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Abstract: Problem statement: Verification of correct functionality of semiconductor devices has 
been a challenging problem. Given the device fabrication cost, it is critical to verify the expected 
functionality using simulations of executable device models before a device manufactured. However, 
typical industrial scale devices today involve large number of interactions between their components. 
Complexity of verifying all interactions becomes almost intractable even in simulation. The infeasible 
interactions need to be eliminated from verification consideration in order to reduce the complexity of 
the problem. Also an empirical metric of completeness of the verification of such interactions is 
needed. This metric should provide measure of quality of verification as well as that of degree of 
confidence in future correct behavior of the device. Metric should guide stimulus generation for 
simulation so that all aspects of the device functionality can be covered in verification. Existing 
coverage metrics focus almost exclusively on verification of individual components. Approach: In 
this study, interactions between device components modeled as independent processes, were 
considered. The interactions considered between control flow paths in different processes. Present 
algorithm analyzed the dependency between the control flow paths. It was also determined set of 
feasible interactions between the control flow paths and pruned out the infeasible ones. Remaining set 
of feasible interactions constituted our interaction coverage metric. Our metric handled device designs 
with an arbitrary number of processes. Results: Number of interactions to be considered in simulation-
based verification was significantly reduced by our coverage metric using our proposed algorithms. 
This limited the complexity and scope of stimulus generation to coverage of only set of feasible 
interactions. Conclusion: Proposed coverage metric was able to provide realistic measure of degree of 
verification of components interactions as well as effectively guide the test generation process for 
device designs consisting of an arbitrary number of components.  
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INTRODUCTION 

 
 The advances in the manufacturing process 
technologies over the past two decades have made it 
possible to produce extremely complex semiconductor 
devices. However, the ability to design such devices 
and verify their correct behavior still lags the advances 
in the process technologies. The state of art today is to 
develop abstract models of devices using specialized 
Hardware Description Languages (HDLs), which are 
then simulated with real life stimuli. The simulations 
put the device model into the states, as it would be in 
real life. If the simulated model produces expected 
output, it would be considered an indication of the 
correct future behavior of the device. The device model 
would be considered verified and the design sent out for 
manufacturing. This problem becomes even more 
pronounced when devices with numerous interacting 
components need to be verified for their correctness 

before signoff to the expensive manufacturing 
processes. These interacting components are modeled 
in the simulation model as concurrently executing 
independent processes. The standalone testing of these 
individual processes called Unit Testing is necessary 
but not sufficient to verify large systems. Verification 
of interactions between these processes called 
Integration Testing is essential to ensure correctness of 
the system. It is possible that each component functions 
correctly but the system as a whole may fail. The 
problem of verification is solved in two distinct steps. 
Unit-level testing of individual functional units is 
performed in the first step. The second step is the 
testing of the interactions between the individual 
functional units and this is the problem addressed in 
this study. Industrial scale systems tend to have an 
intractable number of such interactions. A notion of 
completeness is required to measure the extent to which 
such interactions are covered in simulations.  
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 A measure of test effectiveness is typically referred 
to as a coverage metric and many coverage metrics 
have been developed for both hardware and software 
testing[1-3]. Coverage metrics define a set of criteria, 
which must be satisfied during simulation to ensure 
detection of design errors. A range of different 
coverage metrics have been developed for use at 
different design abstraction levels, (e.g., 
gate/register/state-machine/behavioral level) and to 
describe different types of errors (e.g., physical, 
control-flow, dataflow). A coverage metric at the 
behavioral level together with an available executable 
design description allows evaluation of the device 
model with a notion of completeness of simulations. 
Detecting design errors early in the design cycle 
reduces the expense of the redesign. 
 All practical system designs are built from a set of 
interacting concurrent processes, but almost all existing 
behavioral coverage metrics consider the testing of 
processes individually. This is problematic because 
design errors are most likely to be found in the 
interaction between multiple components, rather than in 
any single component. A hierarchy is always imposed 
on the design process in an effort to improve 
productivity by partitioning the responsibilities of 
different designers. The use of intellectual property 
exemplifies this practice by completely separating the 
design of a component, possibly outsourcing it to a 
different design house.  
 Partitioning the design provides an abstraction, 
potentially allowing the system designer to ignore 
details of the components. The disadvantage of the use 
of this abstraction is that it is difficult for one designer 
to understand the complex interactions between all 
components. This problem is most acute with the use of 
intellectual property because the detailed design 
information is likely to be hidden from the system 
designer. Design errors which appear as a result of the 
interaction between components are likely to occur and 
difficult to detect. 
 Existing metrics are applied to multi-process 
designs by first combining all processes into a single, 
complex behavioral description. For example, state 
coverage is a state machine metric, which requires that 
all states be entered during simulation. State coverage 
can be applied to a multi-process design by computing 
the cross-product machine of all of the processes and 
then requiring that each state in the cross-product 
machine be covered. The problem with this approach is 
not only that the cross-product machine is large, but 
also that the vast majority of the cross-product machine 
is redundant in most cases[4]. Use of a cross-product 
machine implicitly assumes that the individual 

