
Journal of Computer Science 5 (4):311-322, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Ben Swarup Medikonda, Department of Computer Science and Systems Engineering,
 Andhra University, Visakhapatnam-530 003, India

311

An Approach to Modeling Software Safety in Safety-Critical Systems

Ben Swarup Medikonda and Seetha Ramaiah Panchumarthy

Department of Computer Science and Systems Engineering
Andhra University, Visakhapatnam-530 003, India

Abstract: Software for safety-critical systems has to deal with the hazards identified by safety analysis
in order to make the system safe, risk-free and fail-safe. Software safety is a composite of many
factors. Problem statement: Existing software quality models like McCall’s and Boehm’s and ISO
9126 were inadequate in addressing the software safety issues of real time safety-critical embedded
systems. At present there does not exist any standard framework that comprehensively addresses the
Factors, Criteria and Metrics (FCM) approach of the quality models in respect of software safety.
Approach: We proposed a new model for software safety based on the McCall’s software quality
model that specifically identifies the criteria corresponding to software safety in safety critical
applications. The criteria in the proposed software safety model pertains to system hazard analysis,
completeness of requirements, identification of software-related safety-critical requirements, safety-
constraints based design, run-time issues management and software safety-critical testing. Results: This
model was applied to a prototype safety-critical software-based Railroad Crossing Control System
(RCCS). The results showed that all critical operations were safe and risk-free, capable of handling
contingency situations. Conclusion: Development of a safety-critical system based on our proposed
software safety model significantly enhanced the safe operation of the overall system.

Key words: Software safety, safety-critical system, software quality

INTRODUCTION

 The notion of software safety was first mentioned
in the Mil-Std-1574A[1] which required analysis of
software to identify and eliminate software errors
relating to safety critical commands and control
functions of space and missile systems. Since then, the
role of software has becoming increasingly important
and is being used in many critical applications, such as
avionics, vehicle control systems, medical systems,
manufacturing, power systems and sensor networks[2,3].
 A safety-critical system is one that has the potential
to cause accidents. Software is hazardous if it can cause
a hazard i.e., cause other components to become
hazardous or if it is used to control a hazard. Software
is deemed safe if it is impossible or at least highly
unlikely that the software could ever produce an output
that would cause a catastrophic event for the system
that the software controls. Examples of catastrophic
events include loss of physical property, physical harm
and loss-of-life. Software engineering of a safety-
critical system requires a clear understanding of the
software’s role in and interactions with, the system[4,5].
According to Dunn[6], dependable, seemingly safe,

concepts and structures fail in practice for three primary
reasons:

• Their originators or users have an incomplete

understanding of what makes a system “safe
• fail to consider the larger system into which the

implemented concept is to be embedded, or
• ignore single points of failure that will make the

safe concept unsafe when put into practice

 Application areas for safety-critical systems
include the following-Military, e.g., weapon delivery
systems and space programs. Industry, e.g.,
manufacturing control where toxic substances are
involved and robots. Transportation, e.g., fly-by-wire
systems on board aircraft, air traffic control,
interlocking systems for trains, automatic train control
and computer systems in cars. Communication, e.g.,
ambulance dispatch systems and the emergency call
part of a telephone system. Medicine, e.g., radiation
therapy machines, medical monitoring and medical
robots. Nuclear power plant control. As is apparent
from the above example areas, safety-critical systems
are often real-time control systems. These systems

J. Computer Sci., 5 (4): 311-322, 2009

312

require the utmost care in their specification, design,
implementation, operation and maintenance, as they
could lead to injuries or loss of lives and in-turn result
in financial loss[7,8]. This is the type of system that will
be considered in this study. Here are some concepts and
terms relating to safety found in the literature relating to
safety critical systems.

Safety-related terms:
Failure: An event where a system or subsystem
component does not exhibit the expected external
behavior. The expected system behavior and the
environmental conditions under which it must be
exhibited should be documented in the requirements
specification.

Error: An incorrect internal system state.

Fault: A fault is anything that might cause an error. A
fault may be a physical defect in hardware, a flaw in
software or incorrect operator input. According to
Nissanke[9], a fault may or may not cause an error and
an error may or may not cause a failure. Faults can have
their origin within the system boundaries (internal
faults) or from without, namely, in the environment
(external faults). In particular, an internal fault is said to
be active when it produces an error and dormant (or
latent) when it does not. A dormant fault becomes an
active fault when activated by either its process or the
environment. Fault latency is defined as either the
length of time between the occurrence of a fault and the
appearance of the corresponding error, or the length of
time between the occurrence of a fault and its
removal[10].

Hazard: A system state that might, under certain
environmental conditions, lead to a mishap[11]. Hence, a
hazard is a potentially dangerous situation.

Safety constraint: A hazard characterizes a system
state that for safety reasons should not occur. If this is
negated and some safety margins are included we get a
safety constraint, i.e., a description of a property that
the system should possess in order to be safe.

Safety-critical: Those software operations that, if not
performed, performed out-of sequence, or performed
incorrectly could result in improper control functions
(or lack of control functions required for proper system
operation) that could directly or indirectly cause or
allow a hazardous condition to exist[12]. A real-time
system is safety critical when its incorrect behavior can
directly or indirectly lead to a state hazardous to human

life [13]. Decisions which shape the software architecture
for safety-critical, real-time systems are driven in part
by three qualities; availability, reliability and
robustness[13,14].

