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Abstract: Problem statement: With the rise in mobile communication, it is becoming more frequent to 
use a communication device in an enclosed noisy environment, such as a subway or in a lobby. In this 
setting however, the received microphone is severely degraded by the echo from the speaker and 
background noise. The audio processing necessary to clarify the desired speech can be broken down into 
two parts, removal of the acoustic echo and removal of the background noise. Approach: This study 
proposed an ‘external-switched’ algorithm of a dual architecture implementation for acoustic echo 
cancellation. Using the orthogonality property of adaptive algorithms to detect convergence, two 
complete adaptive filters can be run in parallel to take advantage of each filter’s particular configuration. 
By configuring one filter for fast adaptation and the second for minimizing the steady state error, a 
system can be designed with the advantages of both without suffering from increased computational cost. 
Results: A slight performance improvement can be demonstrated with this system; however the greatest 
advantage is in the reduced filter size and calculation cost. Conclusion: This parallel approach is suitable 
for systems in which a single approach to acoustic echo cancellation is insufficient. Disadvantages of one 
algorithm can be mitigated by being able to switch to a more effective algorithm seamlessly.  
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INTRODUCTION 

 
 With the rise in mobile communication, it is 
becoming more frequent to use a communication device 
in an enclosed noisy environment, such as a subway or 
in a lobby. In this setting however, the received 
microphone is severely degraded by the echo from the 
speaker and background noise. The audio processing 
necessary to clarify the desired speech can be broken 
down into two parts, removal of the acoustic echo and 
removal of the background noise. Acoustic Echo 
Cancellation (AEC) is commonly done with an adaptive 
filter, frequently done with stochastic-gradient adaptive 
algorithms that use a Least-Mean Square (LMS) 
approximation. However, background noise and other 
non-desired artifacts such as voice reverberation; 
negatively affect the performance of these filters. 
 In general, the adaptive algorithm is used to 
estimate the acoustic echo and subtracts this estimation 
from the near-end microphone signal. The simplest 
algorithm uses the previous values to approximate to 
the gradient vector to solve the steepest-descent 
problem posed by the Least-Means Square (LMS) 
approximation. Other algorithms developed to solve the 

steepest-descent problem include the Normalized Least 
Mean Square (NLMS) algorithm, sign-error LMS, 
Proportionate Normalized Least Mean Squares (PNLMS) 
algorithm (Gänsler, 2000), robust variable step-size 
NLMS (RVSS-NLMS) algorithm (Vega, 2008) and 
momentum NLMS (MNLMS) algorithm (Chhetri et al., 
2006). These all have been proven to be effective in 
removing the acoustic echo to some degree. However, 
often a residual echo often remains due to several 
factors, including an insufficient filter length, incorrect 
echo path estimation and nonlinear signal components 
(Habbets et al., 2008). A noisy environment can further 
degrade the effectiveness of the AEC algorithm and the 
quality of the near-end speech.  
 Previous study on AEC have focused on 
minimizing these issues by adding a double-talk 
detector (Chhetri, 2006), adding a post filter for Noise 
Suppression (NS) (Habbets, 2008; Gustafsson et al., 
2002), improving adaptive algorithms (Chhetri et al., 
2008), or by using a nonlinear AEC (Shi, et al., 2008). 
All of these implementations however, increase the 
complexity of the system with additional components 
or more complex algorithms that require more 
computations.  
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Fig. 1: Single microphone AEC system 
 
This study proposes the use of a type of algorithms 
described as ‘external-switched’ in which two or more 
adaptive filters are run in parallel and the final result is 
determined by which filter is most accurate at the 
specified time. In this study, a dual architecture 
implementation of the simple NLMS algorithm is 
proposed. By configuring one NLMS filter for fast 
adaptation and one to minimize the steady state error 
and selecting between the two depending on which one 
is more accurate at the current time, the system receives 
the benefit of both configurations, reducing both 
convergence time and steady state error with results 
comparable to more complex and costly algorithms.  
 
