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Abstract: Problem statement: The process of epilepsy diagnosis from EEG signals by a human 
scorer is a very time consuming and costly task considering the large number of epileptic patients 
admitted to the hospitals and the large amount of data needs to be scored. Therefore, there is a strong 
need to automate this process. Such automated systems must rely on robust and effective algorithms 
for detection and prediction. Approach: The proposed detection system of epileptic seizure in EEG 
signals is based on Discrete Wavelet Transform (DWT) and Swarm Negative Selection (SNS) 
algorithm. DWT was used to analyze EEG signals at different frequency bands and statistics over the 
set of the wavelet coefficients were calculated to introduce the feature vector for SNS classifier. The 
SNS classification model use negative selection and PSO algorithms to form a set of memory Artificial 
Lymphocytes (ALCs) that have the ability to distinguish between normal and epileptic EEG patterns. 
Thus, adapted negative selection is employed to create a set of self-tolerant ALCs. Whereas, PSO is 
used to evolve these ALCs away from self patterns towards non-self space and to maintain diversity 
and generality among the ALCs. Results: The experimental results proved that the proposed method 
reveals very promising performance in classifying EEG signals. A comparison with many previous 
studies showed that the presented algorithm has better results outperforming those reported by earlier 
methods. Conclusion: The technique was approved to be robust and effective in detecting and 
localizing epileptic seizure in EEG recording. Hence, the proposed system can be very helpful to make 
faster and accurate diagnosis decision. 
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INTRODUCTION 
 
 The brain activity can be measured in variety of 
ways such as Magneto Encephalogram (MEG) and 
optical images. However, the most popular one is 
Electroencephalogram (EEG)

[12]
. Therefore, the EEG 

has long been an important clinical tool in diagnosing, 
monitoring and managing of neurological disorders 
especially those related to epilepsy. Signals of EEG 
contain a wide range of frequency components. 
However, the range of clinical and physiological 
interests is between 0.5 and 30 Hz. This range is 
classified approximately in a number of frequency 
bands as follows: δ (0.5-4 Hz), θ (4-8 Hz), α (8-13 Hz), 
β (13-30 Hz)

[13]
. Since there is no definite criterion 

evaluated by the experts, visual analysis of EEG signals 
in time domain may be insufficient

[1]
. Also large 

amounts of data are generated by EEG monitoring 
systems for electroencephalographic changes, make 
their complete visual analysis is not routinely possible. 
 In the framework of the epilepsy, when diagnosed 
properly, about 75% of the epilepsy cases can be 
effectively treated based on current therapies: 
Medications or surgical treatments. Unfortunately in 
case of surgical treatments, the patients undergo long 
presurgical evaluations. Bulks of multi-channel EEG 
recordings are acquired during this period for deciding 
on the areas of the brain to be removed. The visual 
scoring of the EEG records by a human scorer is clearly 
a very time consuming and costly task

[14]
. The other 

25% of individuals with epilepsy have seizures that are 
uncontrollable. The most promising therapies for 
medically resistant epilepsy are implantable devices 
that deliver local therapy, such as direct electrical 
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stimulation or chemical infusions, to affected regions of 
the brain

[15]
. For effective performance, these 

treatments will rely on robust algorithms for seizure 
detection and prediction. 
 Hence, automated systems to recognize EEG 
changes have been under study for several years. Most 
of these detection systems use approaches coming from 
area of Artificial Intelligence (AI). However, such 
systems basically use either of two different input 
representations: The raw EEG signal or the extracted 
EEG features. In the former case, the raw EEG signal is 
presented to the classifier after a proper scaling and 
windowing. In the second case, the extracted features 
such as Wavelet Transform (WT) coefficients are 
presented to a classification model for training and 
testing purposes. 
 A wide range of AI techniques

[1-11]
 have been 

proposed in the literature to solve the problem of 
seizure detection in EEG signals. Alkan et al.