MATERIALS AND METHODS

Software quality models: There have been two notable
models of software quality attributes viz. McCall’s and
Boehm’s. There are others but these two illustrate the
general purpose quality models. Both McCall and
Boehm have described quality using a decompositional
approach[15,16]. McCall's model of software quality
(The GE Model, 1977) incorporates eleven criteria
encompassing product operation, product revision and
product transition. Boehm's model (1978) is based on
a wider range of characteristics and incorporates
nineteen criteria[17]. The criteria in these models are
not independent; they interact with each other and
often cause conflict, especially when software
providers try to incorporate them into the software
development process. ISO 9126 standard incorporates
six quality goals, each goal having a large number of
attributes[18].

McCall software quality model: This framework is
useful for its integrated approach to quality. In this
framework, software quality attributes are classified
into a hierarchy of three levels as shown in Fig. 1. At
the top level are the so-called “quality factors” from a
customer or user perspective: correctness, reliability,
efficiency, integrity, usability, maintainability,
testability, flexibility, portability, reusability and
interoperability. At the second level, are the “quality
criteria,” which represent technical concepts. At the
third level, are the “quality metrics,” which measure the
attributes of software products.

Fig. 1: McCall’s software quality model

J. Computer Sci., 5 (4): 311-322, 2009

313

 The last two levels are from engineering
perspectives. McCall suggests these application steps:

• Deduce quality factors based on the characteristics

of the system
• Trade-off and prioritize the quality factors based on

the needs of the customers/users
• Deduce related quality criteria and metrics using

the framework; and
• Base specification, design, coding and testing on

the deduced factors, criteria and metrics

 The original eleven quality factors in McCall’s
Software Quality Model are: Usability, Integrity,
Efficiency, Correctness, Reliability, Maintainability,
Testability, Flexibility, Reusability, Portability,
Interoperability.

The modified McCall’s quality framework applied
to software safety: Raghu Singh has proposed a
modified framework to address software safety[19]. The
four factors relating to software safety in his model
which are part of the original McCall model are:
Correctness, efficiency, reliability, testability. To these
four quality factors, a new factor-responsiveness was
introduced to account for the real time performance.
For each factor the corresponding criteria (attributes
from the developer point of view) are derived as
shown in Table 1. It is argued that determination and
application of specification, design, coding and testing
methods in a project should be based on the metrics
derived from the criteria in order to "ensure" software
safety.
 All these quality models-McCall’s, Boehm’s and
ISO 9126 and the modified model by Raghu Singh do
not directly address the specific issues of software
safety but emphasize the general quality attributes.
They have the following limitations. First, many of the
factors suggested by these models are not directly
related to the specific issue of hazards contributed by
the malfunction modes of software. Second, they
assume that the concepts of reliability and safety are
equivalent whereas a system can be reliable and still be
not safe. Making a system more reliable is not sufficient
if it has unsafe functions. This translates to having a
system that reliably functions to cause unsafe
conditions. Finally, these models seem to focus on non-
safety critical systems where the emphasis is more on
efficiency and other quality attributes and less on the
safety issues of hazards and mishaps that can endanger
human life and property. To overcome these
limitations, a new model is proposed that captures the
major issues specifically related to software safety.

Table 1: Factors and Criteria
Factors Criteria
Correctness Completeness, consistency, traceability
Efficiency Execution efficiency storage efficiency
Reliability Accuracy, consistency fault tolerance, simplicity
Responsiveness Execution adequacy throughput adequacy
Testability Instrumentation, modularity, self-descriptiveness,
 test completeness

Fig. 2: Software safety model

Proposed model for software safety: The proposed
model for software safety based on the factor, criteria
and metric approach is shown in Fig. 2.
 The quality factor software safety may be
decomposed into six quality criteria as listed below:

• System hazard analysis
• Completeness of requirements
• Identification of safety critical requirements
• Design based on safety constraints
• Run-time issues management
• Safety critical testing

 Each criteria may be further decomposed into a set
of lower level quality metrics, which are directly
measurable. Each proposed criteria of software safety is
briefly explained as follows:

System hazard analysis: While developing a framework
for software safety is the focus of this study it is
important to note that no software works in isolation. The
entire system must be designed to be safe. The system

J. Computer Sci., 5 (4): 311-322, 2009

314

contains the software, hardware, the users and the
environment. All must be given consideration when
developing software. All parts of the system must be
safe. Functional and operational safety starts at the
system level. Safety cannot be assured if efforts are
focused only on software. The software can be totally
free of 'bugs' and employ numerous safety features, yet
the equipment can be unsafe because of how the software
and all the other parts interact in the system. Hazards at
the system level include: hardware hazards, software
hazards, procedural hazards, human factors,
environmental hazards and interface hazards[20].
 Preliminary system safety analyses (e.g.,
Preliminary Hazard Analysis (PHA)), conducted during
the system requirements phase when the role of
software is being defined, begin to identify the hazards
associated with a particular design concept and/or
operation. These preliminary analyses and subsequent
system and software safety analyses identify when
software is a potential cause of a hazard or will be used
to support the control of a hazard. This software shall
be classified as safety-critical and shall be subjected to
software safety analysis. The system safety analyses are
the first place to identify software safety requirements
necessary to support the development of the software
requirements specification. These requirements shall be
provided to the developer for inclusion into the
software requirements document. Some examples of
software safety requirements include limits (e.g.,
redlines, boundary values), sequence of events, timing
constraints, interrelationship of limits, voting logic,
hazardous hardware failure recognition, failure
tolerance, caution and warning interfaces, hazardous
commands, etc.,
 The system safety analyses continue throughout the
project life cycle. The software safety analysis process
needs to continue to review the results of the systems
analyses to assure that changes and findings at the
system level are incorporated into the software as
necessary. In addition, the software safety analyses
provide input to the system safety analyses. The
software safety analyses are a special portion of the
overall system safety analyses and are not conducted in
isolation.
 The basis of sound design for a safety-related
system is the identification, through systematic
analysis, of the hazards which the system might
encounter in operation. A number of techniques are
well established for electrical and electronic systems
but there has been much debate as to how relevant these
techniques are when applied to software. The objectives
for the software hazard analysis, as stated by the
standards/guidelines include:

• Identifying critical system modules and program
sections, i.e., those with most safety relevance

• Verifying that software required to handle the
failure modes identified by systems/subsystems
hazard analysis does so effectively

• Allowing more rigorous methods and controls to be
selected and applied to areas of software which are
most critical to the safety of the system

• Identifying and evaluating safety hazards associated
with the software, with the aim of either eliminating
them or assisting in the reduction of associated risks

• Identifying failure modes that can lead to an unsafe
state and making recommendation for changes

• Determining the sequence of inputs which could
lead to the software causing an unsafe state and
making recommendations for changes

 Approaches suggested include Failure Modes and
Effects Analysis (FMEA), Fault Tree Analysis (FTA)
and Hazard and Operability (HAZOP) technique.

Completeness of requirements: Completeness can be
defined as the property that requirements are sufficient
to distinguish the desired behavior of the program from
that of any other undesired program that might be
designed[21]. It should not be surprising then that most
errors found in operational software can be traced to
requirements flaws, particularly incompleteness.
Completeness is a quality often associated with
requirements but rarely defined. In addition, nearly all
the serious accidents in which software has been
involved in the past 20 years can be traced to
requirements flaws, not coding errors. The software
may reflect incomplete or wrong assumptions about the
operation of the system components being controlled by
the software or about the operation of the computer
itself. The problems may also stem from unhandled
controlled-system states and environmental conditions.
Thus simply trying to get the software "correct" in
terms of accurately implementing the requirements will
not make it safer in most cases. Basically the problems
stem from the software doing what the software
engineer thought it should do when that is not what the
original design engineer wanted. Integrated product
teams and other project management schemes to help
with this communication are being used, but the
problem has not been solved[19].
 Donald Firesmith[22] proposes seven different ways
in which the phrase ‘requirements completeness’ could
be interpreted. These include the completeness of:

• Requirements analysis models
• Individual requirements
• Metadata describing individual requirements

J. Computer Sci., 5 (4): 311-322, 2009

315

• Requirements repositories
• The set of requirements documents
• Individual requirements specification documents
• A requirements baseline

 An individual requirement is complete if it contains
all necessary information to avoid ambiguity and needs
no amplification to enable proper implementation and
verification. To avoid ambiguity, a requirement must
express the entire need and state all conditions and
constraints under which it applies[23]. Different kinds of
requirements are specified differently. Therefore the
following different kinds of requirements may be
incomplete because different component parts of them
are missing:

• Functional Requirements
• Data Requirements
• Interface Requirements
• Quality Requirements
• Constraints

Types of safety-related requirements: When
engineering safety-related requirements, stakeholders
must realize that these requirements come in four
distinct types, which need to be analyzed and specified
differently[24]. They are (i) Safety requirements (ii)
safety-significant requirements (iii) Safety system
requirements (iv) Safety constraints. They are explained
as follows:
 First of all, there are pure safety requirements,
which are a kind of quality requirement that views
safety as a quality factor within a quality model. As
such, safety requirements are typically of the form of a
quality criterion (a system-specific statement about the
existence of a sub factor of safety) combined with a
minimum or maximum required threshold along some
quality measure. They directly specify how safe the
system must be. Second are safety-significant
requirements, which are normal functional, data,
interface and non-safety quality requirements that are
relevant to the achievement of the safety requirements.
In other words, safety-significant requirements can lead
to hazards and accidents when not implemented
correctly. When most people think of safety-critical
systems, they are thinking of systems, the required
functionality of which makes them subject to serious
accidents. Third are safety system requirements, which
are the requirements for safety systems or safety
components of safety-related systems. A canonical
example of which would be requirements for the
emergency core cooling system of a nuclear power

plant. Requirements for an aircraft’s fire detection and
suppression system would also be safety system
requirements. Finally, safety constraints are architecture
or design constraints mandating the use of specific
safety mechanism or safeguards. Many industries
including petrochemicals, nuclear power and automated
people movers have industry safety standards requiring
specific safeguards.

Identification of software-related safety-critical
requirements: A safety critical software requirement
may be understood as a software requirement identified
as essential to the safe system operation or use[25].
Specifically, a safety critical software requirement
performs one or more of the following functions:

• Controls or directly influences the functioning of

safety critical hardware
• Controls or directly influences hazardous systems
• Monitors the state of the system for purposes of

ensuring its safety
• Senses hazards and/or displays information,

concerning the protection of the system
• Handles or responds to fault detection priorities
• Disables or enables interrupt processing software
• Generates output that displays the status of safety

critical hardware
• Computes safety critical data

 The above listed functions are based on the
functions presented in STANAG 4404[26]. Safety
critical computer system functions are essentially those
software features that are used to monitor, control, or
provide data for the safety-critical functions. Once the
safety-critical computer system functions have been
identified, the safety engineer should perform analyses
to assess the risks associated with each identified
safety-critical requirement. In software-intensive
systems, mishaps often occur because of a combination
of factors, including component failure and faults,
human error, environmental conditions, procedural
deficiencies, design inadequacies and software and
computing system errors. In such systems software
often cannot be divorced from the system where it
resides. Software and computing system safety analyses
should consider safety aspects of the following items:

• Computer system hardware, which includes

physical devices that assist in the transfer of data
and perform logic operations. Examples include
Central Processing Units (CPU), busses, display
screens, memory cards and peripherals

J. Computer Sci., 5 (4): 311-322, 2009

316

• Computer system firmware, which is resident
software that controls the CPU’s basic functioning

• Computer system software, including operating
system software and applications programs

 In addition, because software safety is a systems
issue, software and computing systems must be
considered with respect to other aspects of the system,
such as the following:

• Physical entities whose function and operation are

being monitored or controlled, often called the
application

• Sensors (thermocouples, pressure transducers)
• Effectors that take an instruction from the

computing system and impart an action on the
system (valves, actuators)

• Data communication to other computers
• Humans who will interact with the system

 Safety is enhanced through the use of layers of
protection that include both software- and hardware-
specific safety measures. The output from the software-
specific hazard analysis process includes design-level
safety requirements based on safety measures
developed to mitigate hazards. These design-level
requirements could include specific hardware
mitigation measures (such as redundant functionality
using hardware) or coding requirements that must be
implemented. Design-level requirements are statements
that can be translated into code without interpretation,
or specific mitigations that must be implemented.

Design based on safety-constraints: The first step in
the safety-constraint centered design approach is the
specification of safety constraints[27]. In hardware
systems, redundancy and diversity are the most
common ways to reduce hazards. Hardware detection
and control includes mechanisms such as fail-safe
designs, self-tests, exception handling, warnings to
operators or users and reconfigurations. For software
intensive safety-critical systems, software design must
enforce safety constraints. Reviewers should be able to
trace from requirements to code and vice versa. In
addition to the specific safety constraints developed for
the system being designed, the design should
incorporate basic safety design principles. Safety, like
any quality, must be built into the system design.
Software represents or is the system design[13]. The
most effective way to ensure that a system will operate
safely is to build safety in from the start, which means
that system operation must not lead to a violation of the
constraints on safe operation.

 System accidents result from interactions among
components that lead to a violation of these constraints.
In other words, from a lack of appropriate enforcement
of constraints on the interactions. Because software
often acts as a controller in complex systems, it
embodies or enforces the constraints by controlling the
components and their interactions. Software, then, can
contribute to an accident by not enforcing the
appropriate constraints on behavior or by commanding
behavior that violates the constraints.
 The requirement for software to be safe is not that it
never "fails" but that it does not cause or contribute to a
violation of any of the system constraints on safe
behavior. This observation leads to the suggested
approach to handling software in safety-critical systems,
i.e., first identify the constraints on safe system behavior
and then design the software to enforce those constraints.
 The software-specific analysis should provide
specific mitigation approaches for each potential hazard
identified. The recommended order of precedence for
eliminating or reducing risk in the use of software and
computing systems is the same as that for hardware, as
follows:

• Design for minimum risk
• Incorporate safety devices
• Provide warning devices
• Develop and implement procedures and training

 Mitigation measures can include, but are not
limited to, approaches such as the following[28]:

• Software fault detection (for example, built-in

tests, incremental auditing)
• Software fault isolation (for example, isolating

safety-critical functions from non-safety-critical
functions)

• Software fault tolerance (for example, recovery
blocks that use multiple software versions of
progressively more reliable construction should
faults occur)

• Hardware and software fault recovery (for
example, incremental reboots, exception handling)

 After the designers have applied measures to
mitigate mishap risk to a basic system, they must
determine if the modified system design meets an
acceptable level of mishap risk. They can use three
analytical techniques to make this determination. In
Failure Modes And Effects Analysis (FMEA), the
designer or analyst looks at each component in the
system, considers how that component can fail, then
determines the effects each failure would have on the

J. Computer Sci., 5 (4): 311-322, 2009

317

system[29,30]. This analysis seeks first to verify that there
is no mishap-producing single point of failure in the
system because such a potential point of failure would
nullify the benefits of applying mitigation measures
elsewhere in the system.
 Fault Tree Analysis (FTA) reverses this process by
starting with an identified mishap and working
downward to identify all the components that can cause
a mishap and all the safety devices that can mitigate
it [32,33]. This downward decomposition process builds a
graphical structure called a fault tree. In contrast to
FMEA and FTA, which are both qualitative methods,
Risk Analysis (RA) is a quantitative measure that yields
numerical probabilities of mishap[29,30]. To perform RA,
the analyst must determine the component failure
probabilities for the hardware, software and operator
components in the fault tree[29-31]. In accordance with
standards such as Mil-Std-882D[33] and IEC 61508[34]
designers usually estimate failure probabilities on a per-
hour basis.
 If the system consists of redundant components,
designers calculate its unreliability-the probability that
it will not operate over the span of one hour. Next, they
determine mitigation failure probabilities for the fault
tree’s hardware, software and operator safety devices. If
a mitigation device includes redundant components,
designers determine its unavailability-the probability
that it will not mitigate if required. The designers assign
these component- and mitigation- failure probabilities
to elements in the fault tree, then propagate them
upward to yield a figure for mishap risk. If this results
in an unacceptable figure, they must implement
additional mitigation measures. As a side benefit, the
fault tree shows where to add these measures in the
system. If, on the other hand, the risk calculation yields
an acceptable result, the design is ready for additional
validation steps[28] such as in-depth risk assessment,
testing and field trials to assure that the system, when
implemented, will be safe. Although it may seem
obvious, a developer’s concerns about a safety-critical
system’s continuing safety do not end with design and
implementation. Indeed, a vigorous system safety
program must be in place throughout the system’s
operational life to ensure that mishap risk is maintained
at or below the level achieved in the original design[33,34].