processes are independent, but this is never true. As a 
result the cross-product machine will contain many 
states and transitions, which can never be executed. 
Coverage values for a cross-product machine will be 
deceptively low because the majority of the state space 
cannot be explored. 
 A behavioral coverage metric, which focuses on 
the interaction between processes, is needed but the 
coverage computation must be tractable. The number of 
considered interactions has to be kept manageable to 
enable fast analysis. The set of interactions considered 
must be pruned to retain non-redundant and that are 
most likely to reveal design errors. 
 We present a coverage metric, which evaluates the 
extent of verification of the interactions between 
processes. We model the behavior of each process as a 
Control-Flow Graph (CFG) and assume that executing 
all control-flow paths in a single process is sufficient to 
validate that process. An interaction is described by a 
set of paths in different processes, executed in 
sequence. In the worst case, the set of potential 
interactions could be as large as the cross product of the 
sets of paths in the individual machines. This potential 
problem is addressed by identifying elements of the 
cross product of the set of paths, which conflict because 
the signal assignments of some member paths violate 
the control-flow conditions of other member paths. 
Additionally, cross product elements are only 
considered as interactions if there is dependency 
between shared paths via shared signals. Our results 
show that when these restrictions are considered, 
process interactions can be validated with low time 
complexity. The commonly used fault models[6-8] are 
the state coverage model, which requires that all states 
be reached and transition coverage, which requires that 
all transitions be traversed.  
 A number of coverage metrics are based on the 
traversal of paths through the CFG representing the 
system behavior. Applying these metrics to the CFG 
representing a single process is a well-understood task. 
The application of CFG metrics to the behavior of an 
entire system would require that all component CFGs 
be merged into one. For this reason, CFG metrics are 
currently restricted to the testing of single processes. 
The earliest CFG coverage metrics include statement 
coverage, branch coverage and path coverage[3] models 
used in software testing. There are many notable uses of 
CFG coverage metrics for hardware validation[9]. Many 
CFG coverage metrics consider the requirements for 
fault activation without explicitly considering fault 
effect observability. Researchers have developed 
observability-based behavioral coverage metrics[10,11] to 
alleviate this weakness. 
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 This study is based on our initial investigation[5] 
where we considered only a pair of processes at a time. 
We propose our metric, which considers interactions 
among arbitrary number of processes. Also, we 
formalize the algorithmic techniques for identifying 
feasible interaction sets.  
 
System overview: We propose an algorithm to identify 
feasible interactions between multiple concurrent 
processes. Our algorithm prunes infeasible interactions 
while modeling feasible interactions. By using this 
method, we significantly reduce the number of 
interactions to be considered thereby rendering 
integration testing more tractable. 
 We have implemented a metric to compute 
interaction coverage. The steps involved in the 
computation are shown in Fig. 1. The inputs to our 
method are a behavioral HDL description of the design 
and stimulus to simulate it.  
 The Path Analysis block in Fig. 1 extracts the set of 
control-flow paths in each HDL process and the set of 
feasible interactions between them by performing 
dependency analysis followed by a feasibility check on 
them.  
 Design is simulated with randomly generated test 
sequences and a trace of control flow paths executed at 
each simulation time step is generated. The Trace 
Analysis step evaluates the trace to determine which 
paths and interactions were executed during simulation, 
thereby computing interaction coverage and path 
coverage for comparison.  
 Interaction among a set of processes can be defined 
as communication between processes by means of 
shared signals in the HDL design description. An 
interaction is said to occur between two processes when 
one process writes to a signal and the other reads that 
signal later and executes. It is possible to have a chain 
of interactions spanning over multiple processes, e.g. if 
there is a common writer/reader path between three 
processes they will said to be having an interaction. 
Each of the control-flow paths in the processes have to 
be evaluated in different contexts with respect to each 
other to determine interactions. 
 

