern. (e.g., customer
places an order).

J. Computer Sci., 6 (11): 1301-1325, 2010

1307

Event name: It is a simple name as extracted from the
requirements given in the natural language. This can
indicate verb or verb phrases in Subject-Verb-Object
(SVO) pattern (e.g., order placed).

Initiator, facilitator or affecter: Initiator starts an
event. Facilitator facilitates in the occurrence of an
event and Affecter gets affected as a result of execution
of an event. Initiator, Facilitator and Affecter are
different roles that entities/objects play in different
events. There can be single Initiator, Facilitator and
Affecter in an event. Different initiators are mapped to
different events. Every event has at least one role. An
entity can have overlapping roles in events e.g.,
‘customer’ can be initiator in one event and affecter in
another event. Ternary relationship involving third
entity will have a facilitator otherwise Initiator/
Facilitator roles can even be merged until there is a
need to explicitly specify them separately. In example,
‘Travel agency stores Tour information’, Tour gets
created (modified) so Tour is affecter. In example,
‘Customer sends complaint through Travel Agency
software’, Travel agency software is unaffected so it is
a facilitator, whereas Customer is an Initiator and
Complaint is an Affecter.
 Events occur as a chain of related events. An Event
triggers other events in a system. Identification of an
event in turn helps to identify other events that can be
triggered by it. Such related events are called as
Causative events and Trigger vector.

Causative events: Causative events of an event are
those events that are reasons behind occurrence of that
event. While documenting events, focus is on those
causative events that are in context of the problem
description. Causative events may not be there for
events that are triggered independently after system
initialization. Time for state events cannot be
determined, so causative events play very important
role in initiating such events. Trigger Vector: It
represents a set of events that are triggered as a result of
occurrence of an event. An event can trigger either a
single event, set of events that can be executed
independently or in parallel. Events relate with other
events in event expression using event operators ‘event-
or’, ‘event-and’, ’event-not’ and ‘event-xor’. Event-or
indicate that either none, one or more than one events
can be triggered. Event-xor indicates exactly one event
can be triggered. Event-and indicate that all events have
to be triggered in parallel.
 Event-not indicate non-occurrence (negation) of an
event. For example an event e1 (‘Customer register
with TA software’), triggers an event e2 (‘Travel

agency provides user id and password to Customer’), e1
is causative event of e2 and e2 is trigger vector of e1.
Every event triggered may initiate algorithmically
simple or complex services in an object. These services
model the behavioral changes in the object. These
changes are described in Event Template as Change-
event.

Change-event (state changes): An event causes
operations to be triggered in participating classes. These
operations are side effects of any event on the state of
participating entities (Initiator, Facilitator or Affecter).
Operations like creation, termination and update (or
calculate) change the state of participating objects.
While operations like read, access, compute or monitor
do not affect state. Hence these operations are described
as change-event. E.g., an event ‘Customer registers
with Travel Agency’ causes a change-event ‘Creation
of Customer Profile object’. These change-event affect
classes at different levels like (a) Object level change-
event can be- Creation (an object is getting created e.g.,
Order placed), Termination (an object is getting
destroyed e.g., Order cancelled), Read objects (an entire
object state gets read from object memory). (b)
Attribute level change event can be accessing or
updating attributes of objects for performing any
calculation, computation and monitoring on that object.
Calculations are one that an object performs on its
value. Monitoring involves checking of an attribute in
an object to detect and respond to external system,
device or another object. Computation involves
computing a functional value from attributes without
modifying an object state. (c) Relationship level
change-event can be-A classified B that indicates
inheritance relationship (e.g., Order shipped i.e., Order
classified as Shipped Order) or a connected B that
indicates association relationship (e.g., Person
employed i.e., Person is connected/associated to an
Organization via is employed relationship).

Timestamp: Events occur at some point of time.
Multiple events may occur at the same time and could
be unrelated, co-operating, or related with each other.
Timestamp records time when a particular event has
happened or likely to happen in the system. Since all
events in system are related with each other, a relative
timestamp value is to be assigned to each event.
Assigning the exact timestamps too early at the analysis
level is not possible. Thus at the analysis level, dummy
timestamp values can be assigned by the analysts while
identifying events. The dummy timestamp value can be
used in future for reconstructing the sequence of events.
Dummy Value assigned to timestamp may be fixed or

J. Computer Sci., 6 (11): 1301-1325, 2010

1308

variable in nature. Variable time stamp indicates that an
event occurrence depends on the interaction of user with
the system. Variable timestamp is denoted by unique
alphanumeric value starting with ‘TA’ followed by
incremental unique id. Higher numerical part of
timestamp value indicates a latter occurrence of that
event in the system. For example, an event with variable
timestamp value TA6 will occur earlier in the system in
comparison to an event with timestamp value TA15.
Fixed time stamped events indicate periodical events that
get initiated after a fixed interval in the system like
weekly, monthly, quarterly. Fixed timestamp values are
indicated by Daily (FD), Weekly (FW), Fortnightly (FF),
Quarterly (FQ) or Annually (FA).
 Events with same timestamp value indicate
independent events that can occur in parallel in the
system. Timestamp for External and Temporal events
could be fixed but for State events timestamp is always
variable, since the time cannot be determined. Different
event templates can be temporally ordered on basis of
their timestamp values to map the flow of activities or
steps in a scenario. Our approach has not used
timestamps so far, instead we have used Trigger vector
and Causative events for ordering events.

Inputs/outputs: Whenever a change event occurs in a
system, it requires some inputs or generates some
outputs. Inputs reflect the data needed for change event
whereas output is the data produced from the change
event. Input/Output can contribute to describe attributes
for an object.

Count: Count in a template indicates the range
(minimum to maximum) of number of instances of
Initiator, Facilitator and Affecter that can participate in
an event. For a given entity count value can be different
in different events. Table 2, describes an event template
of event “Sensor 1 generate detect signal at start place”.
Default value of count is 0.1 (zero or 1).

Event template Vs use case template: A comparison
of Event Templates is done with Use Case Template

(Jacobson et al., 1999). The previous sub-section
presented different components of an Event Template.
Table 3 gives a comparison of Use Case Template
(Jacobson et al., 1999) with Event Template and
highlights essential differences in the two templates.

Proposed rules to derive class diagram specification
from event templates: An analysis-level class diagram
typically shows attributes and operations; it may show
other adornments such as multiplicity and role names as
well. The aim of the proposed approach is to derive
analysis level class diagram from Event Templates. For
this, rules are proposed such that information needed to
generate class diagram is extracted from fields of Event
Templates. E.g., potential candidate classes name can
be extracted from name of Initiator, Facilitator or
Affecter; flow of events among Initiator, Facilitator and
Affecter helps to determine the message passing
sequence; participation of Initiator, Facilitator and
Affecter helps to determine the association relationship
among them. The type of change-events that happen
with an event helps to determine the operations that are
to be allocated to class. These rules help the analyst in
deriving candidate classes, their stereotypes, attributes,
relationships and in placing operations in its appropriate
class. These rules are applied on a case study (Jalloul,
2004). Following rules are proposed to derive class
diagram specification from Event Templates.

Rule 1 (Class name rule): Every Initiator, Facilitator
or Affecter from each event template is mapped to
potential candidate classes as each of them is a
participating entity in some or the other event. In Event
template, a name is specified for every initiator, affecter
and facilitator. This name is extracted to make a list of
all potential class names. Redundancy in names could
be due to synonym or repetition of name. Redundant
names of Initiator, Facilitator or Affecter that refer to
same entity from real world are merged. Further,
refinement in class name can be taken at design level.