Run time issues management: There is always the risk
that an a priori verified program behaves slightly
differently-and faultily-at runtime. This may simply be
the result of compiler bugs, or it may be due to
mismatches between the expected and actual behavior
of the execution environment, say with respect to
timing issues or memory behavior.

Fig. 3: A decomposition of run time issues criteria

 An operating-system kernel and application
programming interface often perform the most
important role in a safety-critical system. Exception
handling, deadlocks, process and stack management,
scheduling and flow control and memory protection all
have repercussions on the safety function and can be
key elements of meeting safety-integrity requirements.
Figure 3 shows the decomposition of the run time
issues criteria into five sub-criteria or lower-level
criteria which provide a basis for measurements.
 Traditional testing techniques such as unit testing
are ad hoc and informal. It is only a partial proof of
correctness in that it does not guarantee that the system
will operate as expected under untested inputs. In terms
of its ability to guarantee software correctness, runtime
verification is stronger than testing. Testing can only
guarantee the correctness of a limited set of inputs at
implementation time. As a result, undiscovered faults
may result in failures at runtime and even allowing the
system to propagate corrupted output because the failure
was not detected. By always monitoring the software for
correctness, such failures can be caught when they
happen, for any input which causes them to occur.
 Runtime verification is a lightweight verification
technique that complements traditional techniques such
as model checking and testing[35]. It checks whether the
current execution of a system under scrutiny satisfies or
violates a given correctness property. One of the main
distinguishing features of runtime verification is that it
is performed-as the name suggests-at runtime. This
opens up the possibility not only to detect incorrect
behavior of a software system but to react whenever
incorrect behavior is encountered.
 Checking whether an execution meets a correctness
property is typically performed using a monitor. In its
simplest form, a monitor decides whether the current
execution satisfies a given correctness property by
outputting either yes/true or no/false. More detailed

J. Computer Sci., 5 (4): 311-322, 2009

318

assessments, like the probability with which a given
correctness property is satisfied, can also be given. In
runtime verification, monitors are typically generated
automatically from some high-level specification. As
runtime verification has its roots in model checking,
often some variant of linear temporal logic is employed.
Besides checking safety properties directly using the
monitors generated from them, runtime verification can
also be used with partially verified systems. Such
partial correctness proofs often depend on assumptions
made about the behavior of the environment. These can
be easily checked using runtime verification techniques.
Runtime verification itself deals (only) with detecting
whether correctness properties are violated (or
satisfied). Thus, if a violation is observed, it typically
does not influence or change the program's execution,
say by trying to repair the observed violation.

Safety critical testing: Testing of safety-critical
systems follows two important strategies which are
systematic rigorous testing and static analysis. While
there is no substitute for rigorous testing at many levels:
Unit, regression, functionality and integration testing,
testing effectiveness depends on the quality of the test
cases used. The best test suites are those that have good
code coverage. Statement coverage and condition
coverage are the most commonly used metrics. Full
condition coverage is considered essential for safety-
critical code, such as flight control software. Achieving
full coverage can be exceedingly time-consuming and
expensive. There are different kinds of coverage and
the risk the code carries dictates which kind of coverage
is required. In the DO-178B Standard for aviation, the
riskiest code requires 100% Modified
Condition/Decision Coverage (MCDC). The next two
most risky classes require 100% decision coverage and
statement coverage, respectively. The least risky code,
such as the in-flight entertainment system, has no
coverage requirements at all. Also, as all programmers
know, just because a statement is executed in a
successful test case does not mean it will always execute
correctly. It may fail under an unusual combination of
circumstances that the test cases did not explore.
 Safety critical software functions provide the
source of requirements to be tested. Testing shall be
performed to verify correct incorporation of software
safety requirements. Testing must show that hazards
have been eliminated or controlled to an acceptable
level of risk. Additional hazardous states identified
during testing shall undergo complete analysis prior to
software delivery or use. Software safety testing of
Safety-Critical Computer Software Components
(SCCSC) shall be included in the integration and

acceptance tests. Acceptance testing shall verify correct
operation of the SCCSCs in conjunction with system
hardware and operators[36]. It shall verify correct
operation during stress conditions and in the presence of
system faults. It is important to tailor the safety-critical
testing effort to emphasize the parts of the software that
need additional analysis and testing. The greatest effort
must be placed on the hazards posing the highest risk.
We consider it adequate to divide the software into two
risk groups for test purposes. Group one includes hazards
that are catastrophic or critical. Group two includes
hazards that are marginal or negligible as per the
definitions in MIL-STD-882C. Software in the first
group deserves special safety analysis and testing since
the hazards pose a higher level of risk. The normal level
of software analysis and testing performed for
operational software is adequate for group two.
 While traditional dynamic testing plays a
fundamental role in producing high-quality software it
is only as good as the test cases. To be effective, a great
deal of effort must go into writing or generating good
test cases and doing so can be very expensive.
Recently, a new breed of static analysis tools has
emerged that can find flaws without writing any test
cases. These tools, which are also referred to as static
testing tools, can find bugs that are difficult or
impossible to find using standard testing
methodologies[37]. They can locate serious flaws such as
buffer overruns, null pointer dereferences, resource
leaks and race conditions. Because they operate by
analyzing the source code itself in detail, they can also
highlight inconsistencies or contradictions in the code
such as unreachable code, useless assignments and
redundant conditions.
 The following illustrates some of the most
important classes that static tools can detect. The first
class is the most serious-bugs that either cause the
program to terminate abnormally or result in highly
unpredictable behavior. These include buffer overrun
and under run, null pointer dereference, division by
zero and use of uninitialized variables. Memory
allocation errors are those that result from the misuse of
malloc or new functions. These can be tricky to debug
because the erroneous behavior may only show up long
after the event that caused the error. Such errors include
double free, use after free and memory leak.
Concurrency bugs may be caused by misuse of the
threads library. Double locks or unlocks, race
conditions and futile attempts to lock are among the
checks that are available.
 A second class of check is for inconsistencies or
redundancies. These are not bugs per se, but are often
indicators that a programmer misunderstood something.

