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Abstract: Problem statement: Electroencepharogram (EEG) is an extremely complex signal with 
very low signal to noise ratio and these attributed to difficulty in analyzing the signal. Hence for 
detecting abnormal segment, a distinctive method is required to train the technologist to distinguish the 
anomalous in EEG data. The objective of this study was to create a framework to analyze EEG signals 
recorded from epileptic patients by evaluating the potential of UMACE filter to detect changes in 
single-channel EEG data during routine epilepsy monitoring. Approach: Normally, the peak to side 
lobe ratio (PSR) of a UMACE filter was employed as an indicator if a test data is similar to an 
authentic class or vice versa, however in this study, the consistent changes of the correlation output 
known as Region Of Interest (ROI) was plotted and monitored. Based on this approach, a novel 
method to analyze and distinguish variances in scalp EEG as well as comparing both normal and 
abnormal regions of the patient’s EEG was assessed. The performance of the novelty detection was 
examined based on the onset and end time of each seizure in the ROI plot. Results: Results showed 
that using ROI plot of variances one can distinguish irregularities in the EEG data. The advantage of 
the proposed technique was that it did not require large amount of data for training. Conclusion: As 
such, it was feasible to perform seizure analysis as well as localizing seizure onsets. In short, the 
technique can be used as a guideline for faster diagnosis in a lengthy EEG recording.  
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INTRODUCTION 
 
 EEG signals detect the electrical activity of the 
brain and their use as inputs for epilepsy detection, 
Brain-Computer Interfacing (BCI) and wake-sleep 
studies has gained interest from researchers in these 
fields. In BCI, EEG signals are used as a 
communication medium to help locked-in syndrome 
patients to communicate with the outside world. In fact, 
EEG signals are the only responses that can be 
monitored and read by clinicians to detect responses of 
the locked-in syndrome patient. In early days, EEG was 
employed to detect tumors and epilepsy. Currently, 
EEG signals recorded by epilepsy monitoring units are 
most often used to localize the epilepsy. This is 
achieved by monitoring the EEG patterns and behavior 
during the occurrence of epilepsy. This procedure 

requires the EEG to be recorded for a few days and a 
few series of epilepsy attacks must be scrutinized for 
confirmation purposes before surgical treatment.  
 Numerous research studies have been undertaken 
to enhance the detection, prediction and understanding 
of epilepsy. Ongoing studies seek to improve existing 
methods. Earlier study by other researchers developed 
algorithms based on pattern recognition of spikes and 
sharp waves. The shape and duration of the events is 
critical for detection. The difficulty in this method is to 
identify the spike and sharp waves in real situations, 
since both waves may be obscured by the background 
and noise, making it difficult to obtain the defined 
pattern[1]. Mohseni et al.[2] proved that the variance 
method performs better than methods using other tools, 
such as time-frequency distributions and the Lyapunov 
exponent. However, the threshold value needs to be 
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determined for processing. Maiwald et al.[3] states that 
the aforementioned detection methods are not 
comparable since their terms are mostly un-
standardized. In essence, most researchers prefer ease 
of implementation with moderate results over 
complicated methods with excellent effects.  
 Epilepsy research frequently uses EEG as an input. 
Currently, EEG remains in use and has gained attention 
for further applications such as seizure prediction 
purposes. EEG is attractive because it is an easy to 
obtain, non-invasive and inexpensive method to acquire 
signals from the brain. Some previous EEG processing 
methods used intracranial EEG (iEEG)[4-7], resulting in 
many problems. iEEG is limited to acute epilepsy cases 
only. It is invasive and thus only certain infirmaries 
practice iEEG. Our study thus utilizes scalp EEG rather 
than iEEG.  
 This study deals with scalp EEG data from the 
EEG monitoring lab. Epilepsy patients go through the 
monitoring session to localize and produce more 
accurate results before epilepsy surgery. Patients stay 
for a few days in the monitoring lab and a few episodes 
of seizure attacks are recorded. This procedure is 
mandatory before surgery. Hence, the specialists must 
examine long hours of recording from a series of 
attacks. There is thus a need for computerized screening 
to assist in localizing the time of seizure attacks. This 
may also shorten the time required for diagnosis[1,8,9]. 
Furthermore, dealing with huge amounts of EEG data 
requires fast and trouble-free implementation to 
produce accurate and prompt results. In this study, the 
UMACE filter is chosen for processing the EEG data, 
since it can be employed to handle large amounts of 
data and produce prompt results. 
 