 
 

Fig. 1: Interaction coverage system 

 The set of interactions must describe all of the 
ways in which the behavior of a set of processes can 
affect the behavior of another set of processes. The 
execution of one process may alter the course of 
execution of another process by impacting the global 
state by affecting signals between communicating 
processes. The global state can be seen as the context in 
which a process is executed. We need to execute each 
control-flow path of each process in a range of different 
contexts in order to evaluate the interactions between 
processes. An interaction between two processes is a 
sequence of control-flow path executions; one path in 
the execution of the first process alters the context of 
the execution of the second. 
 The set of control-flow paths in a process can be 
assumed to represent full range of behavior of that 
process. Say there is a set of concurrent processes T and 
that each process t∈T has a set of control-flow paths Pt. 
Each path p∈Pt is defined by the set of conditional 
predicates encountered along the path in the CFG. The 
set of conditional predicates which are encountered and 
satisfied along a path p is Cp. Without loss of 
generality, each conditional predicate c∈Cp is 
expressed as satisfied along the path p. In Fig. 2a, let us 
consider a path p defined by the predicates b<3 and 
c>1, both of which evaluate to FALSE. Since is defined 
to contain only positively asserted predicates, both of 
the predicates are inverted, hence Cp = !(b<3), !(c>1). 
 Each path p contains a set of signal assignments 
a∈Ap, a set of signals r∈Rp whose values are used in 
the path and a set of signals w∈Wp whose values are 
assigned in the path. For example, refer to the path p in 
Fig. 2a shown by the predicates Cp = !(b<3), !(c>1). 
This path contains assignments Ap = (y ⇐ in), (x ⇐ 5), 
it reads signals and writes signals . Since we are only 
interested in interactions between processes, the sets 
and only involve internal signals which are used to 
communicate between processes.  
 Let us consider a processes pair t1 and t2 as 1

2

t
tI . We 

define an interaction between a pair of processes as a 
sequence of paths, one in each process, 

1

2 1 2

t
t 1 2 1 t 2 ti I (p ,p ),p P ,p P∈ = ∈ ∈ . Similarly, an interaction 

among multiple processes of size ’n’ can be defined as 
1

1 2 n

n

t

2 1 2 n 1 t 2 t n t
..t

i I t (p ,p ,..p ),p P ,p P ,..p P∈ = ∈ ∈ ∈  Processes in 

behavioral hardware  descriptions may contain 
looping control flow constructs. All loops are assumed 
to be of fixed length since variable length loops 
cannot be synthesized efficiently. All loops are 
unrolled to enumerate control flow paths for 
interaction analysis. 
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Fig. 2: HDL example (a): Process 1 and (b): Process 2 
 
Order of composition: Order of composition can be an 
issue when dealing with multiple process sets. Our 
approach composes processes to identify their 
interactions and the order in which processes are 
composed is important. Each interaction can be seen as a 
directed acyclic graph, where each edge represents data 
transfer between two control flow paths. So interactions 
between two processes and can involve data transfer 
from to, or from to. In order to identify all transactions, 
we compose processes in all pairwise orders. 
 
Path analysis: Path analysis is an important step in 
identifying feasible interactions among processes. The 
set of all interactions between a pair of processes and is 
a subset of the cross-product between 

1t
P  and 

2t
P . The 

set of all interactions should be a small subset of the 
cross-product because many path pairs are not feasible. 
Each interaction captures a functional dependency 
between the interacting processes. To capture 
dependencies, the second path involved in an 
interaction must be dependent on the first path in the 
sequence via a set of signals. This requirement is stated 
formally in Equation 1. An example of dependency can 
be seen between path in Fig. 2a where Cp1 = (b<3), 
!(c>1) and path in Fig. 2b where 

2pC (x 2)= > . Path 

depends on  the mutual access of signal x: 
 
DEP(p1, p2) ⇒ | Wp1 I Rp2| (1) 
 

n n

i p0 i
i 0 i 1

DEP( P ) | W DEP( P ) |
= =

⇒∑ ∑I  (2) 

 
 An interaction is considered to be covered during 
verification if associated paths and are executed in 
sequence and no path p3 is executed in between the 
paths which assigns a value to a signal which is both 
assigned by p1 and read by p2 or vice versa. This can be 
described using paths in Fig. 2a and b. Consider two 
paths in Fig, 2a, p1 and p3, where Cp1 = !(b<3), !(c>1) 
and Cp3 = !(b<3), !(c>1). Both paths and assign signal x 

 
 