J. Computer Sci., 5 (4): 311-322, 2009

319

This class includes redundant conditions, useless
assignments and checking whether a pointer is null after
it has already been dereferenced. Holtzmann[38], in his
list of ten rules for writing safety-critical code,
explicitly specifies that advanced static-analysis tools
should be used proactively all through the safety-
critical development process.

Application of safety model to Railroad Crossing
Control System (RCCS): Crossing gates on a full-size
railroads are controlled by a complex control system
that causes the gates to be lowered to prevent access to
the crossing shortly before a train arrives and to be
raised to allow access to resume after the train has
departed. This requires the detection of approaching
trains or the manual actuation of the crossing gates by
an operator. RCCS is a prototype safety-critical railroad
crossing control system of limited complexity. Figure 4
shows the laboratory prototype of RCCS consisting of
several components listed below.

Components of RCCS: RCCS consists of the
following main components: Train, Railway track,
Sensors, Gates, Controller with a digital I/O card,
Signals and a muscle-wire operated track-change lever.
A brief description of each component is given below.

Train: The train is powered by a power supply relay.
When the power is initially switched on, the train
begins movement along the track when the metallic
wheels of the train receive power. The train comes to a
halt at the position where the power to the tracks is
switched off. When a train approaches the gate crossing
region, the train is detected by the sensor positioned
near the gate crossing area. The sensor sends this
information to the controller component. When a train
completely passes the crossing section, it is detected by
the sensor which is positioned after the gate crossing
area. This information is sent to the controller.

Fig. 4: Prototype of RCCS

Sensors: These are used to detect the location of the
train on the tracks. Altogether RCCS employs nine
sensors. Two pair of sensors detect the train position
before and after the gates. A set of three sensors relate
to track change where the track splits into two
directions. A pair of sensors give the train position with
reference to the platform, which is the starting point of
the train movement. Information from each of the
sensors is passed to controller.

Controller: The controller synchronizes the train
activities with the gate. When the controller receives a
message from sensor1, it sends a command to lower the
gates. When it receives a message from sensor2, it
sends a command to raise the gates. An IBM
compatible PC is used as a controller for RCCS. RCCS
software that controls the overall operation of the
system is stored in the memory of the controller PC. A
user interface is provided to operate the selections of
the controller PC. A 48-line digital I/O (DIO) add-on
card is plugged into an available slot in the controller
PC for monitoring and controlling sensors and gate
actuators. The DIO card receives the inputs from each
of the nine sensors of RCCS. The eight output signals
sent from DIO card control the following: the power
supply to the train track, power supply to the two gate
assemblies, power supply to muscle-wire based
mechanism to change the track lever and four signal
lights.

Gates: RCCS has two sets of gates on either side of the
track layout. The gate receives signals from the
controller component. When it receives lower, it moves
down. When the gate receives raise, it moves up. The
gates are operated by means of a muscle wire based
mechanism. Muscle wire (Nitinol) is a nickel titanium
alloy which contracts when current flows through it, for
achieving motorless motion for gate movement and
track change.

Signals: Railroad signals are provided to indicate to
train operators whether the track is clear or occupied, or
if certain precautionary measures should be taken while
using the track, such as maintaining a reduced speed.
RCCS contains three train signals, erected beside the
track. One signal is at the platform to signal a halt at the
platform. The other two signals are placed just before
the point of convergence of the inner track and outer
track, which lead to the platform. A signal head consists
of one or more signal faces that can include solid red
and green lights.

J. Computer Sci., 5 (4): 311-322, 2009

320

RESULTS AND DISCUSSION

Normal operation of RCCS: When RCCS is first
switched on, the controller does a preliminary check of
the normal working status of all the subsystems
involved-the driver circuitry, the sensors, the gate
assemblies and the train signals. If all the components
are found to be in normal working condition, it executes
the code related to normal operation. Figure 5 shows
the partial block diagram of RCCS corresponding to the
rail-road intersection. If the train passes Sensor1
positioned prior to gate, a signal is sent to the controller
indicating the approaching train. The controller then
sends a signal to the gates assembly, causing the gate
arms on either side of the road to close. When the train
finally has passed Sensor2, which is positioned just
beyond the gate crossing section, a corresponding
signal is sent to the controller, which in turn triggers
both the gate arms to open simultaneously. If RCCS
detects any abnormal situation or state during its normal
mode of operation, perhaps due to an unexpected
lightning strike or rainstorm that disrupts the circuitry
of the gate assemblies, it executes the code relating to
emergency situation causing the signal erected near the
gates, to flash a red light continuously. This is an
indicator to the public that the gate assembly is not in
working condition and that they need to take necessary
precaution in crossing the intersection.
 All the six criteria of the model were applied to
RCCS. First, the system-level hazard analysis was done
to identify possible hazardous failure conditions at the
system level. The potential hazards identified are:
Failure of Controller, Failure of Sensors, Failure of
Driver Circuitry, Failure of Gate 1 and Gate 2, Failure
of Train Signal, Failure of muscle-wire operated Track
Change Lever in changing from outer to inner track.
Next, the identified hazards were classified according
to their severity. A hazard belongs to one of four
levels-catastrophic, critical, marginal and negligible.