Table 2: Event template for event “Sensor 1 generate detect signal at start place

Event ID EA07
Event name (verb phrase) Generate detect signal the package
Description Sensor 1 generate detect signal at start place (state/control event)
Initiator sensor 1 count
Facilitator ALCS/Belt 1(start place) count
Affecter Signal count
Timestamp
Causative events (Preconditions) EA05
Inputs Signal type
Trigger vector Sensor 2 generate no-detect signal at scan place
 Sensor 3 generate no-detect signal at transition place
 Sensor 4 generate no-detect signal at end place
Change-event Connection between Sensor 1 and Signal

J. Computer Sci., 6 (11): 1301-1325, 2010

1309

Table 3: Comparison of use case template with our event template
Template Use case Event
component template template Comparison
ID √ √ A unique ID will help in tracing, maintaining and relating
 event templates of all events in our process.
Name √ √ Unlike Use Case template that gives a goal-oriented name;
 event name is interaction oriented. Our process focuses on
 interactions leading to goals rather than goals in isolation.
Description √ √ Unlike Use Case description that is a sequence of related
 events; event description represents a single interaction in system.
Actors (primary √ Initiator facilitator Unlike Use Case template that differentiate actors in two category-
and secondary) affecter Primary and Secondary Actor;. In event template, three different
 roles are defined as an Initiator, a Facilitator or an Affecter of
 event. This gives us three new stereotypes for classes. Facilitator is optional.
Timestamp √ √ Unlike time information that is specified as a non-functional
 requirement in Use Case modeling; a timestamp ties an event
 occurrence with time in the system. It identifies temporal
 relationships among events; helps to draw an Event Flow diagram
 and eliminates need for sequence diagram during event-based OOA.
Trigger √ Causative events Unlike Use Case where trigger identifies the event that initiates the
 Use Case; Event Template have causative events which is a set of
 events that are immediate causes for occurrence of an event.
Pre-conditions √ Causative events Unlike pre-conditions in case of Use Case Modeling, Event
 templates have Causative events that must be executed in system
 before that event occurs.
Post-conditions √ Change-event Unlike post-conditions in case of Use Case Modeling, Event
 Trigger-vector templates have Trigger vector and Change-events to describe side
 effects in the system due to execution of an event.
Trigger-vector × √ Trigger vector represents event ID’s of events that are triggered /
 caused due to the occurrence of an event.
Inputs/ Outputs × √ It represents data that provides input or carries output. Details
 include entity name and the name of the state members (attributes)
 and value (content) involved in execution of the event.
Change-event × √ Changes in a system are categorized in terms of 13 different
 Change events as described in Event Template. Every change in
 our event template records the method name, its types (event
 category) and which class realizes it.
Normal Flow/ √ Event flow diagram Unlike normal and alternative flow in Use Case template, Event
Alternative flow is determined through causal or temporal ordering of the t
Flows event templates based on timestamp value of each event or using
 causative and trigger vector of each event template.

 Rule 2 (Role name rule): Each entity plays a different
role in an event such as a role of Initiator, Facilitator or
Affecter. These roles define three new stereotypes that
are identified in this approach i.e., Initiator denoted by
I, Facilitator denoted by F or Affecter denoted by A.
Role of an entity changes with each event. For example,
customer plays the role of an initiator in one event and
of an affecter in another event. For each entity, all the
roles played by it are complied from all event templates
and all respective stereotypes are placed in class
specification.

Rule 3 (Class type, i.e., Boundary, Entity and
Control rule): This rule attaches three class stereotypes
with classes identified by Rule 1 and Rule 2. These
stereotypes are: Boundary, Control and Entity.
Boundary classes are used to model interactions among
the system and its entities. Control classes are used to
represent coordination, sequencing, transactions and

control of other objects. They also encapsulate control
related to a specific event. Entity classes are used to
model information that is long-lived and often
persistent. Initiator and Affecter can be control or entity
class. Decision to make a class either one of them is
taken at design level. Facilitator rightly acts as a
boundary class. For example, in a typical e-marketing
system, marketing campaign form, budget system are
boundary classes, create marketing campaign is control
class and purchased item and customer are entity
classes.

Rule 4 (Cardinality rule): Count specified in the
Event template is the number of instances of initiator,
affecter and facilitator participating in an event. It gives
cardinality constraint of the respective entity. Default
value of count is 0.1 (zero or 1). Cardinality is not an
attribute of a class rather it is a property of association
relationship between two or more classes. For example,

J. Computer Sci., 6 (11): 1301-1325, 2010

1310

in an event, customer orders a copy of a catalogue,
cardinality of customer in association with catalogue is
one. In another event, customer places many orders,
cardinality of customer in association with order is many.

Rule 5 (Message passing rule): Messages are passed
among Initiator, Facilitator and/or Affecter of events to
invoke algorithmically simple or complex methods/
services. Simple services are either to create or destroy
an object, read or write object, connect, classify an
object with other objects and/or get or set attribute
values of an object. Complex services are either
calculation that an object performs on its attributes;
monitoring that object is responsible for; or value that
an object computes from its attributes without
modifying them (query). An Initiator of an event
initiate messages, facilitator may respond to messages
or may facilitate to transfer message to Affecter. An
affecter is an end receiver in the message chain. An
affecter invokes an appropriate method from its class.
Define one function in Initiator and a corresponding
response in facilitator or affecter. In response
appropriate method of affecter or facilitator is invoked.
Rules for specific method invocation are described in
Rule 7-10.

Rule 6 (State rule): Events in the system cause change
in number of instances (objects), attributes of objects
and relationship among objects. Change event field of
the Event template describe the type of change that can
occur due to an event, corresponding input and output
fields describe the attributes getting affected by events
for carrying out such a change:

• If the change-event type is creation (e.g., tour

created), inputs from input field define new
attributes (state members) of an Affecter class

• If the change-event type is termination (e.g., tour
terminated), objects already exist, so inputs are
attributes of specific affecter (object) to be
terminated from the system

• If the change-event type is read or access, objects
already exist, so inputs search a specific object to
be read or accessed. Such a change-event will not
have an affecter instead will have a facilitator

• If the change-event type is modification/updating
(e.g., tour modified), objects already exist, so
inputs are attributes to be modified/updated or
some new attributes to be added to affecter (object)

• Calculate, Compute or Monitor are special cases of
modify, read or access

• If the change-event type is calculation, objects
already exist, so inputs are attributes to be used to
perform some calculations and modify the object
state. Output of change event produces important
result in the system

• If the change-event type is monitoring, objects
already exist, so inputs are attributes to be checked
to detect conditions for triggering state or control
oriented event. Input is important in this change
event to indicate attribute to be monitored. Output
of change event produces important result in the
system

• If the change-event type is computation, objects
already exist, so inputs are attributes used to
perform query or compute a functional value
without modifying the object state. Output of
change event produces important result in the
system

Rule 7 (Creation rule): Creation of an object is an vent
and so is its destruction. Whenever such events occur,
the state of object either gets initialized or destroyed.
Such an event occurs with the help of a facilitator of an
event. Whenever an event causes a change, such that,
change-event type is creation or termination, then an
association relationship can be mapped between an
Initiator/a Facilitator and an Affecter. A message to
create/destroy is passed from an initiator/a facilitator to
an affecter. For every object, created or destroyed, a
constructor/destructor is added to affecter class and a
corresponding create or destroy method is added to an
initiator and/or a facilitator that triggers the
construction/ destruction of objects. Such methods are
given name create/destroy followed by an affecter
name. For example event, Customer places an order
(creates an order instance) and event, customer cancels
an order (destroy an order instance).

Rule 8 (Association rule): An initiator starts an event
and an affecter gets affected by an event, so a direct
relationship is mapped between them. If an event has a
facilitator, Initiator carries out an event with the help of
a facilitator, so a relationship also exists between them.
Whenever an event causes a change, such that change-
event type is connection, then an association
relationship is mapped between an Initiator and an
Affecter or an Initiator and a Facilitator of the event, if
not already mapped by earlier rule. This mapping rule
affects the class diagram.
 In case, the change-event is disconnection, it
affects the object diagram. The verb phrase from an
event name is mapped to define an association name
property of an association. Count attribute specifies

J. Computer Sci., 6 (11): 1301-1325, 2010

1311

cardinality of an association. Association is
automatically mapped by rules of creation, access, read,
modify and classify rules.

Rule 9 (Access rule): Events that read the state of
objects, read through selectors defined in the class.
Whenever an event causes a change, such that change-
event type is read or access, then an association
relationship is mapped between an Initiator and a
Facilitator of the event, if not already mapped by earlier
rule. This mapping rule does not change the state of the
object. The read event is to read the entire state of
object whereas access event only reads a part of
object’s state. This rule adds a selector (overloaded get
method) to the facilitator (if it is an entity class) and
correspondingly, adds a read or an access method to an
initiator or a facilitator (if it is a boundary or a control
class) of the event. Read method is given the name-
read followed by name of the facilitator and access
method is given the name- access followed by name of
attribute of facilitator.