Fig. 3: Algorithm for interaction definition  
 
and therefore form interactions with path p2 in Fig. 2b 
where Cp2 = (x>2). If the execution sequence of paths 
during testing is p1, p3, p2 then the interaction (p3, p2) is 
covered but the interaction (p1, p2) is not covered since 
p3 was executed closer to p2 in sequence. Equation 2 
extends the idea of dependency in equation 1 across 
multiple processes: 
 
Dependency check: Dependency check can be 
illustrated as the algorithm shown in Fig. 3: 
 Figure 3 show an algorithm for determining an 
interaction between two control flow paths. The 
algorithm consists of two main parts in finding data 
dependency and finding feasibility of a given 
interaction. In finding data dependency, first all the 
relevant statements are extracted from both the control 
flow paths as shown in lines 2 and 3. All Left Handed 
Side (Lhs) variables assigned in the writer path are 
enumerated while all Right Handed Side (Rhs) 
operands in assignments in the reader path are explored 
as shown in lines 4 and 5. Then the common variables 
in both Lhs and Rhs are checked for data dependency at 
line 6. If a data dependency is detected, the writer-reader 
pair is passed to feasibility check routine at line 7. Line 9 
returns NULL if the CheckFeasibility() fails if the 
interaction is infeasible and as a result is pruned away. 
 
Interaction feasibility: Interaction feasibility needs to 
checked in addition to the dependency requirement 
between the paths of an interaction since the interaction 
must also be feasible in terms of the possibility of 
executing  the interacting paths in sequence. Consider 
an interaction involving the path in Fig. 2a shown by 
Cp1 = (b<3), (c>1) and  the  path in Fig. 2b shown by 
Cp2 = (x>2). This interaction is infeasible because path 
cannot be executed immediately prior to the execution 
of path . The path sequence p1, p2 is infeasible because 
assigns signal x to 1 while requires signal x>2. 
 In general, an interaction between two paths and is 
infeasible if the set of signal assignments Ap1 
collectively imply the inverse of one or more of the 
conditional predicates in Cp2. Identifying this condition 
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in the most general way is intractable because it can be 
formulated as the SATISFIABILITY problem. Instead, 
we simplify the problem to identify infeasible 
interactions in most practical designs. 
 A conditional expression can be easily evaluated if 
all of its signals and/or variables are bound to constant 
values. If all of the unbound signals o p1f c ∈ Cp2  are 
assigned to constant values by some assignment a ∈ Ap1 
then path p1 is said to uniquely determine conditional 
expression c. If a conditional is uniquely determined the 
evaluation of the conditional expression is trivial. We 
determine if an interaction between two paths p1 and p2 
is infeasible by substituting the assigned signal values 
of into each conditional expression in p2. If a 
conditional in p2 is uniquely determined and evaluates 
to FALSE then the interaction is infeasible an vice 
versa. This computation is stated formally in Eq. 3: 
 

1 2 p2 p1IF(p ,p ) c C ,SUB(c,A )⇒ ∃ ∈  (3) 
 
In Eq. 3, the function SUB(c, Ap1) evaluates to TRUE if 
the conditional expression c is uniquely determined by 
path p1 and c computes to TRUE upon substitution of 
its unbound signals with relevant assignments in Ap1. 
 Feasibility check as shown in Fig. 4 is important in 
pruning the interactions which would never occur. If 
the reader statement in the interaction is a conditional 
whose condition depends on the value written by writer 
statement, then there is a way to check feasibility of the 
condition by replacing the value in the condition. 
 
Feasibility analysis: Feasibility analysis can be 
formalized with the algorithm shown in Fig. 4. 
 If the condition never holds true, the interaction 
can be pruned. Subroutine ’findValue’ finds value of an 
expression that is passed as argument. The expression 
can be as simple as a variable or it can be a complex 
nested expression. Writer statement Lhs is evaluated 
and the value ’Val’ is stored as shown in line 2. If the 
reader statement is a conditional then ’Val’ is 
substituted for the writer Lhs expression used in 
reader’s Rhs expression and the value of reader’s Rhs 
expression is found as depicted at line 5. Line 6 returns 
1 in case the reader statement is not a conditional as 
there is no pruning possible. 
 

 
 

Fig. 4: Algorithm for checking feasibility 

Process pair: Interactions can be identified by 
algorithm in Fig. 5. 
 Figure 5 shows an algorithm for finding feasible 
interactions between two processes. Initially, 
Interaction set is empty at line 2. All the control flow 
paths in Process 1 and 2 are enumerated at line 3 and 4. 
Each pair of paths between process 1 and 2 are checked 
for feasible interactions using CheckInteractionPair 
algorithm shown in Fig. 3. The algorithm in Fig. 3 
returns an interaction if feasible and the interaction set 
defined at line 2 is updated accordingly at line 7 to 
include it. Finally, this algorithm returns all the possible 
sets of Interactions at line 8.  
 