Fig. 5: RCCS partial block diagram showing railroad

crossing intersection

For example, the failure of the controller may lead to
both gates being permanently open, causing accidents,
can be considered a catastrophic or severe hazard.
Failure of the sensor that detects that the train has
passed the gate crossing section, with the effect of the
gates being permanently closed will not cause an
accident but will violate the utility property of the gates,
until the problem is rectified. Failure of the sensor that
detects the approaching train can cause an accident as
the controller will not close the gates keeping them
open, which can lead to accidents as the road users are
unaware of the approaching train. This is a catastrophic
or severe hazard.
 Second, completeness of requirements criteria was
applied to check any missing or ambiguous
specifications. This was done by peer review and
manual checking rather than applying any formal
methods. Third, all the safety-critical and non-safety
critical requirements were identified. All requirements
that directly or indirectly lead to incorrect operation of
the gates are considered safety-critical. Fourth, a design
that enforced the safety constraints was chosen for
RCCS. The objective of the design was to eliminate or
mitigate the hazards identified in the preliminary
system-level hazard analysis. Another objective was to
avoid the possibility of single point failure. This was
achieved by using a additional redundant controller that
takes over control of the system should the main
controller fail unexpectedly. Implementation was done
in Cyclone programming language which is a dialect of
C language which includes several safety features not
found in C. Fifth, run-time performance was monitored
for problems relating to exceptions, deadlocks, memory
related issues like buffer overruns. Lastly, safety critical
testing of RCCS was done by separating the code into
two risk groups. Group one includes hazards that are
catastrophic or critical. Group two includes hazards that
are marginal or negligible. More testing effort was
spent on those code sections dealing with hazards
related to group one. The preliminary results in
applying the safety model in developing the safety-
critical RCCS clearly demonstrate that the system is
safe, risk-free and fail-safe when compared to a
development methodology that does not take hazards
and associated risks into consideration.

CONCLUSION

 This study discussed the criteria relevant to
software safety. A new model for software safety is
proposed. A set of quality criteria that form the basis of
software safety is presented. The proposed model is
applied to a laboratory prototype of a software-based

J. Computer Sci., 5 (4): 311-322, 2009

321

Railroad Crossing Control System (RCCS) that
includes safety-critical operations and observed
satisfactory results. Using the experimental results of
the proposed model with railroad crossing control
system, work can be extended to address issues of
development cost and development time in
implementing this model to achieve software safety
metrics. Rigorous work is needed to meet the complete
requirements of software safety aspects that leads to
standardization of model with safety metrics.

REFERENCES

1. MIL-STD-1574A (USAF), 1979. System safety

program for space and missile systems. http://store.mil-
standards.com/index.asp?PageAction=VIEWPRO
D&ProdID=142

2. Wang, D., F.B. Bastani and I.L. Yen, 2005.
Automated aspect-oriented decomposition of
process-control systems for ultra-high
dependability assurance. IEEE Trans. Software
Eng., 31: 733-753.

 http://portal.acm.org/citation.cfm?id=1092850
3. Bhansali, P.V., 2005. Software safety: Current

status and future directions. ACM SIGSOFT
Software Eng. Notes, 30: 3.
http://portal.acm.org/citation.cfm?doid=1039174.1
039193

4. Lutz, R.R., 2000. Software engineering for safety:
A roadmap. Proceedings of the Conference on The
Future of Software Engineering Limerick, June 04-
11, Ireland, pp: 213-226.

 http://portal.acm.org/citation.cfm?id=336556
5. Knight, J.C., 2002. Safety critical systems:

Challenges and directions. Proceeding of the 24th
International Conference on Software Engineering,
May 19-25, IEEE Xplore Press, Orlando, Florida,
pp: 547-550.

 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=1007998

6. Dunn, W., 2003. Designing Safety Critical
Computer Systems. IEEE-Computer, 36: 40-46.
DOI: 10.1109/MC.2003.1244533

7. Herman, D.S., 2000. Software Safety and
Reliability Basics. Software Safety and Reliability:
Techniques, Approaches and Standards of Key
Industrial Sectors. Wiley-IEEE Computer Society
Press, ISBN: 978-0-7695-0299-1, pp: 520.

8. Schmid, D.C., 2002. Adaptive middleware:
Middleware for real-time and embedded systems.
Commun. ACM., 45: pp: 43-48.
http://portal.acm.org/citation.cfm?id=508448.508
472

9. Nissanke, N., 1997. Real-Time Systems. Prentice
Hall International Series in Computer Science,
Prentice Hall, London, ISBN: 0-13-651274-7.

10. Florio, V.D. and C. Blondia, 2008. A survey of
linguistic structures for application-level fault
tolerance. ACM Comput. Surveys, 40: 1-37.
http://portal.acm.org/citation.cfm?id=1348246.134
8249

11. Leveson, N.G., 1986. Software safety: Why, what
and how. ACM Comput. Surveys, 18: 125-163.
http://portal.acm.org/citation.cfm?id=7528

12. Software Safety, 1997. NASA Technical Standard,
NASA-STD-8719.13A.
http://satc.gsfc.nasa.gov/assure/distasst.pdf

13. Leveson, N., 1995. Safeware: System Safety and
Computers. 1st Edn., Addison-Wesley Publishing
Company, Reading, Massachusetts. ISBN:
0201119722.

