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Abstract: Problem statement: Simulated Annealing (SA) algorithms have been used in solving a 
wide range of discrete optimization problems for many years, with well know drawbacks like the 
computational time and difficulties related to the parameters settings. One of the other issues that open 
the door for research is the acceptance decision that provides for hill climbing; the standard SA 
algorithms use a stochastic method which fails to justify the acceptance of a cost increasing solutions 
while rejecting mildly cost increasing ones. Approach: To resolve this dilemma, the reversible 
deformation mechanism we developed earlier replaced the stochastic decision with a deterministic one; 
by deforming the problem structure and gradually reforming it towards the original one. This provides 
for hill climbing in the real domain while applying a simple downhill search in the virtual sense. 
Unlike the standard SA algorithm, the number of iterations must be known in advance and it is the 
only stopping criteria, because the scaling functions parameters are selected based on the number of 
iterations. Results: This method had produced better solutions and the new enhancement to the 
algorithm improves the overall performance by examining each state more thoroughly through a set of 
perturbations and thus securing a move towards a better neighborhood, the same set of tests used in the 
original methods are repeated for comparison. Conclusion: The significance of this research comes 
from eliminating the unpredictability of the stochastic decisions in the standard SA algorithms which 
might yield less than acceptable solutions in some cases. 
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INTRODUCTION 

Complex problems have been solved by 
approximation using a set of methodologies; 
Evolutionary Algorithms (EAs) which refer to a class of 
computational problem-solving algorithms inspired by 
the principle of natural selection; Genetic Algorithms 
(GAs) by Holland in 1975[10], as an adaptation of the 
well known survival of the fittest principle and the 
Simulated Annealing (SA) and its variants invented by 
Kirkpatrick in 1983[11] as an adaptation of the 
Metropolis-Hastings algorithm, a Monte Carlo method 
to generate sample states of a thermodynamic system, 
invented by Metropolis in 1953[12]. Since then, many 
variants and closely related works have been 
introduced, but the SA seems to have been well 
explored and not much is added lately, while the EA 
has sibling like the Particle Swarm Algorithms (PSAs). 
In all cases, the basic idea is to start with a solution or 
more and evolve towards more fit ones hoping for an 
optimal or semi-optimal solution. Generally, the SA 
algorithm is a local search that allows uphill moves 
with stochastically controlled acceptance. Although it 
has been used in many fields for years, it is slow by 

nature and its parameters setting have no rigorous 
justification.  
 In an early study, we proposed an algorithm that 
mimics the SA behavior except in the solution 
acceptance; it replaces the stochastic acceptance with a 
deterministic mechanism. The algorithm performs the 
search as a downhill procedure in the virtual sense that 
is capable of climbing hills in the real domain. Mapping 
the problem from the real sense to the virtual sense is 
carried out through a reversible deformation mechanism 
that is problem dependent. 

A key to this decision mechanism is the reversible 
deformation; a constructive distortion that provides for 
real hill climbing through virtual local search. The 
randomized acceptance of cost increasing 
configurations in simulated annealing and possibly all 
other evolutionary algorithms is meant to enhance the 
exploratory power of the search through, but may fail to 
achieve its purpose because of its pure randomized 
decision. The proposed mechanism eliminates this 
drawback through deterministic decisions. This 
approach is close to some extent to the threshold 
acceptance approach, which accepts cost increasing 
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solutions with some limit above the current cost and 
this threshold is gradually decreased towards the end. 
Although it is a general technique, it requires the 
problem nature to lend itself to the reversible 
structuring; we applied it to the cell placement problem 
to show that it outperforms the standard simulated 
annealing. However, it can be applied to similar 
optimization problems like the traveling salesman 
problem, where the distance matrix is scaled up to the 
largest distance between any two cities to compute the 
factor matrix.   
 