Rule 10 (Modifier rule): Events modify (update) the
state of objects through modifiers defined in the class.
Whenever an event causes a change, such that change-
event type is ‘update’, then an association relationship
is mapped between an Initiator and an Affecter or an
Initiator and a Facilitator of the event. The update event
only updates a part of an object’s state. This rule adds a
modifier (i.e., an overloaded set method) to a facilitator
(if it is entity class) or an affecter and correspondingly,
adds an update method to an initiator or a facilitator (if
it is a boundary or a control class) of the event. Such
methods are given name update followed by name of an
affecter.

Rule 11 (Classify rule): If the change-event type is
denoted by word ‘classified’ such as A classified B,
class A is classified to be of type class B. Similarly
words like ‘type of’, ‘can be’, ‘is a’, ‘kind of’ among
Initiators, Facilitators or Affecters of the events are
mapped to inheritance.

Case study: The proposed Event-based methodology
has been applied on several case studies. We describe
requirements specification of a single case and its
modeling using proposed methodology.

Reservations online case study: A Case study named
‘Reservations Online’ on object-oriented analysis

(Jalloul, 2004) is used to apply our methodology.
Following is the description of the user requirements:
“Software for a travel agency provides reservation
facilities for the people who wish to travel on tours by
accessing a built-in network at the agency bureau. The
application software keeps information on tours. Users
can access the system to make a reservation on a tour
and to view the information about the tours available
without having to go through the trouble of asking the
employees at the agency. The third option is to cancel a
reservation that he/she has made. Any complaints or
suggestions that a client may have could be sent by
email to the agency or stored in the complaint database.
Finally, the employees of the corresponding agency can
use the application to administrate the system’s
operations. Employees can add, delete or update the
information on the customers and the tours. For security
purposes, each employee is provided a login ID and
password by the manager to be able to access the
database of the travel agency”.

Modeling using proposed Methodology: Proposed
steps are applied on the above case study. After
applying steps 1, 2 and 3, following events along with
their types are identified from the case. These events
are listed in the Table 4a and 4b. Events specified in
Table 4a are explicitly specified in the requirements
statements whereas events in Table 4b are identified
and added by domain expert.

Table 4a: List of events from “reservation online”
List of events automatically identified from requirements:

• Customer view tour information. (External Event)
• Customer makes a reservation on tour. (External Event)
• Customer cancels a reservation on tour. (External Event)
• Customer sends a complaint. (External Event)
• Customer sends a suggestion. (External Event)
• Travel agency keeps tour information through TA software.

(External Event)
• TA Software provides user_id and password to customer.

(External Event)
• TA Software sends complaint to Travel agency. (Temporal

Event)
• TA Software sends suggestion to Travel agency. (Temporal

Event)
• Manager provides login_id and password to employee.

(External Event)
• Employee adds customer information. (External Event)
• Employees add tour information. (External Event)
• Employees update customer information. (External Event)
• Employees delete customer information. (External Event)
• Employees update tour information. (External Event)
• Employees delete tour information. (External Event)

J. Computer Sci., 6 (11): 1301-1325, 2010

1312

Table 4b: List of events added by analysts from “reservation online”
List of events added by analysts:

• Customer registers with TA software. (External Event)
• TA software sends a complaint form to the Customer.

(Temporal Event)
• TA software sends a suggestion form to the Customer.

(Temporal Event)
• TA software generates a monthly report of all potential

customers. (Temporal Event)
• TA software monthly sends list of all tours to customers.

(Temporal Event)
• TA software weekly generates a report of all booked tours.

(Temporal Event)
• TA software weekly generates a report of all canceled tours.

(Temporal Event)
• TA software displays the tour details. (Temporal Event)
• TA software generates monthly reports on the revenue.

(Temporal Event)

As per step 4 in the process, all events are documented
in the proposed Event template. Event Templates
corresponding to some of the events listed above are
shown in Table 5-7.

Application of rules to case study: The rules were
applied to all event templates of events identified in
Table 4a and 4b and information to generate class
diagram is extracted from event templates. The class
diagram specification generated is stored in an
importable standardized XMI format for Argo UML
tool so that latter on the same XMI file can be used for
regenerating the class diagram information. This
information is stored in form of XMI specification file
which is fed to Argo UML tool to draw class diagram
shown in Fig. 2.

Applying rule 1: In the case study chosen, we have
identified Initiator, Facilitator and Affecter from all
event templates and found the following potential class
names (Table 8).

Applying rule 2: In the case study chosen, we have
identified the role of Initiator, Facilitator and Affecter
from all event templates and found the following
Initiators, facilitators and affecters (Table 9).

Applying rule 3: After applying rule 3 we have classified
the entities of our case as shown below (Table 10).

Applying rule 4/cardinality rule: In an event,
“Customer makes at most four reservations for tour”,
cardinality of customer (initiator) is not specified so it
is assumed to be default ‘0.1’ and for reservation
(affecter) the cardinality count is at most four. The
cardinality constraint is specified with the class
association relationship with other class and is not a
property of a class alone.

Applying rule 5/message passing rule: In an event,
“Customer makes a reservation on tour”, Initiator
customer sends a message “create_reservation” to
facilitator ‘TA software’ which sends the same message
to affecter ‘Reservation’. Affecter ‘Reservation’, in
response, invokes its constructor method in order to
create a reservation object.

Applying rule 6(a)/state rule: In an event, “TA
Software registers a Customer” change-event type is
creation of customer, so inputs like customer name, id,
email, phone number and password, extracted from
event template of this event, define attribute list of a
Customer (affecter class).

Applying rule 6(b)/state rule: In an event, “TA
Software update availability status of the tour booked”
change event type is modification of tour, so inputs like
tour_id and status, extracted from the event template of
this event searches a tour object and updates status
attribute of a tour (affecter class).

Applying rule 6(c)/state rule: In an event, “Customer
cancels a reservation on tour” change-event type is
termination of reservation, so input like reservation_id
(PNR) extracted from the event template of this event
searches a reservation object (affecter class) to be
terminated.

Applying rule 6(d)/state rule: In an event, “TA
Software displays tour details” change-event type is
read tour, so input like tour_id extracted from the event
template of this event searches a tour object (facilitator
object) to be accessed. It places method display_tour ()
in TA software (Initiator) and correspondingly places
method read_tour (in Tour (Facilitator).

Applying rule 6(e)/state rule: In an event, “Employee
increase credit limit of customer”, change-event type is
calculate, so new credit limited is calculated based on
some criteria and updated for a given customer
instance.

Applying rule 6(f)/state rule: An event, “Customer
cancels reservation on tour”, checks reservation status
of tour booked and triggers an event “TA Software
updates booked tour details in database”.

Applying rule 6(g)/state rule: In an event, “TA
software weekly generates a report of all canceled
tours.” change-event type is compute, so all tour-
objects that are cancelled are retrieved without
modifying their state.

J. Computer Sci., 6 (11): 1301-1325, 2010

1313

Fig. 2: Class diagram using event-based approach

Table 5: Event template for event “travel agency keeps tour information through TA software”
Event ID EA03
Event Name keeps tour information
Description Travel agency keeps tour information through TA software
Initiator NULL Count
Facilitator Travel agency Software Count
Affecter Tour Count
Timestamp TA2
Causative events (preconditions) EA01
Inputs Tour id, Tour name, Source, destination, cost, days, availability status.
Trigger Vector NULL
Change-event Connection event between Travel agency and tour
Creation event of Tour (Tour class)

Table 6: Event template for event “customer registers with TA software”
Event ID EA04
Event Name register customer
Description Customer registers with TA software
Initiator NULL Count
Facilitator TA Software Count
Affecter Customer Count
Timestamp TA3
Causative events (preconditions) EA02
Trigger Vector Travel agency provide user_id and password to customer
Inputs Customer name, ID, email, phone number, password
Change-event Creation event of Customer profile

J. Computer Sci., 6 (11): 1301-1325, 2010

1314

Table 7: Event template for event “travel agency provide user_id and password to customer”
Event ID EA05
Event Name Provides login_id and password
Description Travel agency provide user_id and password to customer
Initiator Travel agency Software Count
Facilitator Null Count
Affecter Customer Count
Timestamp TA4
Causative events (preconditions) EA04
Inputs User_id and Password
Trigger Vector Customer view tour information
 Customer make a reservation on tour
 Customer send a complaint
 Customer send a suggestion
Change-event Update Customer profile

Table 8: List of potential class names

Customer
Tour
Travel agency*
Reservation
Travel agency software*
Complaint
Suggestion
Manager
Employee

Table 9: List of potential classes with our stereotypes
Customer Initiator, affecter
Tour Facilitator, affecter
Reservation Facilitator, affecter
Travel Agency software initiator, facilitator
Complaint Facilitator or affecter
Suggestion Facilitator or affecter
Manager Initiator
Employee Initiator, affecter

Table 10: List of potential classes with UML stereotypes
Customer Entity class
Tour Entity class
Reservation Entity class
Travel agency software Boundary, control class
Complaint Entity class
Suggestion Entity class
Manager Boundary class
Employee Entity class

Applying rule 7/creation rule: Customer object is
getting created in system with event “TA Software
registers customer”, constructor for customer is added
to affecter(Customer) and corresponding
create_customer() method is added to a facilitator(TA
Software). Similarly for event “Customer cancels
reservation”, reservation object is destroyed, so a
destructor is added to an affecter (reservation class) and
a corresponding method destroy_reservation() is added
to an initiator (Customer) and a facilitator(TA
Software).