N-process interactions: Valid ’n’ process interactions 
can be derived from ’n-1’ pairs of process interactions. 
 Figure 6 shows two feasible triple interaction set. 
Triple interaction 1 is a chain of interaction between a1, 
b1 and c1 processes. Process ’a1’ writes to a common 
signal that is read by process ’b1’. In the same control 
path that is used by process ’b1’ that interacted with 
process ’a1’, there is a write to a common signal that is 
read by process ’c1’. Triple interaction 2 depicts a 
different scenario when process ’a2’ writes to common 
signal that is being read by process ’b2’ and ’c2’. The 
signals used by ’b2’ and ’c2’ might be different but the 
control flow path (writer path) used by ’a2’ is unique. 
In triple interaction 3, the scenario is different as the 
processes ’a3’ and ’b3’ write on to signals in a common 
reader control path in process ’c3’. 
 

 
 

Fig. 5: Algorithm for process interactions 
 

 
 

Fig. 6: Types of triple interactions 
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Fig. 7: Multiple process interactions algorithm 
 
 Figure 7 shows an algorithm for finding 
interactions between multiple processes. The 
algorithm accepts a process list of ’n’ size. P1, P2 are 

the first two processes in 
n

ii 0
P

=∑ as depicted in lines 2-4. 

All the control flow paths in P1, P2 are enumerated in 
lines 4 and 5. The lines 6 and 7 explore all the paths in 
P1, P2. If the size of the list is 2, then the algorithm just 
returns ’CheckInteractionPair(pi)’. This subroutine 
returns the feasible interaction set related to , . If the 
size of the input list is more than 2, then the function is 

called recursively with a pruned set 
n

ii 2
{I} P

=∑U  where 

{I} is the list of interactions from 
CheckInteractionPair(pi, qi). The recursion continues till 
’n’ equals to 2 where it returns a set of interactions. 
 

MATERIALS AND METHODS 
 
 We use Verilog Procedural Interface (VPI) 
extensively to interact with the simulator (Cadence 
Verilog-XL) from a C application while running a 
simulation. We have evaluated our coverage metric by 
applying it to the examples from the ITC99 benchmark 
suite[12].  
 
Interaction example: We describe application of our 
coverage metric to the example b12 step by step. The 
example has 656 lines of Verilog code with seven 
signals shared between four concurrent processes. Only 
signals which are used to communicate between 
processes are considered, so input and output ports are 
not taken into account.  
 Table 1 shows the input and output signals in the 
processes in b12. Each of these processes corresponds 
to a Finite State Machine (FSM). F1 is the smallest 
state machine with only one state and its output signal 
is connected to F3. F2 has two states and it has one 
output signal connected as input to F3 and three input 
signals connected from F3. F3 is the biggest process of 
all  with  26  states with two output signals connected to 

 
 

Fig. 8: Interconnected signals in b12 
 
Table 1: Interconnection of processes in b12 
 No. of 
Process paths Signal in Signal out 
FSM1 1 {-} {num} 
FSM2 2 {data_in, wr, address} {data_out} 
FSM3 70 {data_out, num} {data_in, wr, address, play, sound} 
FSM4 18 {play, sound} {-} 

 
Table 2: Interaction pairs in b12 
Pair Max paths Feasible 

F1→F3 1*70 2 
F3→F2 70*2 2 
F2→F3 2*70 36 
F3→F4 70*18 364 
Total 1610 404 

 
F4 and one input signal each from F1 and F2. Figure 8 
shows high level interconnection of signals shared 
among four FSMs in the design.  
 