Related work: Research over the last two decades tried 
to overcome the challenges that faced the SA 
algorithms and reduce its computational time and 
increase its chance of producing an optimal solution. 
Parallel SA and Hybrid SA-GA[1] and others addressed 
the computational complexity, while other variants 
addressed the certain aspects related to the settings and 
schedules. Threshold acceptance algorithms[2] for 
example accept a solution that increases the cost by an 
amount less than a threshold; this threshold is decreased 
by time to limit the rate of acceptance of cost increasing 
solutions. However, the threshold and its rate of 
reduction are yet to be tuned and there exists no rules 
for optimal settings.  Another variation is the old 
bachelor[3] algorithm, which is similar to the threshold 
acceptance algorithm, except that if a solution is not 
accepted the threshold is increased. The degraded 
ceiling algorithm[4] is yet another variant with absolute 
bound threshold that decreases by time. 
 In all cases, finding the temperature values and 
thresholds are tedious and tests have shown that a 
variant may perform well on certain class of problems 
but not as a general procedure. However, the statistical 
promise of finding the globally optimal solution is 
considered an important feature of SA; this ensures a 
uniform sampling of the search space, which is 
reassuring when little is known about the nature of the 
space. Attempts to speed up SA, such as Simulated 
Quenching (SQ), usually trade this promise off with the 
gain in efficiency[5]. Many researchers have found it 
very attractive to take advantage of the ease of coding 
and implementing SA, utilizing its ability to handle 
quite complex cost functions and constraints. However, 
the long time of execution of standard Boltzmann-type 
SA has many times driven these projects to utilize a 
temperature schedule too fast to satisfy the sufficiency 
conditions required to establish a true (weak) ergodic 
search[6]. 
 A logarithmic temperature schedule is consistent 
with the Boltzmann algorithm, e.g., the temperature 
schedule is taken to be with expediency the only reason 

given. While perhaps someday less stringent necessary 
conditions may be developed for the Boltzmann 
algorithm, this is not now the state of affairs[7].  
 Guofang and colleagues[8] used an adaptive 
simulated annealing, in which they considered the 
characters of different circuits to be placed and revealed 
its advantages in placement results and time 
performance when compared with the traditional 
simulated annealing algorithm. 
 The primary criticism to the simulated annealing is 
that it is too slow, another criticisms is that the 
algorithm is too broadly based on physical intuition and 
is too short on mathematical rigor, as a matter of fact 
some researchers gave their own calculations to 
demonstrate that SA could be a very poor algorithm to 
search for global optima in some instances. The other 
criticisms may be considered by some to be more 
subjective, but they are likely no more extreme than the 
use of SQ to solve for global optima under the 
protective umbrella of SA.  
 The threshold based solutions have parameters that 
are hard to select or control and a major drawback of  
ignoring the problem details; for example in a cell 
placement problem the large and small cells are dealt 
with equally, while the small cells are easier to move 
and should be given this advantage 
 As a way out, we propose an algorithm that 
eliminates the temperature based probabilistic 
acceptance of negative transitions and uses a 
deterministic mechanism for such decisions instead. 
However, unlike the threshold acceptance and the 
degraded ceiling algorithms, it is executed as a 
downhill search and accepts only positive transitions in 
the virtual domain. The algorithm starts by scaling up 
all the dimensions in a process called deformation, 
which emulates a melting space and scales down using 
a certain schedule, a process called reformation; which 
brings the problems dimensions back to normal, 
mimicking the freezing point. 
 The RDA algorithm has shown better performance 
compared to the standard SA algorithm[9]. However, a 
new enhancement towards even better permanence is 
devised and tested using the same benchmark, using 
higher performance machines.   
 

MATERIALS AND METHODS 
 
Implementation: The new algorithm depends on 
deforming the structure at the beginning and reforming 
it during the search process. The proposed algorithm is 
applicable to a wide range of problems, but we will 
discuss its implementation with cell placement problem 
of the VLSI design as a case study. 
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 There are three parameters to be defined here; the 
number of iterations N, the deformation array; set of 
factors αwi and αdi for each cell and the maximum cell 
dimensions wmax and dmax. N is typically a large number 
that represents the number of iterations to complete the 
search and Ns = β*N is the number of iterations during 
which the scaling down completes, where the rest is 
carried out in local search mode. The largest 
dimensions are used to deform the structure by scaling 
up the width and depth of each cell as starting 
dimension.  
 
 The ith cell dimensions in the jth iterations are: 
 
wij = (αwi*αwi* … * αwi)*wmax = (αwi) 

j*wmax (1) 
 
dij = (αdi*αdi* … * αdi)*dmax = (αdi) 

j*dmax (2) 
 
 Hence, the dimension scaling factors for each cell 
are computed as follows: 
 
αwi = (wi0/wmax)

1/ β*N  (3) 
 
αdi = (di0/dmax)

1/ β*N  (4) 
 
 The outline below shows the standard SA steps, 
without the details of stopping criteria and perturbation 
methods that make transition from one solution to a 
neighboring solution. 
 