Applying rule 8/Association rule: In an event,
“Customer makes reservation on tours”, a connection

change event occurs between Customer (I) and Tour (F)
so an association is mapped between a Customer (I) and
Tour (F) with association name as ‘travel’.

Applying rule 9/access rule: In an event, “Customer
view information about tours”, a customer class
(initiator) and TA Software (facilitator and boundary
class) has to have a read_tour() method that invokes a
selector defined in the tour. A tour is a facilitator and an
entity class of an event, so it defines a selector
get_tour_details() that provides name, source,
destination and price of a tour.

Applying rule 10/modifier rule: In an event, “TA
software update availability status of the tour booked”,
an update method is added to TA Software (Initiator)
and correspondingly add set status () method to Tour
(Affecter). Similarly for event “TA Software updates
customer information in database”, write_customer()
method is added to TA Software (initiator) that invokes
set_customer (affecter) in Customer class.

Applying rule 11/classify rule: In an event, “Manager
provide login ID and password to Employees”,
Manager is a type of Employee so Inheritance
relationship can be made between Manger and
Employee.
 Figure 2 shows the class diagram generated as a
result of applying rules to all the documented event
templates of Reservations Online Case Study.
 A prototype tool ‘EV-ClassGEN’ (Fig. 3) is
developed in Java to provide automation support to (a)
extract events from requirements, (b) document the
extracted events in Event Templates and (c) implement
rules to derive specification for an analysis-level class
diagram. The tool has a modular structure that takes
textual requirements specification as input. The three
modules are (a) E-XTRACTOR (b) Event Template
Generator and (c) Class Diagram Generator.

J. Computer Sci., 6 (11): 1301-1325, 2010

1315

Fig. 3: EV-ClassGEN Tool Architecture

 E-XTRACTOR is a domain independent module
that automates the process of identification, extraction,
analysis and categorization of events. E-XTRACTOR
module uses a systematic approach based on Subject,
Verb and Object (SVO) pattern is used to extract and
formalize events from textual requirements expressed in
English as a natural language. Subject-verb-object
pattern identifies an event in a sentence. E.g. consider
the sentences which are events in typical order
processing system, “Customer places order”, “Sales
Manager denies credit request”, “Marketing
Department changes prices”. Nearly every complete
sentence has at least a verb and subject. Some of the
commonly used sentence patterns that are used to
identify events are SUBJECT-VERB (Coyotes howl),
SUBJECT-VERB-OBJECT (Elephants frighten mice),
SUBJECT-VERB-INDIRECT OBJECT-DIRECT
OBJECT (Mary baked Fred a cake). There is a presence
of Subject, Verb and Object in all of them. It also gives
the users benefit to analyze, classify and refine the list
of automatically extracted events. User can further add
new events that are not explicit in the requirements. In
order to evaluate the performance of the module, two
coverage metrics are also proposed-Coverage metric
and Coverage Accuracy metric. These metrics compare
events generated by the module with events extracted
manually by domain experts from the case studies.
Coverage metric is defined as the percentage of total
number of events extracted by our E-XTRACTOR over
total number of events manually extracted by domain
experts. Coverage Accuracy metric is defined as the
percentage of correct events extracted by our E-
XTRACTOR over total number of events extracted by
our E-XTRACTOR. The module has been tested on
several case studies from different domains and has

shown very promising results (Singh et al., 2009a). The
module takes input as natural language textual
requirements written in English and gives the output in
textual format (Fig. 4). Word outside parenthesis
represents event while the arguments of events are
represented inside parenthesis. Arguments represent
subject, object and context information of an event. It
uses Stanford‘s Part of Speech (POS) tagger to generate
tagged output. We have implemented 15 parsing rules
that are applied on the output of the POS tagger to
automatically extract list of SVO patterns (Events) from
the textual requirements in XML format (Fig. 5). XML
format shows list of events embedded in Event_list root
tag. Inside root tag a triplet of <Subject, Verb, Object> is
specified as child elements. Parsing rules used to extract
events are described in detail in (Singh et al., 2009b).
Once list of Events and their types is finalized, then it is
passed on to Event Template Generator module.
 Event Template Generator module document each
event from the final list of events using Event Template
(Fig. 6) and store the output as validated XML file. For
validating the event template XML file, an XML
schema is designed that reads the contents of XML file
and generate a validated XML File. Tool merges all the
XML files corresponding to different event templates in
one single file which is used by Class Diagram
Generator module.
 Class Diagram Generator module implements the
proposed 11 mapping rules to generate an importable
XML class diagram specification, in XML Metadata
Interchange (XMI) format for Argo UML tool. On
importing the XMI file containing class diagram model
information, Argo UML tool shows the entire model
information (class names, associations, generalization,
operations and attributes) as tree like structure (Fig. 7).

Controlled experiment:
Objective of the experiment: A lot of empirical work
has already been done for validating an approach or a
hypothesis. The experimental setup presented here is
inspired from various approaches as described in
(Cheong, 2008; Dritsakis, 2004; Dritsaki and
Adamopoulos, 2005; Dritsakis and Gialetaki, 2005;
Fang and Liu, 2007; Sharahili and Liu, 2008; Xu et al.,
2007).
 There are many approaches to generate class
diagram specification from the requirements that can be
used for comparisons with the proposed approach, but
we have used industry standard Use Case approach.
The objective of conducting controlled experiment is to
compare effectiveness of the conventional Use Case
based approach that already exists with Event-based
approach that we have proposed for generating
class diagram specification from the requirements.

J. Computer Sci., 6 (11): 1301-1325, 2010

1316

Fig. 4: E-XTRACT tool

Fig. 5: Output in XML format

Fig. 6: EV-ClassGEN tool event template GUI interface

J. Computer Sci., 6 (11): 1301-1325, 2010

1317

Fig. 7: Class diagram specification from EV-ClassGEN tool in argo UML

Effectiveness is measured in terms of perceived ease of
use and perceived usefulness of an approach by the user
(Davis, 1989). Through this experiment, we wanted to
empirically conclude that there is a difference in
perceived ease of use and perceived usefulness in using
Event-based approach vis-a-vis conventional approach,
from the viewpoint of users.

Experimental design and setup: We have conducted a
controlled experiment using two-group posttest-only
randomized experiment. The posttest only randomized
experimental design has simple structure and is one of
the best research designs for assessing cause-effect
relationships. As in our case, we are measuring effect in
terms of improvements in perceived ease of use and
perceived usefulness of the two groups, after training
them on two different conceptual modeling approaches,
so we have used this experimental design. It is easy to
execute and, because it uses only a posttest, it is
relatively inexpensive.
 From around 480 undergraduate students, 160
voluntaries were chosen randomly from B. Tech II year
and B. Tech Final year, from two different courses,
Object-Oriented Programming and Software Quality
respectively. The final year students were chosen to
represent professional practitioners. All the selected

subjects have volunteered to participate in this activity.
The groups were randomly assigned tasks.
Experimental group got the training on Event-based
approach while the Control group (the comparison
group) got the training on Use Case based approach to
avoid threat to validity. None of the groups knew about
the hypothesis. Documented project reports were
collected from all the users. Measurement of perceived
ease of use and perceived usefulness was collected on
the basis of 12 parameters. These parameters were rated
on Likert’s seven point scale. The measurements taken,
as well as an assessment of the completed project
reports, were evaluated and statistically analyzed to
investigate difference in perceived ease of use and
perceived usefulness in using Event-based vis-a-vis Use
Case based approach.
 The experiment was conducted in two phases.
Subjects were divided into Experimental and Control
groups, each consisting of 80 students. Special care was
taken to make sure that subjects get assigned to any one
group only without overlapping. First phase was on
Concept Teaching where both Event-based and Use
Case based approach was taught to experimental group
and control group respectively. After a week, second
Phase Concept Application was conducted with all
subjects, where 30 case studies were randomly