Acoustic echo cancellation using NLMS: In a typical 
AEC algorithm, we can model the process with a single 
microphone system as seen in Fig. 1. 
 The far-end speech x(n) is played out of the 
speaker and is picked up on the microphone as an echo 
d (n). The output of the adaptive filter de (n) is intended 
to cancel out the echo from the microphone signal y(n). 
The microphone signal is composed of the far-end 
speech echo d(n), the near-end speech s(n) and 
background noise v(n). The difference between the 
microphone signal and the estimated echo forms the 
near-end speech e(n), which is fed back into the 
adaptive filter to update the taps. 
 In this model, the acoustic echo can be assumed to 
be a linear filter, which takes the form of the following 
equation: 
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Where: 
Nh = The length of the true echo filter 
hj = The filter coefficient 
x(n) = The far-end speech 

 Using the NLMS algorithm, we can model a time 
based adaptive filter by the following equation: 
 

e e 2

NLMS

x(n)e(n)ˆ ˆh (n 1) h (n)
x(n)

+ = +µ
+ δ

 (2) 

 
Where:  

eĥ (n)  = The estimated impulse response vector 

µ = The step-size factor 
δNLMS = The regularization factor to prevent 

division by zero 
x(n) = The far-end speech signal 
 
 The estimated echo, d̂(n)  can then be calculated 
using: 
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Where: 
Ne = The filter size 

eĥ (n)  = The estimated impulse response vector 

x(n) = The far-end speech 
 
 The goal of all acoustic echo cancellation is to 
minimize the residual echo, which can be defined as the 
slight difference between the true echo and the 
estimated echo. This is simply calculated to be:  
 

r
ˆe (n) d(n) d(n)= −

 
(4) 

 
 Due to the limitations of the NLMS algorithm, the 
residual echo is rarely zero. There have been many 
papers on improving the effectiveness of the AEC by 
improving the adaptive filter. The simple NLMS 
algorithm is effective, but other proposed algorithms 
have been shown to be more accurate. One variant 
proposed by Vega et al. (2008) is the RVSS-NLMS 
where the step-size solution at each iteration switches 
between an NLMS µ = 1 or a Normalized Sign 
Algorithm (NSA) where µ = √δi-1. This “switched-
norm” algorithm allows for the fast convergence 
provided by NLMS and the robust performance against 
noise provided by NSA. The downside of this algorithm 
and many other complex algorithms is the computation 
cost. An estimated computation cost can be determined 
by examining the number of arithmetic operations 
needed at each iteration. The majority of LMS-based 
algorithms can be described as being in the order of 
O(Μ), where Μ is the size of the filter (Sayed, 2008). 
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The simple LMS and NLMS algorithms require 2 and 3 
M additions and multiplications respectively, while 
more complex algorithms such as RVSS-NLMS may 
require three times as many calculations Vega (2008). 
 Beyond the adaptive algorithm, there are several 
external features that can be added to improve the 
effectiveness of an AEC system. A post filter, appended 
to the system, has been demonstrated to be an effective 
addition (Habbets, 2008; Gustafsson et al., 2002). 
Habets et al. (2008) provides an excellent overview of 
post filters designed to mitigate the limitations of a 
deficient adaptive filter. The addition of a robust post 
filter has also been demonstrated to help alleviate 
adaptive algorithm computation complexity by 
allowing the filter to use a smaller filter order. A 
smaller filter order has several advantages, including a 
faster convergence time, less sensitive to noise and 
reduced computational complexity at the cost of a 
higher steady state error. On the other hand, post filters 
have been demonstrated to introduce distortion and 
other artifacts during the processing. Nonlinear 
processes such as center clipping have a notable 
distortion effect (Chhetri et al., 2006). As such, it has 
been well documented that there is a tradeoff between 
not only between adaptation time and steady state error, 
but between balancing the computational complexity of 
the adaptive filter and the post filter (Chhetri et al., 
2006).  
 Double Talk Detectors (DTD) have also been 
frequently added to AEC systems. An occurrence of 
speech by both the far end speaker and the near end 
speaker into a system often disrupts the acoustic echo 
cancellation process. The simplest double talk detectors 
simply prevent the filter coefficients of the adaptive 
algorithm from changing during the double talk which 
is determined by comparing the magnitude of the far 
end and near end signals. Several other DTDs have 
been proposed, however, of note, a novel DTD 
proposed by (Ye et al., 1991) uses the orthogonality 
property of adaptive algorithms, wherein when the echo 
canceller has converged, the AEC output signal is 
orthogonal to the speaker signal. The cross correlation 
thus can be used to determined whether or not the 
adaptive algorithm has converged. This was further 
explored by (Chhetri et al., 2006) to create a 
convergence detector. This property is explored in 
greater detail as the convergence detector for the 
‘external-switched’ algorithm in the dual architecture 
implementation.  
 