[1] 
used 

EEG power spectra extracted by Multiple Signal 
Classification (MUSIC), Autoregressive (AR) and 
periodogram methods as inputs to Logistic Regression 
(LR) and back propagation neural networks (BPNNs) 
classifiers. Their experiments showed that BPNN was 
more accurate than the LR. Acir and Guzelis

[2]
 

introduced an epileptic seizure detection method based 
on Support Vector Machine (SVM). The raw data fed to 
the SVM after it filtered using AR-based modified non-
linear digital filter. Further extended by Acir

[3], two 
discrete perceptron were used to filter the data for 
modified Radial Basis Function Network (RBFN) 
classifier. Subasi

[4]
 decomposed EEG signals using WT 

into the frequency sub-bands which then used as an 
input to feedforward error backpropagation ANN 
(FEBANN) and Dynamic Wavelet Neural Network 
(DWN). The experiments had been approved that the 
DWN was more accurate than the FEBANN. In

[5]
, 

Subasi showed that a Dynamic Fuzzy Neural Network 
(DFNN) classifier achieved best than neural network 
model. The Mixture of Experts (ME) neural network 
was implemented by Subasi

[6]
 for classification of the 

EEG signals using the features extracted by WT. A 
hybrid system with two stages: Feature extraction using 
Fast Fourier Transform (FFT) and decision making 
using decision tree was developed by Polat and 
Guzelis

[7]
. Also, Guler and Ubeyli

[8]
 applied a two stage 

system for classification of EEG signals: Feature 
extractions using WT and signals classification based 
on adaptive neuro-fuzzy inference system (ANFIS) 
model. Guler et al.

[9]
 evaluated the diagnostic accuracy 

of the Recurrent Neural Networks (RNNs) on the EEG 

signals using Lyapunov exponents as features. 
Lyapunov exponents were computed based on a 
technique related with the Jacobi-based algorithms. 
Derya Ubeyli

[10]
 used eigenvector methods for feature 

extraction and multiclass SVM for classification 
decision. 
 However, the algorithms of Artificial Immune 
System (AIS) have not been widely explored in the 
field of EEG-based diagnosis. Yet there exist in 
literature only very few studies in which AIS were 
applied to epileptic seizure detection. Polat and 
Guzelis

[11]
 used Artificial Immune Recognition System 

(AIRS) with fuzzy resource allocation for EEG 
classification in a hybrid system with three stages: 
Feature extraction using Welch (FFT) method, 
dimensionality reduction using PCA and EEG 
classification using AIRS. Therefore, this study 
introduced an artificial immune system approach for 
epileptic seizure detection based on negative selection 
algorithm (NSA) and Particle Swarm Optimization 
(PSO) named Swarm Negative Selection (SNS) 
algorithm. 
 

MATERIALS AND METHODS 
 
 In this study, the epileptic seizure detection in EEG 
signals was performed in two stages: Feature extraction 
using the discrete wavelet transform and classification 
using the swarm negative selection algorithm. 
 
EEG data: Our study used the publicly available 
dataset described in Andrzejak et al.

[16]
. In this dataset, 

all EEG signals were recorded with the same 128-
channel amplifier system, using an average common 
reference. The data were digitized at 173.61 samples 
per second using 12 bit resolution. Band-pass filter 
settings were 0.53-40 Hz (12 dB/oct). The complete 
data set consists of five sets (denoted A-E) each 
containing 100 single channel EEG segments of 23.6 
sec duration. These segments were selected and cut out 
from continuous multi-channel EEG recordings after 
visual inspection for artifacts, e.g., due to muscle 
activity or eye movements.  
 Sets A and B have been taken from surface EEG 
recordings that were carried out on five healthy 
volunteers in an awake state with eyes open and closed  
respectively, using a standardized electrode placement 
scheme. Sets C, D and E originated from EEG archive 
of presurgical diagnosis. EEGs from five patients were 
selected, all of whom had achieved complete seizure 
control after resection of one of the hippocampal 
formations, which was therefore correctly diagnosed to 
be the epileptogenic zone. Segments in set D were 
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recorded from within the epileptogenic zone and those 
in set C from the hippocampal formation of the 
opposite hemisphere of the brain. While sets C and D 
contained only activity measured during seizure free 
intervals, set E only contained seizure activity. Fig. 1 
shows typical EEG segments, one from each category. 
In this study, two sets (A and E) have been used of the 
complete dataset. 
 
Artificial Immune Systems (AIS): In the 1990s, AIS 
emerged as a new computational research filed inspired 
by simulated biological behavior of Natural Immune 
System (NIS). The NIS is a very complex biological 
network with rapid and effective mechanisms for 
defending the body against a specific foreign body 
material or pathogenic material called antigen

[17]
. 