J. Computer Sci., 6 (11): 1301-1325, 2010

1318

distributed to all users of both experimental as well as
control groups. Every student worked independently, so
with 30 systems, we had 80 unique data points in each
group which is adequate to perform statistical tests.
After applying respective approaches, they were asked
to extract information to generate class diagrams from
specification. Below are details of the components of
the controlled experiment:

• Independent variable: The independent variables

are the two Object-Oriented Analysis approaches
(Conventional vis-à-vis Event-based) used for
deriving class diagram specification from the
requirements

• Dependent variable: There are two dependant
variables in our controlled experiment whose effect
is to be measured in the context of independent
variables. These are-Perceived usefulness and
Perceived ease of use. Perceived Usefulness is
defined as ‘‘the degree to which a person believes
that using a particular approach would enhance his
or her job performance’’ whereas Perceived ease of
use refers to ‘‘the degree to which a person
believes that using a particular approach would be
free of effort

• Context variables: The effect of a specific
technique will depend on the context in which it is
used. The important context variables in our
controlled experiment are subjects and task:

• Subjects: In our case subjects were 160
Undergraduate students from B. Tech II year
and B. Tech Final year. These groups of
subjects consequently represent our target
population

• Task: The task of the experiment was to first
extract information for class diagram and then
construct a class diagram for case study. The
subjects received a textual requirements
document along with detailed rules on how to
apply conventional and Event-based approach.
Controlled group used Noun and Use case
based OOA approaches. Control Group was
given rules for Use Case Modeling and in
writing effective Use Cases from (Jacobson et
al., 1999) whereas the experimental groups
were given rules based on the proposed
approach. The amount of information is kept
same in both the rules, to avoid threats to
validity

• Material: During controlled experiment, subjects
were given the following material
• Requirements document S
• Use Case Template Sample (Filled and Blank

format)

• Event Template Sample (Filled and Blank
format)

• Stationary items like Pen, Pencil and Blank
sheets

• Questionnaires: After completing Object-
Oriented Analysis of case study, using the
approach assigned to them, we asked student’s
opinion on perceived usefulness and perceived
ease of use of OOA approach using a
questionnaire that has 12 parameters. The
subjects were asked to mark the score against
each parameter, according to a Likert-type
seven-point response format where 1 indicates
‘‘strongly agree,’’2 indicates ‘‘moderately
agree,’’ 3 indicates ‘‘slightly agree,’’ 4
indicates ‘‘neutral,’’5 indicates ‘‘slightly
disagree,’’ 6 indicates ‘‘moderately disagree,’’
and 7 indicates ‘‘strongly disagree.’’ The
perceived usefulness and perceived ease of use
questionnaires consist of six parameters each
with their respective acronym given inside
parenthesis. For perceived usefulness, the
questions are (PU1) accomplishes requirement
analysis more quickly, (PU2) improves
requirement analysis performance, (PU3)
increases productivity in requirement analysis,
(PU4) enhances effectiveness in requirement
analysis, (PU5) makes it easier to do
requirement analysis and (PU6) useful in
requirement analysis. For perceived ease of
use, the six parameters are (PE1) need to
consult modeling manual and/or reference,
(PE2) easy to model what I want to, (PE3)
easy to understand, (PE4) rigid and inflexible
to understand, (PE5) easy to remember how to
do requirement analysis and (PE6) easy to use.
This questionnaire gave us the student’s
perception of using Event-based approach vis-
à-vis conventional approach

Case study/systems: We took around 30 case studies
from different application domains. They range from
simple to complex cases. All case studies were such
that any of the two approaches can be easily applied
without alerting the descriptions. Some of the titles are
Implementation of wave optics, UEFA champions
League, Resort Management System, Fighter Plane
control System, University database management
system, LIC management System, Desktop window
management, Mall Management system, ATM System,
Metro management system, KIT management system,
Monopoly board game, Connect-stay connected,
Airport Management system, Online auction system,

J. Computer Sci., 6 (11): 1301-1325, 2010

1319

Football penalty shoot, Image editor, E-stock.com,
Tutorial on DS, Business Game, Graph Plotter, Chess,
Ludo, KIT Counselling, Snake, Brainvita, Solitaire to
name a few.

Data collection: In the end of activity, we collected
case studies, filled templates forms (Use Case template
as well as Event template), list of Events, Use Cases
and Class diagrams drawn using the approach assigned
to them in the respective session and project reports
from all users.

Research hypothesis and test of hypothesis: We
expected that the users will find Event-based approach
more effective in terms of perceived ease of use and
usefulness as compared to the conventional approach.
Our null hypothesis is that: There is no significant
difference between the student’s perception of ease of
use and usefulness when following an Event-based
approach and when following a conventional approach.
To compare Perceived Ease of Use and Usefulness of
Event-based approach and Conventional approach
following hypotheses were tested in controlled
experiment using two-tailed paired t-test. The t-test was
used as we have to assess whether the means of two
groups are statistically different from each other. If they
are different then, is the difference positive or negative.
So our results of statistical tests can go in either
direction. Therefore, we have used two-tailed t-test.
Moreover, two tailed t test is also appropriate for the
analysis of the posttest-only two-group randomized
experimental design that we have chosen for our
experiment. The important points when one considers
doing a t-test on a Likert scale question is that a Likert
scale question with only 5 possible answers may not
possibly possess a normal probability distribution. This
is because the range of answers is discrete, not
continuous (presumably one is not allowed to answer
1.3 or 2.55). In order to check the distribution, we have
plotted frequency results of our questions using a
scatter diagram and found the distribution is mound
shaped. Therefore, it was approximated as a normal
distribution:

H01: There is no difference in the perception of

subjects with respect to PU1 about two
approaches

H02: There is no difference in the perception of
subjects with respect to PU2 about two
approaches

H03: There is no difference in the perception of
subjects with respect to PU3 about two
approaches

H04: There is no difference in the perception of
subjects with respect to PU4 about two
approaches

H05: There is no difference in the perception of
subjects with respect to PU5 about two
approaches

H06: There is no difference in the perception of
subjects with respect to PU6 about two
approaches

H07: There is no difference in the perception of
subjects with respect to PE1 about two
approaches

H08: There is no difference in the perception of
subjects with respect to PE2 about two
approaches

H09: There is no difference in the perception of
subjects with respect to PE3 about two
approaches

H010: There is no difference in the perception of
subjects with respect to PE4 about two
approaches

H011: There is no difference in the perception of
subjects with respect to PE5 about two
approaches

H012: There is no difference in the perception of
subjects with respect to PE6 about two
approaches

RESULTS AND DISCUSSION

Results of descriptive and inferential techniques:
Analysis of data collected was done by a group of
faculty members. None of the authors were involved
in evaluating the results in order to avoid threat to
validity. Table 11-14 show detailed descriptive
statistics of both the approaches. Figure 8 shows
comparative mean of the two approaches on the basis
of 12 parameters.