Dual architecture implementation: The ‘external-
switched’ adaptive algorithm is the backbone of the 
dual architecture implementation. In all of the 

previously discussed AEC systems, each strive to 
maintain a balance between fast convergence, a low 
steady state error, computation cost and hardware 
complexity. With the large number of possibilities, it is 
difficult to create an optimized configuration for all 
cases. In this implementation, the goal is to maximize 
fast convergence time, a reduce steady state error and 
computation cost at the expense of hardware 
complexity and size. With the ever decreasing size of 
electrical components, hardware size is less significant. 
 The ‘external-switched’ adaptive filter portion of 
the dual architecture implementation, as seen in Fig. 2, 
consists of two NLMS adaptive algorithms (NLMS1, 
NLMS2) running in parallel, one configured for fast 
convergence, NLMS1 and the second configured to 
minimize the steady state error, NLMS2. In general, for 
all stochastic gradient adaptive algorithms, the 
approximation for the steepest descent is based off two 
major variables; the size of the filter and the step-size 
for adjustment. A larger filter size provides the greatest 
accuracy in terms of steady state error; however it is 
both costly computation-wise and reacts poorly to 
sudden changes (Sayed, 2008). In regards to step-size, 
in the NLMS algorithm, the step-size is normalized to 
be in proportion to the squared-norm of the input signal. 
This is particularly useful in speech signals, where the 
input signal fluctuates frequently due to pauses in 
speech. This way the filter taps are not overly adjusted 
when there is a pause. 
 With the effectiveness of the NLMS algorithms in 
these configurations well known, the critical addition to 
this ‘external-switched’ algorithm is the convergence 
detector. At each sample, the output signal from 
NLMS2, e2(n) is processed by the convergence detector. 
If NLMS2 has converged, e2(n) is used as the final AEC 
output; otherwise the output from NLMS1, e1(n) is used. 
 

 
 
Fig. 2: Dual architecture AEC system 
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The convergence detector is based on the orthogonality 
property of adaptive filters, where in a converged 
adaptive filter; the output signal is orthogonal to the 
input signal (Sayed, 2008). This property has been used 
by (Ye et al., 1991) as the basis for a double-talk 
detector. It was expanded to its current implementation 
as a convergence detector by (Chhetri et al., 2006). As 
described in these works, the cross correlation function 
is large while the filter is adapting and very small once 
the filter has converged.  
 With this property, the Average Cross Correlation 
Coefficients (ACCC) of e2(n) and x(n) can be used to 
determine whether NLMS2 has converged. At every 50 
ms frame, the ACCC is compared to a convergence 
threshold. The convergence threshold is best obtained 
experimentally; though an approximation for the 
threshold is the average unwanted noise which can be 
described as:  
 

N 1

i
i 0

v (n)

th NACCC

−

=
∑

≈  (5) 

 
Where: 
vi(n) = The background noise at sample i 
N = The total number of samples  
 
 If the inequality ACCC(n)<ACCCth is true, it can 
be said that 2eĥ has converged. Otherwise, NLMS2 is 

still adapting which indicates either the filter has not 
converged or the echo path has changed. 
 

MATERIALS AND METHODS 
 
 The ‘external-switched’ algorithm was 
implemented in MATLAB Simulink using the Signal 
Processing Blockset, following the block diagram in 
Fig. 2. NLMS1 was designed with a filter size of 512 
taps, and NLMS2 had a filter size of 2048 taps. The 
convergence detector was made with a custom function 
to calculate the ACCC during a 50 ms frame. A switch 
compares the result of the ACCC to the threshold value 
and selects which output should be the system output. 
The sample signal used was an 8 kHz sample whose 
Signal-to-Noise Ratio (SNR) was adjusted at each 
simulation. 
 The performance of this system was evaluated 
through two sets of simulations. The first set evaluates 
the MSE and convergence time of the ‘external-
switched’ algorithm using a noisy input signal. The 
‘external-switched’ algorithm is compared against a 
similar NLMS algorithm, with an experimentally 
optimized filter to achieve the best balance between 

convergence time and Mean-Squared-Error (MSE). 
Convergence time in the context of analysis is defined 
as when the MSE has reached an asymptote. 
 The second set of simulations examines the Echo 
Return Loss Enhancements (ERLE) which is described 
as: 
 

2

10 2

y(n)
ERLE(n)*log

e(n)

 
 
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 (6) 