During the reactions, the adaptive immune system 
memorizes the characteristic of the encountered antigen 
by produce plasma or memory cells. The obtained 
memory promotes a rapid response of the adaptive 
immune system to future exposure to the same 
antigen

[18]
. In order to respond only to antigen, the 

immune system is distinguishes between what is normal 
(self) and foreign (non-self or antigen) in the body. The 
NIS is made up of lymphocytes which are white blood 
cells circulate throughout the body, mainly of two 
types, namely B-cells and T-cells. These cells play 
main role in the process of recognizing and destroying 
any antigens

[19]
. 

 

 
 

Fig. 1: Samples of five different sets of EEG data 

 Both the T-Cell and B-Cell created in the bone 
marrow and they have receptor molecules on their 
surfaces (the B-cell receptor molecule also called as 
antibody). The way B-cells and T-cells can identify 
specific antigen is called a key and key hole 
relationship as show in Fig. 2

[17]
. In this case, antigen 

and receptor molecule have complementary shapes, 
therefore they can bind together with a certain binding 
strength, measured as affinity. After a binding between 
an antibody’s paratope and an antigen’s epitope, an 
antigen-antibody-complex is formed which results into 
de-activation of the antigen. The B-Cell is already 
mature after creation in the bone marrow, whereas the 
T-Cell first becomes mature in the thymus. However a 
T-Cell becomes mature if and only if it does not have 
receptors that bind with molecules that represent self 
cells. Consequently, it is very important that the T-Cell 
can differentiate between self and non-self cells

[20]
. 

 AIS as defined by de Castro and Timmis
[21]

 are: 
“Adaptive systems inspired by theoretical immunology 
and observed immune functions, principles and models, 
which are applied to problem solving”. However AIS 
are one of many types of algorithms inspired by 
biological systems, such as neural networks, 
evolutionary algorithms and swarm intelligence. There 
are many different types of algorithms within AIS and 
research to date has focused primarily on the theories of 
immune networks, clonal selection and negative 
selection. These theories have been abstracted into 
various algorithms and applied to a wide variety of 
application areas such as anomaly detection, pattern 
recognition, learning and robotics

[22]
. 

 The negative selection algorithm introduced in 
1994 by Forrest et al.

[23]
 inspired by the mature T-Cells 

of the natural immune system which are self-tolerant, 
that is mature T-Cells have the ability to distinguish 
between self cells and foreign/non-self cells. This 
technique is used to train a set of Artificial 
Lymphocytes (ALCs) on a set of self patterns to be self-
tolerant  and then these ALCs are applied as detectors 
to      classify    new    data    as    self    or    non-self

[21]
. 

 

 
 

Fig. 2: Antibody-antigen complex 
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In negative selection, any generated ALC is added to 
the self-tolerant set of ALCs if the calculated affinity 
between the ALC and all self patterns is lower than 
affinity threshold. The algorithm is summarized as in 
Algorithm 1. 
 
Algorithm 1: Negative selection algorithm: 
 
Create an empty set of self-tolerant ALCs as C; 
Determine the training set of self patterns as S; 
Repeat 
 Randomly generate an ALC, xi; 

Calculate the affinity between xi and each 
pattern in S; 

If the calculated affinity with at least one 
pattern in S is higher than affinity threshold, 
then reject xi; otherwise add xi to set C; 

Until size of C equal to predefined number; 
 
Particle Swarm Optimization (PSO): The PSO 
algorithm was originally designed by Kennedy and 
Eberhart

[25]
 in 1995, the idea was inspired by the social 

behavior of flocking organisms. The algorithm belongs 
to the broad class of stochastic optimization algorithm 
that may be used to find optimal (or near optimal) 
solutions to numerical and qualitative problems. PSO 
uses a population (swarm) of individuals (particles) to 
probe promising regions of the search space. Each 
particle moves in the search space with a velocity that is 
dynamically adjusted according to its own flying 
experience and its companions' flying experience and 
retains the best position it ever encountered in memory. 
The best position ever encountered by all particles of 
the swarm is also communicated to all particles. 
Depending on the topology, in the local variant, each 
particle can be assigned to a neighborhood consisting of 
a predefined number of particles

[26]
. 