SA algorithm outline: 
 
1 i = 0; 
2 GET(Tm); Initial temperature 
3 GET(S0); Random initial solution 
4 GET(S’); Neighbor S’∈N(Si) 
5 ∆i = C(S’)-C(Si); Evaluate cost difference 
6 Px = exp(-∆i /Ti); Acceptance probability 
7 Py = GET(P); Random number (0,1) 
8 Py<Px:Si+1 = S’; Accept/reject solution 
9 Ti = NEXT(Ti); Adjust temperature 
10  Ti>Tf:GOTO4; Stopping criteria 
   
 The stopping criterion may be a time budget, a 
fixed number of iterations, reaching a freezing 
temperature, or relative improvement below a certain 
threshold or a certain number of iterations without 
getting a cost decreasing solution. 
 Initial and freezing temperatures can be computed 
by using the initial solution cost along with selected 
probabilities for acceptance at the beginning and at the 
end. Let Pm and Pf be the probabilities of accepting a 

cost increase of 25% using the initial cost as reference, 
then.  
 If the initial solution cost is Ci then the melting and 
freezing temperatures are Tm and Tf:  
 
Pm = exp (-0.25*Ci /Tm) (5) 
 
Tm = -0.25*Ci /ln(Pm) (6) 
 
and: 
 
Pf = exp (-0.25*Ci /Tf) (7) 
 
Tf = -0.25*Ci/ln(Pf) (8) 
 
For Pm = 0.999 and Pf = 0.001, we get: 
 
Tm = 250*Ci and Tf = 0.036*Ci  
 

 The proposed algorithm allows a local search 
algorithm to behave like a simulated annealing in the 
sense that it accepts cost increasing solution within 
limits defined by the scaling function, although it looks 
like a local search that accepts only cost decreasing 
solutions. The advantage of this method is it limits the 
randomization to the neighborhood generation and 
replaces the temperature schedule with a scaling 
schedule, which is more predictable in terms of time 
budget allocation, as it dictates the number of iterations. 
It also provides more realistic acceptance as it is 
proportional to the actual cost function, in which some 
moves are unfairly accepted or rejected. 
 The algorithm uses two functions DEFORM and 
REFORM. The first is used only once at the beginning 
to restructure the problem, while the second is used to 
gradually bring back the structure to its real form RDA 
algorithm outline. 
 
RDA algorithm outline: 
 
1 i = 0; 
2 DEFORM; Scale up 
3 GET(S0); Random initial solution 
4 i<Ns: REFORM; Scale down 
5 GET(S’); Neighbor S’ϵN(Si) 
6 C(S’)<C(Si):Si+1 = S’; Accept if a better one 
7 i< N: GOTO 4;  Stopping criteria 
   
 Typically, the REFORM process scales down the 
structure slowly enough by selecting large a value for N 
and to avoid the rare chance of not getting out a trap of 
local minimum; we reverse the last REFORM step if a 
certain number of trails carried out in sequence with no 
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acceptance. The initialization strategy could have a 
crucial influence on the performance; especially when 
the search space is disconnected. So, we randomly look 
for an initial solution that satisfies a certain constraint; 
area that is less than twice the algebraic sum of the cells 
in our case. 
 As the outline of the RDAe shows; rather than 
moving through the scale down process regardless of 
the accept/reject decision, we keep trying perturbation 
until a successful move is achieved. This increases the 
computational time in a limited number of trials but the 
overall increase in time is quite small. 
 
RDAe algorithm outline: 
 
8 i = 0; 
9 DEFORM; Scale up 
10 GET(S0); Random initial solution 
11 i<Ns: REFORM; Scale down 
12 LOOP; Forceful Find of 
 {; virtually better Solution 
13 GET(S’); Neighbor S’∈N(Si) 
        } C(S’)>C(Si); Loop and accept only a  
14 Si+1 = S’; better or equal one 
15 i<N: GOTO 4; Stopping criteria 
 
 We used a set of similar workstations in a lab to 
carry out 10 rounds per test, to compare the standard 
SA with the proposed RDA and RDAe, in terms few 
factors: 
 
• Score; a measure of probability of finding a 

solution with quality exceeding a certain value in a 
fixed amount of time 

• Minimum, maximum and average quality for 
several runs with nearly same time budget 

• Time to find a solution with quality higher than a 
certain value 

 
 Figure 1 shows a sequence of transitions at 
different scales, it shows how virtual local search path 
climbs the hill in the real sense, the inner surfaces 
represent the cost surfaces over time; the doubled solid 
line on the top represents the initial cost of the sequence 
after the DEFORM step while the doubled solid line at 
the bottom represents the real cost surface over the 
same sequence and the dashed lines in-between 
represent the cost surface at different scaling levels. 
 Figure 2 shows a detailed snapshot of the two 
paths; the real (by standard SA) and the virtual (by 
RDA and RDAe) with a focus on the transitions between 
two  sets  of  iterations;  from  41-41  and from 42-43. 