 
Where: 
y(n) = The microphone signal  
e(n) = The AEC output 
 
 The ERLE is a measure of the reduction in echo 
from the microphone signal; the larger the dB value, the 
greater the effectiveness of the AEC system.  
  For this set of simulations, the proposed algorithm 
is compared against a Frequency Domain Adaptive 
Filter (FDAF). Adaptive filters in the frequency domain 
use a fast convolution technique to compute the output. 
In the frequency domain, the computational cost is no 
longer proportional to the filter size, as a result, 
convergence time is often shorter. The drawback to this 
class of adaptive filters is the extra hardware necessary 
to convert into the frequency domain and back to the 
time domain, and only updating the weights once per 
frame (Sayed, 2008). The frequency domain NLMS 
thus provides an excellent comparison to the proposed 
‘external-switched’ algorithm because both emphasize 
speed and accuracy over hardware size.  
 

RESULTS  
 
 The ‘external-switched’ algorithm was first tested 
as a noise cancellation system to demonstrate its proper 
function. For noise reduction, the convergence time and 
the MSE were used to analyze the effectiveness of the 
algorithms. The SNR ranged from 70.1-10.4 dB. The 
results seen in Fig. 3 and 4 are from a simulation set 
using a noisy signal with an SNR of 10.4 dB. These 
results were compared to an experimentally optimized 
NLMS algorithm with a filter size of 4096.  
 Figure 5 shows the results of the ‘external-
switched’ algorithm in comparison to a Frequency 
Domain Adaptive Filter (FDAF) NLMS algorithm with 
a frame size of 50 ms. The ‘external-switched’ 
algorithm starts converging faster, due to NLMS1, 
which is configured for fast convergence. Until the 
slower NLMS2 converges, the FDAF has a higher 
ERLE. However, once both AEC’s stabilize, it is 
apparent that they are comparable. 
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Fig. 3: Convergence time comparison 
 

 
 
Fig. 4: Convergence detector operation 

 

 
 
Fig. 5: Echo returns loss enhancements 

DISCUSSION 
 

 In Fig. 3, the advantages of the ‘external-switched’ 
algorithm are readily apparent. Although the 
convergence time for both filters is similar, the 
instantaneous squared error of the ‘external-switched’ 
drops rapidly due to the fast convergence of NLMS1. 
While the instantaneous squared-error increases due to 
the change from NLMS1 to NLMS2, this is due to a 
value for the threshold, ACCCth, that is not optimal. In 
practice, an optimized value for ACCCth, would be 
impossible to determine, so for these simulations the 
approximate value is used which could be calculated 
from an input signal. 
 In Fig. 4, the convergence detector switch is 
overlaid on the instantaneous square-error graph of the 
‘external-switched’ algorithm. In this simulation, the 
convergence detector switched to the slower adaptation 
at 0.2 sec. While not optimal, it is still effective enough 
to be comparable to a NLMS algorithm that requires a 
filter size nearly twice the size of entire ‘external-
switched’ algorithm. The MSE for the ‘external-
switched’ algorithm hovered around 0.32×10-3, 
whereas the MSE for the optimized NLMS algorithm 
settled at 0.33×10-3. 
 In subsequent simulations, the ‘external-switched’ 
algorithm performed similarly. While there was no 
significant advantage of the algorithm performance-
wise, it was easily comparable to an NLMS algorithm 
that was optimized for each simulation. 
 The results of the AEC system using the ‘external-
switched’ algorithm depict it as comparable to the 
frequency domain NLMS algorithm in regards to 
performance. This is not wholly unexpected as FDAF 
normally perform significantly better than their time 
based adaptive filter counterparts. However, it should 
be noted that applying an ‘external-switched’ algorithm 
to the traditional NLMS algorithm improves its 
performance to the level of a better performing 
algorithm, at a reduced computational cost. An even 
better performance may be gained by combining the 
‘external-switched’ algorithm with properly optimized 
algorithms in the frequency domain. 

 
CONCLUSION 

 
 This study proposes an ‘external-switched’ 
algorithm of a dual architecture implementation for an 
AEC system. The proposed system was designed as an 
attempt to maximize convergence speed and to 
minimize the steady state error, at the expense of extra 
hardware. While this implementation is effective and 
comparable to other more refined algorithms, it does 
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not show a marked improvement in AEC design. The 
convergence detector developed by (Ye et al., 1991) 
and expanded upon by (Chhetri et al., 2006) is effective 
and warrants further exploration. A dual architecture of 
a more complex algorithm than NLMS may prove to be 
more effective, albeit at the cost of increased 
computation requirements.  
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