 The popular form of PSO algorithm is defined as: 

 

id id 1 1 id id

2 2 gd id

v (t 1) w * v (t) c r (p (t) x (t))

c r (p (t) x (t))

+ ← + −
+ −

 (1) 

 

id id idx (t 1) x (t) v (t 1)+ ← + +   (2) 

 
Where: 
vid = The velocity of particle i along dimension d 
xid  = The position of particle i in d 
c1 = A weight applied to the cognitive learning 

portion  
c2 = A similar weight applied to the influence of 

the social learning portion 

r1 and r2 = Separately generated random number in the 
range of zero and one 

pid = The previous best location of particle i also 
known as pbest 

pgd  = The best location found by the entire 
population, also known as the gbest 

w = The inertia weight 
  
 Velocity values must be within a range defined by 
two parameters -vmax and vmax. The PSO with the inertia 
weight in the range (0.9, 1.2) on average have a better 
performance

[27]
. To get a better searching pattern 

between global exploration and local exploitation, 
researchers recommended decreasing w over time from 
a maximal value wmax to a minimal value wmin 
linearly

[27,28]
: 

 

max min
max

max

w w
w w t

t

−= − ∗   (3) 

 
where, tmax is the maximum iteration allowed and t is 
the current iteration number. 
 
Discrete wavelet transform-feature extraction: The 
Discrete Wavelet Transform (DWT) has been 
particularly successful in the area of epileptic seizure 
detection due to its capability to captures transient 
features and localizes them in both time and frequency 
domain accurately

[5]
. DWT analyzes the signal s(n) at 

different frequency bands by decomposing the signal 
into an approximation and detail information using two 
sets of functions called scaling functions and wavelet 
functions, which are associated with low-pass g(n) and 
high-pass h(n) filters, respectively. Fig. 3 shows the 
decomposition process of DWT. 
 When the WT is used to analyze the signals, two 
important aspects should be considered. Firstly, the 
number of decomposition levels. The decomposition 
levels number is selected based on the dominant 
frequency components of the signal. According to 
Subasi

[4]
, the levels are selected such that those parts of 

the signal that correlate well with the frequencies 
required for the signal classification are retained in the 
wavelet coefficients. Therefore in the present study, we 
choose level 4 wavelet decomposition. Thus the EEG 
signals used in this research were analyzed into the 
details D1-D4 and one final approximation, A4. Table 1 
shows the ranges of various frequency bands of our 
EEG data. Secondly, type of wavelet. According to 
Guler and Ubeyli

[8]
, the smoothing feature of the 

Daubechies wavelet of order 2 (db2) made it more 
suitable to detect changes of the EEG signals. Hence in 
our research, we used the db2 to compute the wavelet 
coefficients of EEG signals. 
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Fig. 3: Sub-band decomposition of DWT 
 
Table1: Frequencies corresponding to different decomposition levels 

of the Daubechies order 2 wavelet of EEG datasets used in 
this study 

Decomposed signal Frequency range (Hz) 
D1 43.4-86.8 
D2 21.7-43.4 
D3 10.8-21.7 
D4 5.4-10.8 
A4 0.0-05.4 

 
 The computed discrete wavelet coefficients provide 
a compact representation that shows the energy 
distribution of the signal in time and frequency. In order 
to further decrease the dimensionality of the extracted 
feature vector, statistics over the set of the wavelet 
coefficients are used

[8]
. The following statistical 

features were used to represent the time-frequency 
distribution of the EEG signals: 

 
• Maximum of the wavelet coefficients in each sub-

band 
• Minimum of the wavelet coefficients in each sub-

band 
• Mean of the wavelet coefficients in each sub-band 
• Standard deviation of the wavelet coefficients in 

each sub-band 

 
Swarm Negative Selection (SNS) algorithm-EEG 
classification: The SNS algorithm is a hybrid 
classification model based on PSO and negative 
selection algorithms. It has been introduced in this 
study to classify EEG signals for diagnosis purposes. 
The SNS algorithm use adapted negative selection to 
train a set of ALCs on a set of normal EEG patterns 
(self) to be self-tolerant, i.e., the ability to not match any 
self pattern. Consequently, PSO is used to evolve the 
ALCs away from self patterns towards non-self space 
and to maintain diversity and generality among the 
ALCs. 
 In SNS, all patterns were represented in space as 
real-valued vectors and Euclidean distance was used as 
affinity measure. The Affinity Distance Threshold 
(ADT) of an ALC is used to determine a match with a 

non-self pattern. The main goal of SNS algorithm is to 
evolve ALCs to detect the non-self patterns that have 
not been presented during training. However, not all 
ALCs will detect non-self patterns. Therefore, each 
ALC that does not detect any non-self pattern is 
replaced by a new one. The steps of the SNS algorithm 
are summarized in Algorithm 2. 
 The negative selection trains an ALC to not match 
any self pattern in the training set, therefore it 
determine the best ADT for the ALC. In the adapted 
versions of negative selection algorithm, an ALC is 
trained to have a maximum ADT that does not overlap 
with the self patterns. To guarantee a maximum ADT 
with no overlap with self, ADT of the ALC is set to the 
closest self pattern. However, a pattern will be 
classified by an ALC as non-self if Euclidean distance 
between them is less than ADT

[20,24]
. 