Table 11: Descriptive statistics of Perceived Usefulness (PU)
 N Minimum Maximum Mean SD
Conventional PU1 80 1 7 2.938 1.3626
Event-based PU1 80 1 5 1.900 1.0140
Conventional PU2 80 1 7 2.590 1.3570
Event-based PU2 80 1 5 1.730 0.8260
Conventional PU3 80 1 6 2.540 1.2010
Event-based PU3 80 1 5 2.340 0 7110
Conventional PU4 80 1 6 2.750 1.2880
Event-based PU4 80 1 6 1.850 1.2440
Conventional PU5 80 1 6 2.710 1.3800
Event-based PU5 80 1 5 1.550 1.0660
Conventional PU6 80 1 6 2.660 1.2720
Event-based PU6 80 1 5 1.560 0.9390

J. Computer Sci., 6 (11): 1301-1325, 2010

1320

Table 12: Descriptive statistics of Perceived Ease of use (PE)
 N Minimum Maximum Mean SD
Conventional PE1 80 1 7 3.19 1.654
Event-based PE1 80 1 7 3.91 2.076
Conventional PE2 80 1 6 3.05 1.377
Event-based PE2 80 1 6 2.00 1.125
Conventional PE3 80 1 6 2.89 1.414
Event-based PE3 80 1 5 1.80 1.152
Conventional PE4 80 1 7 4.09 1.663
Event-based PE4 80 2 7 5.75 1.196
Conventional PE5 80 1 6 2.83 1.251
Event-based PE5 80 1 6 2.93 1.199
Conventional PE6 80 1 7 3.04 1.453
Event-based PE6 80 1 5 2.20 1.130

Findings of controlled experiment and project
reports of subjects: Perceived Usefulness of approach:
From the descriptive statistics of Table 11, we can
clearly see that mean difference between conventional
and Event-based approach is positive for all 6
parameters of Perceived Usefulness which means that
subjects are more towards agreement that Event-based
approach has better perceived usefulness than
Conventional approach. Paired t-test results in Table 13
indicate that there is a significant difference in terms of
5 out of 6 parameters between Event-based and
conventional approach, in carrying out OOA from
requirements. Only with respect to parameter PU3
difference between two approaches is found
insignificant. This is also validated by the minimum
value of mean difference calculated for PU3. This
indicates that subjects believe that there is no
significant difference between event-based and Use
Case based approaches with respect to their ability to
increase productivity in requirements analysis. At the
same time they believe that event-based approach is
better than conventional approach in accomplishing
requirement analysis more quickly, in improving
requirement analysis performance, in enhancing
effectiveness in requirement analysis and in making
easier to do requirement analysis and is more useful in
requirement analysis. Thus we reject hypothesis H01,
H02, H04, H05, H06 and accept H03. So there is no
difference w.r.t. PU3 (increases productivity in
requirement analysis) in two approaches.

Perceived ease of use of approach: From the
descriptive statistics in Table 12, we can clearly see that
mean difference between conventional and Event-based
approach is positive for 3 parameters of Perceived Ease
of Use (PE2, PE3 and PE6). The mean difference
between conventional and Event-based approach is
negative for 3 parameters of Perceived Ease of Use
(PE1, PE4 and PE5). Opinion regarding PE4 and PE1 is
actually favorable for Event-based approach. Paired t-

test results in Table 14, indicate that there is a
significant difference in terms of 5 out of 6 parameters
between Event-based and conventional approach, in
carrying out OOA from requirements. Only with
respect to parameter PE5 difference between two
approaches is found insignificant. This indicates that
subjects believe that there is no significant difference
between event-based and Use Case based approaches
with respect to their ability to remember how to do
requirement analysis. At the same time it indicates that
subjects believe that event-based approach is easy to
model, understand and use. Event-based approach is not
rigid and inflexible to understand and they do not need
to consult modeling manual and/or reference. This is
also validated by the minimum value of mean
difference calculated for PE5. Thus we reject
hypotheses H07, H08, H09, H010, H012 and accept H011.
So there is no difference w.r.t PE5 (easy to remember
how to do requirement analysis).
 In the controlled group, for carrying out a detailed
analysis of Use cases, activity, sequence and
collaboration diagrams were made following which an
initial class model was derived from the requirements.
 Then, sequence and collaboration diagrams were
made to reveal the dynamic behavior of the system in
terms of dynamic interactions among and within
objects. Sequence and collaboration diagrams are useful
as a basis for object design as well as method design.
Many useful methods could be identified and derived
from incoming and outgoing messages in these
diagrams. In contrast, in Event-based approach, a
detailed class diagram was derived from events as
starting point and they did not focus on any other
diagram. The 11 rules described in the approach helped
them to determine which events should be allocated to
operations on data centric persistent classes. Attributes,
methods and associations with cardinality were easily
identified. Thus, we can say that taking events as
starting point in OOA, helps to derive analysis-level
class diagram from requirements. The findings of the
controlled experiment reinforced the evidence that
Event-based approach has brought a significant change
in perception of users about using OOA technique.

Threats to validity: Validity is the best available
approximation to the truth of a given proposition,
inference, or conclusion. We discuss threats to the
conclusion, construct, internal and external validity
with respect to our controlled experiment. Our goal is
firstly to help the readers qualify the results that are
presented in this study and secondly, propose future
research by highlighting some of the issues associated
with our study.

J. Computer Sci., 6 (11): 1301-1325, 2010

1321

Fig. 8: Comparative mean of conventional and event-based approaches on 12 parameters

Table 13: Paired t-test results of perceived usefulness
 Paired difference
 --
 Std. Std. 95% confidence interval
Lower upper Mean deviation error mean of the difference t df Sig. (2-tailed)
Conventional PU1-Event-based PU1 1.0375 1.6416 0.1835 0.6722 1.4028 5.653 79.000
Conventional PU2-Event-based PU2 0.8630 1.5970 0.1790 0.5070 1.2180 4.831 79.000
Conventional PU3-Event-based PU3 0.2000 1.4790 0.1650 -0.1290 0.5290 1.210 79.230
Conventional PU4-Event-based PU4 0.9000 1.7690 0.1980 0.5060 1.2940 4.551 79.000
Conventional PU5-Event-based PU5 1.1630 1.7460 0.1950 0.7740 1.5510 5.954 79.000
Conventional PU6-Event-based PU6 1.1000 1.6660 0.1860 0.7290 1.4710 5.907 79.000

Table 14: Paired t-test results of perceived ease of use
 Paired differences
 --
 Std. Std. 95% Confidence interval
Lower upper Mean deviation error mean of the difference t df Sig. (2-tailed)
Conventional PE1-Event-based PE1 -0.725 2.392 0.267 -1.257 -0.193 -2.7110 79.008
Conventional PE2-Event-based PE2 1.050 1.848 0.207 0.639 1.461 5.0820 79.000
Conventional PE3-Event-based PE3 1.088 1.752 0.196 0.698 1.477 5.5530 79.000
Conventional PE4-Event-based PE4 -1.663 2.092 0.234 -2.128 -1.197 -7.1060 79.000
Conventional PE5-Event-based PE5 -0.100 1.747 0.195 -0.489 0.289 -.5120 79.610
Conventional PE6-Event-based PE6 0.838 1.965 0.220 0.400 1.275 3.8130 79.000

Conclusion validity: Conclusion validity is the degree
to which conclusions can be drawn about the existence
of a statistical relationship between treatments and
outcomes. In our controlled experiment, we have
treated the experimental group by teaching them Event-
based approach and tried to measure their change in
perceptions as outcomes. We have avoided low
reliability threat by taking from around 480
undergraduate students 160 voluntaries as subjects,
randomly. These were from B. Tech II year and B.

Tech Final year from two different courses, Object-
Oriented Programming and Software Quality
respectively. The groups were randomly assigned tasks.
To avoid threat due to poor reliability of treatment
implementation, both conventional and Event-based
approaches were taught in similar manner by same
faculty in special lecture sessions. Both approaches
were allotted equal number of contact hours. To avoid
threat due to random irrelevancies in the setting,
subjects were allowed to take home, assigned task, so

J. Computer Sci., 6 (11): 1301-1325, 2010

1322

that they can do the work with full dedication. No time
limit was imposed to complete the task of OOA.
Ratings for 12 parameters from 160 students were
collected during the execution of the experiment. For
what concerns the quality of data collection, we used
pencil and paper; hence data collection could be
considered critical. Finally the quantity and the quality
of the data collected and its analysis were enough to
support our conclusions. Parameters for measuring
perceived usefulness and ease of use were taken from a
published work in journal (Cockburn, 2000). In future,
we will further improve reliability by increasing the
number of questions. We accept this risk being a
preliminary study and plan to replicate the experiment
with more subjects in future.

Construct validity: Construct validity is the degree to
which the independent variables and dependent
variables accurately measure the concepts they purport
to measure. We wanted to measure effect of Event-
based approach in changing perception of users
regarding ease of use and usefulness in using OOA
technique. We also wanted to measure whether or not
our Event-based would be easily understood by users.
What will be their perception after learning new
technique along with conventional approach?
Dependant variables were measured by using
questionnaire based on perceived ease of use and
usefulness. We used 12 parameters which are objective
measures that reflect perceived ease of use and
usefulness of subjects (Cockburn, 2000). For this
reason, we consider that they objectively measured
what we purport to measure. We avoided the threat of a
mono operation bias by providing the users with
different types of tasks, deliverables and case studies
that represent a significant range of software systems.
We have no hypotheses guessing threat since the
experiment was presented as a normal class exercise
and the subjects were not informed of the hypotheses
before the experiment.