14. Bass, L., P. Clements and R. Kazman, 2003.
Software Architecture in Practice. 2nd Edn.,
Addison-Wesley Publishing Company, Boston,
Massachusetts, ISBN: 0-321-15495-9.

15. Fenton, N. and S. Pfleeger, 2003. Measuring
External Product Attributes. Software Metrics-A
Rigorous and Practical Approach. 2nd Edn.,
Thomson, pp: 337-359.

16. Rawashdeh, A. and B. Matalkah, 2006. A new
software quality model for evaluating cots
components. J. Comput. Sci., 2: 373-381.
http://www.scipub.org/fulltext/jcs/jcs24373-381.pdf

17. Boehm, B., 1989. Software Risk Management.
IEEE Computer Society Press, Los Alamitos, CA.

18. Kilidar, A.H., K. Cox and B. Kitchenham, 2005.
The use and usefulness of iso/iec 9126 quality
standard. Proceeding of the International
Symposium on Empirical Software Engineering,
Nov. 17-18, IEEE Xplore Press, Noosa Heads,
Queensland, pp: 7-7. DOI:
10.1109/ISESE.2005.1541821

19. Singh, R., 1999. A systematic approach to software
safety. Proceeding of the 6th Conference on Asia
Pacific Software Engineering, Dec. 7-10, IEEE
Xplore Press, Takamatsu, Japan, pp: 420-423.
DOI: 10.1109/APSEC.1999.809632

20. Raheja, D.G. and M. Allocco, 2006. Assurance
Technologies Principles and Practices. 2nd Edn.,
Wiley Inter Science, ISBN: 0471744913, pp: 472.

21. Jaffe, M.S. and N.G. Leveson, 1989.
Completeness, robustness and safety in real-time
software requirements specification. Proceeding of
the 11th International Conference on Software
Engineering, May 15-18, Pittsburgh, USA., pp: 302-311.
http://portal.acm.org/citation.cfm?id=74587.74628

J. Computer Sci., 5 (4): 311-322, 2009

322

22. Firesmith, D.G., 2005. Are your requirements
complete? J. Object Technol., 4: 27-43.
http://www.jot.fm/issues/issue_2005_01/column3/

23. Young, R.R., 2004. The Requirements Engineering
Handbook. Artech House, Norwood, MA., USA.

24. Firesmith, D.G., 2005. Engineering safety-related
requirements for software-intensive systems.
Proceeding of the 27th International Conference on
Software Engineering, May 15-21, St. Louis,
Missouri, USA., pp: 720-721.
http://portal.acm.org/citation.cfm?id=1062455.106
2635

25. MIL-STD-882C, 1993. System Safety Program
Requirements, https://crc.army.mil/guidance
/system_safety/882C.pdf

 26. NATO, 1996. NATO standardization agreement
STANAG 4404 safety design requirements and
guidelines for munitions related safety critical
computing systems.

 27. Satish, R. et al., 1996. Run time assertion schemes
for safety critical systems. Proceeding of the 9th
IEEE Symposium on Computer Based Medical
Systems, June 17-18, IEEE Xplore Press, Ann
Arbor, Michigan, pp: 18-23. DOI:
10.1109/CBMS.1996.507119

28. Storey, N., 1996. Safety-Critical Computer
Systems 1st Edn., Addison-Wesley, Boston, MA.,
USA., ISBN: 0201427877.

29. Dunn, W.R., 2002. Practical Design of Safety-
Critical Computer Systems. Reliability Press,
Solvang, CA., ISBN: 10: 0971752702.

30. Goble, W., 1998. Control Systems Safety
Evaluation and Reliability. 2nd Edn., ISA
Publisher, ISBN: 1556176368, pp: 739.

31. Bedford, T. and R. Cooke, 2001. Probabilistic Risk
Analysis: Foundations and Methods. 1st Edn.,
Cambridge University Press, UK., ISBN:
0521773202, pp: 393.

32. Fault Tree Handbook, 1981. NUREG-0492, US
NuclearRegulatoryCommission.
http://www.nrc.gov/reading-rm/doc-collections/
nuregs/staff/sr0492/sr0492.pdf

33. MIL-STD-882D, 1993. Standard practice for
system safety, US department of defense,
http://safetycenter.navy.mil/instructions/osh/milstd
882d.pdf

34. ISA., 1998. Functional Safety of
Electrical/Electronic/ Programmable Electronic
Safety-Related Systems-part: General
requirements. IEC-61508-1-1998.

 http://www.isa.org/Template.cfm?Section=Standar
ds8&Template=/Ecommerce/ProductDisplay.cfm&
ProductID=5764

35. Leucker, M., 2008. Checking and enforcing safety:
Runtime verification and runtime reflection.
http://ercim-news.ercim.org/content/view/459/699/

36. Zelkowithz, M. and I. Rus, 2001. Understanding IV
and V in a safety critical and complex evolutionary
environment: The NASA space shuttle program.
Proceeding of the 23rd International Conference
on Software Engineering, May 12-19, Toronto,
Ontario, Canada, pp. 349-357.
http://portal.acm.org/citation.cfm?id=381473.381510

37. Anderson, P., 2008. Detecting bugs in safety
critical code. Dr. Dobbs J., February.
http://www.ddj.com/development-tools/206104422

38. Holzmann, G.J., 2006 The power of ten: Rules for
developing safety critical code. IEEE Comput.,
39: 95-99. DOI: 10.1109/MC.2006.212