EEG signals and correlation filters: Advanced 
correlation filters, such as MACE and UMACE, are 
usually applied in the field of image processing. In 
those contexts, they are mostly used in authentication 
and identification processes. The advantage of MACE 
is that it has the ability to provide good discrimination 
without the need for impostor training images[10]. In 
image processing, these correlation filters can be 
designed to accommodate the intrinsic amplitude 
variability of images in the training set while being 
tolerant to noise pervading the images[11,12]. The MACE 
filter has been improved and can produce quick results, 
but it involves complex calculations[13]. UMACE is 
easy to implement, provides first-rate results and does 
not require large numbers of training images[10,14]. 
 It is a well known fact that the EEG signal is 
complex and changes rapidly. For certain cases, such as 
epilepsy, no specific pattern has been identified as 

indicative of a specific situation. Inter-subject variability 
also causes difficulty when dealing with biomedical 
signals such as EEG data[15]. In epilepsy, the UMACE 
filter may be able to detect abnormal conditions since the 
seizures of an individual usually exhibit similar patterns. 
However, this pattern cannot be compared with those of 
other patients, since no two patients exhibit similar 
seizure patterns[4]. The UMACE method is applied to 
EEG data in this study, since it can tolerate the inter and 
intra-subject variability for certain degrees of change[10]. 
 As discussed by Savvides et al.[12], the MACE filter 
was developed by Mohalanobis et al.[16] in an effort to 
reduce the large sidelobes observed in the equal 
correlation peak synthetic discriminant filter (ECP SDF 
filter). MACE was developed to aid detection of sharp 
correlation peaks in one region of the plane. The 
MACE filter minimizes the average correlation output 
from the training images while simultaneously 
satisfying the correlation peak constraint at the origin. 
In this way, the correlation plane value will be close to 
0 in every location except that of the target object, 
which will produce a strong peak. The closed-form 
equation of a MACE filter is given by: 
 
h = D−1X(X+D−1X)  −1u (1) 
 
where, D is a diagonal matrix with the average power 
spectrum of the training image placed along diagonal 
elements. X consists of the Fourier transform of the 
training images lexicographically re-ordered and placed 
along each column. u is a column vector containing the 
desired correlation output at the origin for each training 
image. UMACE minimizes the average correlation 
output while maximizing the correlation output at the 
origin. The equation for a UMACE is as in (2): 
 
h = D−1m (2) 
 
where, m is a column vector containing the means of 
the Fourier transforms of the training images. UMACE 
filters are computationally more attractive since the 
inversion of only a diagonal matrix is required. Noise 
tolerance can be built in to the filters as[10]. This is done 
by replacing D with D’, where D’= αD + sqrt (1-α2) C 
and C is a diagonal matrix containing the noise power 
spectral density. For white noise, C is the identity 
matrix with α range from 0 to 1 and is chosen based on 
the trade-off between noise tolerance and 
discrimination. Note that α = 1 yields a MACE filter. 
 

MATERIALS AND METHODS 
 
 The EEG data used in this study were recorded 
using the Medelec-Profile system by Medelec (Oxford 
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Instruments, United Kingdom). The analysis used EEG 
data recorded using bipolar montage. The EEG signals 
were digitally sampled at 256 Hz and bandpass filtered 
at settings of 0.5-70 Hz. The subjects used in this study 
were six patients at the Science University of Malaysia 
Hospital in Kubang Kerian and their ages ranged from 
18-24 years. Patients were admitted for video EEG 
monitoring for evaluation prior to an epilepsy surgery. 
The results were tested against the time of seizure 
observed through video observations. 
 During  the  video-EEG   monitoring  process,  all 
19 channels of data were recorded. For clinical onset 
analysis, both video and EEG data recordings were 
synchronized so that the stored video EEG data could 
be used for offline analysis. This preliminary work used 
and analyzed EEG data from only one channel, the 
most prominent channel based on the recording. EEG 
data from the Medelec system was changed into .txt 
before being processed using a matlab function. The 
most affected channel was chosen as an input based on 
amplitude changes in the EEG data. Three seconds 
from the normal EEG data was chosen as a training 
portion for the filter and then the rest of the input from 
that channel was used to test the UMACE method. 
 UMACE and MACE usually use two-dimensional 
data for inputs such as images. In this analysis, the 
UMACE filter was used on a one-dimensional scalp 
EEG signal. To create a 2-D signal from a 1-D format, 
time delayed methods were used to transform the 
signal to 2-D data. First, the training data were 
selected from the normal region of the EEG recording. 
This was done by choosing three consecutive seconds 
from the normal region as the training data. Next, the 
selected training data were rearranged into 2-D data. 
Figure 1 shows the overall system of our method. A 
specific amount of training data acted as input to the 
filter and the test data was then correlated with the 
designed filter to produce the correlation output. In 
most studies, the indicator for discrimination or 
classification is the Peak-to-Side lobes Ratio (PSR) 
measurements from correlation output[11,12,14,17]. 
However, in this study instead of the PSR value, we 
monitor the consistent changes in the correlation output. 
Some small changes found in the correlation output 
were regarded as different segments or situations of the 
EEG data were compared. 
 Consistent changes appeared in the middle row of 
the plot, called the Region Of Interest (ROI). The 
changes in the ROI were calculated and used as an 
input to produce the final plot, labeled the Sum of ROI, 
shown in Fig. 1. Normal segments usually exist around 
the origin, whereas the abnormal parts produce very 
high peak values compared to the normal parts.  