Internal validity: Internal validity is the degree to
which conclusions can be drawn about the causal effect
of the independent variables. Internal validity judge
whether observed changes can be attributed to a
program or intervention (i.e., the cause) and not to other
possible causes (sometimes described as “alternative
explanations” for the outcome). We have avoided single
group, multi group and social threats to internal validity
by not forcing any subject to participate. It was a
voluntarily involvement of all subjects chosen. Subjects
were asked not to disclose their personal details. No
bonus marks was allotted for the controlled experiment.

Data collection and analysis was done by other faculty
members. Subjects were not informed of the hypotheses
before the experiment.

External validity: External validity is the degree to
which the results of the research can be generalized to
the population under study and other research settings.
The greater the external validity, the more the results of
an empirical study can be generalized with regards to
actual software engineering practice. There was no bias
selection in this experiment as users were randomly
selected from two different courses and two different
years of B. Tech Program. They were divided randomly
into experimental and control group. Three threats to
validity have been identified which limit the ability to
apply any such generalization (a) the case studies used
in the experiment are representative of real cases, but
more empirical studies, using “real cases” from
software companies, will be carried out (b) Although in
this experiment students were used as subjects rather
than professional practitioners, half of the sample was
from B. Tech Final year of studies and close to their
professional employment in industry. It is therefore
reasonable to assume that if the experiment is done
using professionals, the experiment should produce
similar results. However this is a hypothesis that needs
to be tested and could be the subject of a future work
replication experiment. (c) This experiment was carried
out towards the end of course delivery and it could be
replicated in the mid phase of course delivery.

CONCLUSION

 All Object-Oriented Analysis and Design (OOAD)
methods start from the process of identifying objects
and their classes from the requirements of the problem
domain. But none of the methods to the best of our
knowledge, have focused on event-based requirements
analysis, rather all are behavioral based approaches.
This study has described a systematic approach for
requirement analysis of event-based systems.
Requirements of the problem domain were captured as
events in the proposed Event Templates. Mapping rules
were applied to extract a domain model specification
(analysis-level class diagram) from Event Templates.
An Event-Meta Model has been proposed to focus on
the concept of event as basis for class and object
identification. The meta-model has addressed certain
issues like what an event is, in the context of OOAD
and why events should be the basis to derive static
model of the system (class diagram). A comparative
analysis is also done between Events and Use Cases
Templates and it has been shown how our Event

J. Computer Sci., 6 (11): 1301-1325, 2010

1323

template is different from a conventional Use Case
template and event tables used in other existing
approaches.
 A prototype tool ‘EV-ClassGEN’ has also been
developed to provide automation support to extract
events from requirements, document the extracted
events in Event Templates and implement rules to
derive specification for an analysis-level class diagram.
The tool takes events occurring in the system as starting
point in OOA and systematically derives an importable
class diagram specification in XML Metadata
Interchange (XMI) format for Argo UML tool. The
proposed approach is also validated through a
controlled experiment to compare the perceived ease of
use and usefulness of the proposed event-based
approach with a more conventional and industry
standard Use Case based approach. Results of the
controlled experiment have shown that after studying
and applying Event-based approach, student’s
perception about ease of use and usefulness of OOA
technique has significantly improved. Their project
reports showed positive feedback about Event-based
approach. These results reinforced the evidence that by
analyzing events that are likely to happen in a system,
one can derive class diagram information from
requirements.
 Our approach can well be applied to modeling real
time systems, embedded systems and safety critical
systems, where events play a significant role in
understanding such domains. When applied to such
domains, our approach can capture requirements in
terms of domain events; model individual object’s
behavior and its collaboration and interaction with other
objects in the domain.
 The empirical study conducted in this study
focused on users’ perceptions, not on model quality or
effort. In future, we plan to replicate the experiment for
measuring the quality of class diagram and efforts used
in generating class diagram using the two techniques.
Our future work will also demonstrate how dynamic
behavior of the system can be extracted from event
templates. We are in a process of validating rules to
transform the event templates to dynamic models.
Additionally, we also plan to propose rules for
generating test scenarios and derive some metrics from
Event templates.

REFERENCES

Abbott, J.R., 1983. Program design by informal English

descriptions. Commun. ACM., 26: 882-894. DOI:

10.1145/182.358441

Anda, B. and D.I.K. Sjberg, 2003. Applying use cases
to design versus validate class diagrams-a
controlled experiment using a professional
modeling tool. Proceeding of the International
Symposium on Empirical Software Engineering,
Italy, Sept. 30-Oct. 1, IEEE Xplore Press, USA.,
pp: 50-60. DOI: 10.1109/ISESE.2003.1237964

Barber, K.S. and T.J. Graser, 2000. Tool support for
systematic class identification in object-oriented
software architectures. Proceeding 37th
International Conference on Technology of
Object-Oriented Languages and Systems, Nov. 20-
23, Sydney, IEEE Xplore Press, NSW, Australia,
pp: 82-93. DOI: 10.1109/TOOLS.2000.891360

Becker, L.B., C.E. Pereira, O.P. Dias, I.M. Teixeira and
J.P. Teixeira, 2000. MOSYS: A methodology for
automatic object identification from system
specification. Proceeding 3rd IEEE International
Symposium on Object-Oriented Real-Time
Distributed Computing, Mar. 15-17, IEEE Xplore
Press, Newport, CA., USA., pp: 198-201. DOI:

10.1109/ISORC.2000.839529
Booch, G., J. Rumbaugh and I. Jacobson, 2005. Unified

Modeling Language User Guide. 2nd Edn.,
Addison-Wesley Professional, New York, ISBN:
10: 0-321-26797-4, pp: 496.

Cheong, C.W., 2008. Random walk models
classifications: An empirical study for Malaysian
stock indices. Am. J. Applied Sci., 5: 411-417.

http://www.scipub.org/fulltext/ajas/ajas54411-417.pdf
Coad, P. and E. Yourdon, 1990. Object Oriented

Analysis. 2nd Edn., Prentice Hall, Englewood
Cliffs, NJ., ISBN: 10: 0136299814, pp: 233.

Cockburn, A., 2000. Writing Effective Use Cases. 2nd
Edn., Addison-Wesley Professional, New York,
ISBN: 10: 0201702258, pp: 304.

Davis, F.D., 1989. Perceived usefulness, perceived ease
of use and user acceptance of information
technology. MIS Q., 13: 319-340.

http://www.jstor.org/stable/249008
Drake, J.M., W.W. Xie, W.T. Tsai and I.A. Zualkernan,

1993. Approach and case study of requirement
analysis where end users take an active role.
Proceeding of the International Conference
Software Engineering, May 17-21, IEEE Xplore
Press, Baltimore, MD., USA., pp: 177-186. DOI:

10.1109/ICSE.1993.346046
Dritsakis, N., 2004. A causal relationship between

inflation and productivity: An empirical approach
for Romania. Am. J. Applied Sci., 1: 121-128.

DOI: 10.3844/ajassp.2004.121.128

J. Computer Sci., 6 (11): 1301-1325, 2010

1324

Dritsaki, C. and A. Adamopoulos, 2005. A causal
relationship and macroeconomic activity:
Empirical results from European Union. Am. J.
Applied Sci., 2: 504-507. DOI:
10.3844/ajassp.2005.504.507

Dritsakis, N. and K. Gialetaki, 2005. Macro-economic
variables analysis in Ukraine: An empirical
approach with cointegration method. Am. J.
Applied Sci., 2: 836-842. DOI:

10.3844/ajassp.2005.836.842
Fang, Q. and Y. Liu, 2007. Empirical analysis:

Business cycles and inward FDI in China. Am. J.
Applied Sci. 4: 802-806. DOI:

10.3844/ajassp.2007.802.806
Ferg, S., 2003. What’s wrong with use cases? Microsoft

LPE.
http://www.jacksonworkbench.co.uk/stevefergspag
es/papers/ferg--whats_wrong_with_use_cases.html

Jalloul, G., 2004. UML by Example. 1st Edn.,
Cambridge University Press, Cambridge, ISBN:
10: 0521008816, pp: 276.