 The PSO is used in SNS algorithm to evolve a set 
of ALCs to be memory ALCs. Then these memory 
ALCs are used to distinguish between self and non-self 
patterns. Initially the set of memory ALCs is empty. 
The purpose of the PSO is to evolve one optimal ALC 
to be added to the set of memory ALCs. However, the 
evolved ALC is added to the memory ALCs if it 
detected non-self patterns that have not been detected 
yet by the existing ALCs in the memory set. 
 The main objective of the PSO is to maximize the 
ADT of the evolved ALC. In addition to the main 
objective, the PSO also needs to evolve an ALC to 
minimize the average overlap with the existing ALCs in 
the set of memory ALCs. Maximizing the distance 
between the new ALC and the memory ALCs set is 
guaranteed that the evolved ALC has the lowest 
average overlap with the existing set of ALCs and 
forces greater coverage of non-self space. Therefore, to 
evaluate the quality of an ALC, the fitness of each 
particle is calculated based on the negative selection 
method using the following fitness function:  
 

2

1
f (M,c) (ADT f (M,c))

2
= +   (4) 

 
Where: 
M = The set of memory ALCs  
c = The ALC which the fitness must be calculated 
 
 The f2(M,c) is calculated as bellow: 
 

mn

i
i 1

2
m

d(m ,c)
f (M,c)

n
==
∑

 (5) 

 
Where: 
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nm = The number of ALCs in the memory set M 
mi = The ith ALC in the memory set and d is Euclidean 

distance between mi and c 
  
Algorithm 2: Swarm negative selection algorithm: 
 
1. Create an empty set of memory ALCs as M 
2. Repeat 
 a. Initialize Ns particles (ALCs) using adapted 

negative selection  
 b. While the maximum number of iterations is 

not exceeded 
 i. For each particle  

• Evaluate the fitness based on adapted 
negative selection and according to 
Eq. 4  

• Find personal best solution pbest  
 ii. Find the global best solution gbest  
 iii. Update each particle using Eq. 1 and 2 
 c. Consider gbest as a candidate memory ALC, 

c 
 d. Classify non-self patterns using c 
 e. If c detected new patterns, then add c to the 

set M  
3. Until maximum number of iterations is reached or 

non-self is covered 
 

RESULTS AND DISCUSSION 
 
 It is common practice in machine learning and data 
mining to perform k-fold cross-validation to assess the 
performance of a classification algorithm. K-fold cross 
validation is used among the researchers, to evaluate 
the behavior of the algorithm in the bias associated with 
the random sampling of the training data. In k-fold 
cross-validation, the data is partitioned into k subsets of 
approximately equal size. Training and testing the 
algorithm is performed k times. Each time, one of the k 
subsets is used as the test set and the other k-1 subsets 
are put together to form a training set. Thus, k different 
test results exist for the algorithm. However, these k 
results are used to estimate performance measures for 
the classification system. 
 The common performance measures used in 
medical diagnosis tasks are accuracy, sensitivity and 
specificity. Accuracy measured the ability of the 
classifier to produce accurate diagnosis. The measure of 
the ability of the model to identify the occurrence of a 
target class accurately is determined by sensitivity. 
Specificity is determined the measure of the ability of 
the algorithm to separate the target class. The 
classification accuracies for the datasets are calculated 
as in Eq. 6: 

Z

i
i 1

assess(z )
Accuracy(Z)

Z
==
∑

 (6) 

 
Where: 
 
 

1, if calssify(z) z.c
Assess(z)

0, otherwis

iii i

iii iiiiiiiiiie i

=
= 


 (7) 

 
Where: 
z = The patterns in testing set to be classified 
z.c = The class of pattern z and classify(z) returns the 

classification of z by classification algorithm 
 
 For analysis sensitivity and specificity, the 
following equations can be used: 
 

TP
Sensitivity

TP FN
=

+
 (8) 