 
 

Fig. 1: Schematic of UMACE method 
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Fig. 2: Output of correlation plane 
 
 Figure 2 shows the correlation output in the 2-D 
and 3-D formats. The top row shows the outcome with 
normal regions used for both training and testing data. 



J. Computer Sci., 5 (7): 501-506, 2009 
 

 504 

The second row shows the output with the epilepsy 
region as the testing data and the bottom row shows the 
result of the correlation output with the post-epilepsy 
region as the testing input. As can be seen, the results of 
the 2-D plot are not obvious for any testing input. 
However, some distinctions are observed in the 3-D plot 
between training and testing data due to the occurrence 
of some clear peaks in the 3-D plot. These peaks indicate 
certain specific values in the plot. The Epilepsy segment 
testing input produced mainly sharp peaks, while the 
post-epilepsy testing data produced less spiky peaks than 
the epilepsy region. The smallest peaks are observed in 
the normal region data. The sum of these peaks in the 
ROI produces the final graphs that are shown Fig. 3 in 
the next section. The characteristic of the epilepsy region 
is highlighted in the red box. 
 

RESULTS AND DISCUSSION 
 
 As shown in Fig. 3, UMACE filter is able to 
discriminate the percentage changes in the ROI when 
the normal segment is compared to the epilepsy portion; 
these changes can be calculated and depicted in graph 
form. The training data is chosen using an empirical 
method based on recorded data. Consistent results are 
achieved when this technique is used to select the 
training data. 
 Results also showed that low values are achieved for 
normal regions used as training and testing data, reflected 
in small changes in the plot. The variations in the 
epilepsy plot are distinguished by high values, in contrast 
to the plots during normal regions. The most obvious 
feature in the seizure region is the high lofty correlation 
value. This pattern continues for a certain period of time 
without decreasing towards zero (without fluctuating to 
0), as highlighted by the red boxes in Fig. 3-8. 
 

 
 

Fig. 3: Result of patient 1 

 Post-epilepsy, the EEG data of some patients 
change to the normal state, but other patients exhibit a 
new EEG pattern. This can be seen in the graph of 
Fig. 5 for patient 3, in which the post-epilepsy value is 
between the normal and the epilepsy value. Additionally, 
 

 
 

Fig. 4: Result of patient 2 
 

 
 

Fig. 5: Result of patient 3 
 

 
 

Fig. 6: Result of patient 4 
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Fig. 7: Result of patient 5 
 

 
 

Fig. 8: Result of patient 6 
 
Table 1: Estimation of epilepsy attack 
 Video EST  UMACE EST 
 ---------------------------------- --------------------------------- 
 Seizure start Seizure end Seizure start Seizure end 
Patient 1 22 145 21 135 
Patient 2 199 337 214 350 
Patient 3 180 240 180 240 
Patient 4 64 95 66 892 
 764 892 
Patient 5  256 319 245 350 
Patient 6  242 335 242 305 

 
other patients may exhibit the EEG data changes before 
the epilepsy attack, as shown in Fig. 8. It is observed 
here that the changed value occurred 50 seconds before 
the actual epilepsy attack.  
 Table 1 shows the comparison of UMACE and 
video observations. For patients 1, 2 and 6, the 
UMACE method is unable to perfectly detect the 
duration as compared to the video. For patients 3, 4 and 
5, the UMACE detection is accurate and better than the 

video observation. For patient 4, the UMACE 
categorized all the EEG data as seizure at 66 seconds, 
though from the video observation, the medical 
practitioner identified some unknown responses from 
the patient during 95-764 sec. Although the UMACE 
filters produced late detection in several cases, the 
strength of evaluating and comparing the changes 
without requiring a large amount of training data makes 
it a suitable technique to aid in diagnosis and it can also 
serve as a guideline to assess whether a patient has 
recovered from an attack. 
 

CONCLUSION 
 
 The results of this study show that the UMACE 
filter is able to detect changes in scalp EEG data 
recorded using bipolar montage. In EEG data, changes 
between the normal and abnormal state of a particular 
individual must be highlighted to distinguish between 
normal and epilepsy portions of the data. UMACE can 
be used to detect these changes in a group of data from 
the same source. Constant conditions in the EEG signal 
produced minimal changes in the UMACE output, while 
different states produced immense changes observable in 
the plot. Since this method is suitable for bipolar 
montage, the database from hospitals can be directly 
applied without any conversion of the original database. 
 Furthermore, the proposed method only utilizes 
three consecutive seconds of normal data as the training 
input, making implementation practically effortless. 
The results allow normal and epilepsy states to be 
distinguished on the basis of EEG data. The accuracy of 
our method is also adequate, since seizure detection 
usually suffered only small limitations. For instance, 
accurate prediction required careful patient-specific 
tuning and usefulness for poorly localized epilepsies is 
limited. The UMACE filter can be used to aid diagnosis 
in reading the EEG, assisting specialists to produce 
faster results and accurate diagnoses.  
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