Harmain, H.M. and R. Gaizauskas, 2003. CM-builder a
natural language-based CASE tool for object-
oriented analysis. J. Automat. Software Eng.,
10: 157-181. DOI: 10.1023/A:1022916028950

Ilieva, M.G. and O. Ormandjieva, 2005. Automatic
transition of natural language software
requirements specification into formal presentation.
Nat. Lang. Process. Inform. Syst., 3513: 392-397.

DOI: 10.1007/11428817_45
Jacobson, I., G. Booch and J. Rumbaugh, 1999. Unified

Software Development Process. 2nd Edn.,
Addison-Wesley Professional, New York, ISBN:
10: 0201571692, pp: 512.

Luckham, D., 2002. Power of Events: An Introduction
to Complex Event Processing in Distributed
Enterprise Systems. 1st Edn., Addison-Wesley
Professional, New York, ISBN: 10: 0201727897,
pp: 400.

Kruchten, P., 2003. Rational Unified Process: An
Introduction. 3rd Edn., Addison-Wesley
Professional, New York, ISBN: 10: 0321197704,
pp: 336.

Liang, Y., 2003. From use cases to classes: A way of
building object model with UML. Inform. Software
Technol., 45: 83-93. DOI: 10.1016/S0950-
5849(02)00164-7

Liu, D., K. Subramaniam, B.H. Far and A. Eberlein,
2003. Automating transition from use-cases to
class model. Proceeding of the Canadian
Conference on Electrical and Computer
Engineering, May 4-7, IEEE Xplore Press, USA.,
pp: 831-834. DOI: 10.1109/CCECE.2003.1226023

Liu, D., K. Subramaniam, A. Eberlein and B.H. Far,
2004. Natural language requirements analysis and
class model generation using UCDA. Proceeding
of 17th International Conference on Industrial and
Engineering Applications of Artificial Intelligence
and Expert Systems, May 17-20, Springer, Ottawa,
Canada, pp: 295-304. DOI: 10.1007/b97304

Muhairat, M.I., R.E. Al-Qutaish and A.A. Abdelqader,
2010. UML diagrams generator: A new case tool to
construct the use-case and class diagrams from an
event table. J. Comput. Sci., 6: 253-260. DOI:

10.3844/jcssp.2010.253.260
Mustafa, Y. and A. Awofala, 2004. Activity-based class

design: an analytical method for deriving object-
oriented classes. Iss. Inform. Syst., 5: 240-247.

http://www.iacis.org/iis/2004_iis/PDFfiles/Mustafa
Awofala.pdf

Overmyer, S.P., L. Benoit and R. Owen, 2001.
Conceptual modeling through linguistic analysis
using LIDA. Proceeding of the 23rd International
Conference on Software Engineering, May 12-19
IEEE Xplore Press, USA., pp: 401-410. DOI:

10.1109/ICSE.2001.919113
Perez-Gonzalez, H.G. and J.K. Kalita, 2002. GOOAL:

A graphic object oriented analysis laboratory.

Proceeding of the Companion of the 17th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Nov. 4-8, ACM Press,
Seattle, Washington, pp: 38-39. DOI:

10.1145/985072.985092
Perez-Gonzalez, H.G., J.K. Kalita, A.S.N. Varela and

R.S. Wiener, 2005. GOOAL: An educational
object oriented analysis laboratory. Proceeding of
the Companion to the 20th Annual ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and
Applications, Oct. 16-20, ACM Press, San Diego,
CA., USA., pp180-181. DOI:

10.1145/1094855.1094924
Poo, D.C.C., 1999. Events in use cases as a basis for

identifying and specifying classes and business
rules. Proceeding of the 29th International
Conference on Technology of Object-Oriented
Languages and Systems, June 4-7, IEEE Xplore
Press, Nancy, France, pp: 204-213.

10.1109/TOOLS.1999.779013
Ross, R.G., 1988. Entity Modeling: Techniques and

Applications. Database Research Group, Inc.,
USA., pp: 218.

Roussev, B., 2003. Generating OCL specifications and
class diagrams from use cases: A Newtonian
approach system sciences. Proceeding of the 36th
Annual Hawaii International Conference on

System Science, Jan. 6-9 IEEE Xplore Press,
USA., pp: 1-10. DOI:
10.1109/HICSS.2003.1174886

J. Computer Sci., 6 (11): 1301-1325, 2010

1325

Samarasinghe N. and S.S. Some, 2005. Generating a
domain model from a use case model. Proceedings
of the ISCA 14th International Conference on
Intelligent and Adaptive Systems and Software
Engineering, July 20-22, Natural Sciences and
Engineering Research Council of Canada, Toronto,
Canada, pp: 23-29.

Satzinger, J.W., B.R. Jackson and D.B. Stephen, 2006.
Systems Analysis and Design in a Changing
World. 4th Edn., Course Technology, USA., ISBN:
10: 1418836125, pp: 672.

Sharahili, Y. and Y. Liu, 2008. Empirical analysis II:
Business cycles and inward FDI in China. Am. J.
Applied Sci., 5: 1409-1414. DOI:

10.3844/ajassp.2008.1409.1414
Shlaer, S. and S.J. Mellor, 1988. Object Oriented

Systems Analysis: Modeling the World in Data. 1st
Edn., Prentice Hall, Englewood Cliffs, NJ., ISBN:
10: 013629023X, pp: 144.

Singh, S.K., S. Sabharwal and J.P. Gupta, 2009a. E-
XTRACT: A tool for extraction, analysis and
classification of events from textual requirements.
Proceeding of International Conference on
Advances in Recent Technologies in
Communication and Computing, Oct. 27-28, IEEE
Xplore Press, Kottayam, Kerala, pp: 306-308. DOI:

10.1109/ARTCom.2009.120
Singh, K., R. Gupta, S. Sangeeta and J.P. Gupta, 2009b.

Automatic extraction of events from textual
requirements specification. Proceeding of 2009
World Congress on Nature and Biologically
Inspired Computing, Dec. 9-11, IEEE Xplore
Press, Coimbatore, pp: 415-420. DOI:

10.1109/NABIC.2009.5393565
Some, S.S., 2005. Enhancement of a use cases based

requirements engineering approach with scenarios.
Proceedings of the 12th Asia-Pacific Software
Engineering Conference, Dec. 15-17, IEEE Xplore
Press, USA., pp: 25-32. DOI:

10.1109/APSEC.2005.64
Some, S.S., 2006. Supporting use case based

requirements engineering. Inform. Software
Technol., 48: 43-58. DOI:

10.1016/j.infsof.2005.02.006

Some, S.S., 2007a. Petri nets based formalization of
textual use cases. SITE.
http://www.site.uottawa.ca/eng/school/publications
/techrep/2007/TR-2007-11.pdf

Some, S.S., 2007b. Use Case Editor (UCEd). Geeknet,
Inc. http://sourceforge.net/projects/uced/

Song, I.Y., K. Yano, J. Trujillo and S. Luján-Mora,
2005. A Taxonomic Class Modeling Methodology
for Object-Oriented Analysis. In: Information
Modeling Methods and Methodologies, Krogstie,
J., T. Halpin and K. Siau (Eds.). Idea Group,
Hershey, PA., ISBN: 1591403766, pp: 216-240.

Turk, Z. and D.J. Vanier, 1993. Classification systems
in object oriented modeling of buildings.
Proceeding of the International conference Design
to Manufacture in Modern Industry, June 7-9,
NRC, Bled, Maribor, Slovenia, pp: 571-578.

http://www.zturk.com/data/works/att/7f07.fullText.
06493.pdf

Wahono, R.S. and B.H. Far, 2002. A framework for
object identification and refinement process in
object-oriented analysis and design. Proceeding of
the 1st IEEE International Conference on
Cognitive Informatics, (CI’02), IEEE Xplore Press,
USA., pp: 351-360. DOI:

10.1109/COGINF.2002.1039317
Wiegers, K.E., 2005. More about Software

Requirements: Thorny issues and Practical
Advices. 1st Edn., Microsoft Press, USA., ISBN:
10: 0735622671, pp: 224.

Xu, C., S. Selvarathinam and W.X. Li, 2007.
Sociopolitical instability and economic growth
empirical evidence from Sri Lanka. Am. J. Applied
Sci., 4: 1029-1035. DOI:

10.3844/ajassp.2007.1029.1035
Yourdon, E., 1988. Modern Structured Analysis. 2nd

Edn., Prentice-Hall, New Delhi, India, ISBN: 10:
0135986249, pp: 688.