 
TN

Specificity
TN FP

=
+

 (9) 

 
where, TP, TN, FP and FN denotes true positives, true 
negatives, false positives and false negatives 
respectively. 
 The SNS algorithm was evaluated on EEG data in 
order to investigate its performance in detecting the 
epileptic seizures. The data sets A and E have been 
selected to represent the normal and epileptic classes 
respectively. One hundred EEG segments of 4096 data 
points for each class were windowed by 256 discrete 
data. Hence, the EEG dataset was formed by 3200 
feature vectors. For each vector, the DWT coefficients 
at the fourth level (D1-D3, D4 and A4) were computed. 
The statistical features that have been calculated over 
the set of the wavelet coefficients reduced the 
dimensionality of the feature vectors to 20 data points.  
 For all the EEG signals dataset, the SNS algorithm 
has been trained and tested as 40-60 (random selection), 
60-40% (random selection) and 80-20% (5-fold cross 
validation) respectively. The class distribution of the 
data points in the training and testing dataset is 
summarized in Table 2. In the experiments that have 
been concluded in this study, EEG signals that have 
normal activities and epileptic seizure were classified 
by swarm negative selection algorithm. All the obtained 
results display in Table 3 for 40-60, 60-40 and 80-20   
training-test   partitions. As it is seen in Table 3, the 
obtained test classification accuracies were 99.15, 99.47 
and 99.22%, respectively. 
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Table 2: Class distribution of the data points in the training and 
testing EEG datasets 

 Traing Testing  Partition of 
Class set set Total EEG dataset (%) 
Normal 640  960 1600 40-60  
Epileptic 640  960 1600 (random selection) 
Total 1280 1920 3200  
Normal 960  640 1600 60-40  
Epileptic 960  640 1600 (random selection) 
Total 1920 1280 3200  
Normal 1280 320 1600 80-20 (5-fold  
Epileptic 1280 320 1600 cross validation) 
Total 2560 640 3200  

 
Table 3: The obtained classification accuracy, sensitivity and 

specificity by SNS algorithm for EEG signals classification  
Dataset partition Measures (%) 
------------------------------ --------------------------------------------------- 
Training-testing Sensitivity Specificity Accuracy  
40-60 Random selection 99.94 98.35 99.15 
60-40 Random selection 99.84 99.09 99.47 
80-20 5-fold cross 99.69 98.75 99.22 
validation  
Average 99.82 98.73 99.28 
 
Table 4: Classification accuracy of the proposed method for EEG 

signals classification with classification accuracies obtained 
by other methods 

Study Method Accuracy (%) 

Guler et al.
[9]

 Lyapunov exponents-RNN 96.79 
Guler and Ubeyli

[8]
 Wavelet-ANFIS 98.68 

Subasi
[6]

 Wavelet-MLPNN 93.20 
Subasi

[6]
 Wavelet-ME Network 94.50 

Ubeyli
[10]

 Eigenvector-SVM 99.30 
This study Wavelet-SNS 99.28 
 
 As it mentioned above, this study based on two stage 
methodology: feature extraction and EEG classification. 
In literature, many methods had been evaluated on the 
same methodology and EEG dataset. Table 4 shows a 
comparison between the results reported by those 
methods and the results of proposed algorithm. As it is 
shown from these results, the proposed method yields 
comparable results with SVM model

[10]
. However, the 

SNS algorithm gives the highest classification accuracy, 
99.28% over other methods.  
 Thus, the experimental results proved that the 
proposed automated detection system based on discrete 
wavelet transform and swarm negative selection 
algorithm reveals very promising performance in 
diagnosing the epileptic seizure in EEG signals.  
 

CONCLUSION 
 
 In this study, an automated diagnosis system was 
introduced for epileptic seizure detection in EEG signals. 
In the proposed system, the diagnosis process is 
performed in two stages: Feature extraction using discrete 

wavelet transform and decision maker using swarm 
negative selection algorithm (hybrid method). The SNS 
algorithm uses the features produced by DWT to form a 
set of ALCs (detectors) that have the ability to distinguish 
between the normal and epileptic EEG signals.  
 The Experiments that were conducted on the EEG 
signals dataset showed that The SNS algorithm has very 
promising performance in detecting the epileptic 
seizures. The method has better results outperforming 
those reported by many previous studies. We believe 
that the proposed system can be an efficient tool to 
assist the experts by facilitating the analysis of a 
patient’s information and reducing the time and effort 
required to make accurate decisions on their patients. 
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