 
 

Fig. 1: Path: Virtual Vs actual surface 
 

 
 

Fig. 2: Path: Virtual Vs actual surface 
 
The first transition is a cost decreasing and hence 
accepted whether taken early in time (the upper 
segment) or late in time (the lower segment). On the 
other hand, the transition from 42-43 would be taken in 
the early stage and rejected in the late one. 
 

RESULTS AND DISCUSSION 
 
 Figure 3 and 4 show snapshots of the three paths 
towards the end of the search; RDA and RDAe are 
always along a cost decreasing path while the simulated 
running on the real problem. 



J. Computer Sci., 5 (12): 974-979, 2009 
 

978 

 
 

Fig. 3: Behaviors, cost Vs iteration snapshot 
 

 
 

Fig. 4: Behaviors, cost Vs iteration snapshot 
 
 To compare the performance of the RDAe with the 
RDA and the standard SA, we measured the time 
required to perform 100 trials on each and selected the 
number of iterations such that they execute to 
completion in nearly the same amount of time. We used 
faster computers   in   this   research compared   to   the 

Table 1: Performance, waste and time (ami 33, 857) 
 SA RDA RDAe 
Min (%) 9.50 5.60 5.30 
Max (%) 11.50 6.20 6.10 
Mean (%) 10.30 5.80 5.50 
Time (h) 2.95 3.06 3.17 
 
Table 2: Performance, waste and time (ami 49, 1598) 
 SA RDA RDAe 
Min (%) 13.6 6.30 5.90 
Max (%) 14.4 7.60 7.10 
Mean (%) 13.8 6.90 6.50 
Time (h) 7.08 7.32 7.48 
 
Table 3: Performance, score Vs tolerance (ami 15, 400) 
 Score of 10 rounds (20 min) 
 ----------------------------------------------------------------- 
Target (%) SA RDA RDAe 
0 1 2 3 
2 2 3 3 
4 3 4 5 
6 3 5 6 
8 4 5 7 
10 5 6 7 
12 5 7 7 
14 5 7 8 
16 6 8 8 
 
Table 4: Performance, time Vs tolerance (ami 15, 400) 
 Average run time (min) 
 -------------------------------------------------------------- 
Target (%) SA RDA RDAe 
0 32.6 35.7 37.5 
2 30.5 33.5 35.3 
4 29.5 32.6 33.8 
6 27.9 28.2 30.8 
8 27.3 27.6 30.0 
10 26.4 26.9 29.3 
12 25.8 26.5 28.5 
14 25.2 26.3 27.8 
16 24.5 25.3 26.1 

 
previous one[9] to carry out the measurements and hence 
the results are nearly scaled down in time by around 
30% and the statistical nature of the moves prevents the 
exact reproductions of the old results too. 
 Using the benchmark test of 33 cells and 10 rounds 
per algorithm, Table 1 shows that the RDAe beats the 
standard in the min, max and mean dead area, the worst 
case is even better than the best case of the SA and the 
time is only slightly more. And the enhanced version 
RDAe is slightly better than RDA in almost all cases. 
 A comparison between the three algorithms on a 
larger problem of 49 cells is shown in Table 2 using 10 
rounds per algorithm. The results are consistent 
regardless of the problem size. 
 Table 3 depicts the performance of the proposed 
algorithm compared to the others in terms of possibility 
of achieving its goal; how many of 10 rounds will get a 
solutions of predefined quality within a fixed time. 
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 Table 4 shows a comparative performance in terms 
the time to achieve a certain requirement, a dead space 
less than certain percent of the algebraic sum of cells 
areas. The RDAe takes little more time due to its 
continuous use of the REFORM function. The better 
score of RDAe justifies this extra time. 
 

CONCLUSION 
 
 Standard Simulated Annealing (SA) and many of 
its variants are quite sensitive to the initial conditions 
and hence may get stuck at local optima, while the 
deterministic acceptance of cost increasing solutions of 
the Reversible Deformation Annealing (RDA) seems to 
reduce the sensitivity to the initial conditions, hence 
increase the likelihood of optimality. In addition, the 
RDAe outperformed the RDA which has proven to be 
better than the standard SA in every single run in terms 
of the quality of the solution when run for the same 
amount of time including the few trials tested on the 
same initial condition. The RDA has only a small price 
of increased time due to the iterative down scaling and 
the RDAe add to that little price a bit more due to the 
several transitions in a limited number of iterations to 
enhance the acceptance rate. The results are 
encouraging to extend to similarly problems that lend 
themselves to reversible deformation, like traveling 
salesman and binary knapsack. 
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