Process pairs: A single process pair can yield many 
interactions since each of the process pair can have 
multiple control flow paths and there are many 
interactions possible between any two of the paths 
taken from each of the process pair. There can be more 
than one interaction between two path pairs if multiple 
data dependent variables are involved. 
 Since b12 has 4 processes, it means that there are 
12 possible combinations of process pairs for 
interactions. But in reality, there only 4 feasible pairs in 
F1→F3, F3→F2,  F2→F3 and   F3→F4  as evident 
from the Fig. 8, pairing of F3→F1 is not feasible since 
there is no signal being written in F3 that is read in F1. 
Table  2  shows  feasible  interaction  p airs among  the 
4 processes in b12. 
 Column 1 shows type of interaction involved. 
Column 2 gives information on total number of paths 
possible for the given pair. This is a product of control 
flow paths available in the given pair of processes. For 
example,  F1  has  1  control  f low   path  and  F3 has 
70 control flow paths. So, F1 F3→  can have maximum 
of 70 interactions possible. Third column shows the 
actual feasible paths after pruning based on data 
dependency and condition feasibility. For example, data 



J. Computer Sci., 5 (2): 154-162, 2009 
 

160 

dependency analysis yields 4 feasible interactions in the 
pair F3 F2→  but 2 of them are pruned out after doing 
condition feasibility analysis. In F3, there is one 
statement that assigns ’0’ to signal ’wr’. This signal 
’wr’ is being read in F2 in a conditional statement 
which decides whether or not the condition is satisfied. 
When ’wr’ is assigned to ’0’ in F3, the condition fails 
and the subsequent paths (2) are pruned. The last row 
indicates total number added up from the previous 
rows. There are total 1610 control flow paths but out of 
them there are only 404 feasible interactions possible. 
The pruned process pair interactions are 75%.  
 
Process triples: A Valid triple process can be defined 
as a chain of valid interactions between process1, 
process2 and process3. There are 424 possible 
combinations of process triples for interactions. 
However, the valid triples set would be much less than 
that. There are 7 feasible triplets as shown in Table 3. 
Second column indicates maximum possible 
interactions in the given triplet interaction. For the 
chain type interactions, the first pair dictates the 
maximum possible interactions. For example, in this 
chain of reaction, F1→F3→F2, maximum possible 
interactions is determined by number of F1→F3 
interactions possible (2 according to Table 2) multiplied 
by total number of control flow paths in F2 (2 according 
to Table 1). 
 The final row indicates total sum of the data from 
the previous rows. Out of 1000 possible total paths, 
there are 244 feasible triple process interactions 
possible. So, the effective pruning of interactions is 
nearly 75%. Figure 9 shows different combinations of 
triplets possible for the b12 design.  
 
Process quartets: A valid quartet process can be 
defined as a chain of valid interactions between 
process1, process2, process3 and process4. Figure 10 
lists combinations of quartet processes in the example 
b12. The sequence order is depicted along with the 
shared signal on each arrow connecting two different 
processes. Since there are both read and write shared 
signals between processes F2 and F3, there are a lot of 
combinations possible which result in quartet 
interactions. Table 4 summarizes different quartet 
interactions possible in example b12. Quartets are 
possible because of possible loop interactions among 
processes. There is a loop between processes F2 and 
F3. There are only three quartet interactions possible as 
listed in the Table 4. Final row summarizes the total 
sum and the effective pruning of quartets interactions is 
about 93%. 

 

 
 

Fig. 9: Triples in b12 
 

 
 

 
 

Fig. 10: Quartets in b12 
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Table 3: Interaction triples in b12 
Pair Maximum Feasible 

F1→F3→F2 2*2 4 
F1→F3→F4 2*18 0 
F2→F3→F2 36*2 0 
F2→F3→F4 36*18 104 
F3→F2→F3 2*70 108 
F1→F3 and F2→F3 2*36 0 
F3→F2 and F3→F4 2*364 28 
Total 1000 244 

 
Table 4: Interaction of quartets in b12 
Pair Maximum Feasible 

F1→F3→F2→F3 4*70 72 
F3→ F2→F3→F4 108*18 120 
F3→F2→F3→F2 108*2 0 
Total 2440 192 

 
RESULTS 

 
 The simulations were performed on a sun ultra 
sparc machine with 1 GB memory running Solaris 5.8. 
A total of 20,000 random test sequences were applied to 
test the coverage metric. It took about 1.72 sec to run 
the simulation whereas coverage computation and 
analysis using our metric could be performed during 
simulation in about 2.4 sec.  
 Table 5 shows the coverage results obtained in 
different categories. First column describes the type of 
interaction while second column gives the total paths 
possible. 
 Third column lists total feasible interactions while 
fourth column gives percentage of pruning of infeasible 
interactions obtained. The last column gives the final 
Interaction Coverage. Doubles interactions were covered 
by 61.4% while triples were covered by 37.8%. Quartets 
were covered by 14.6% and this number is low compared 
to others as quarter interaction is harder to achieve. 
 Table 6 shows the ITC ’99 benchmark examples 
used for our experiments. We specifically choose 
examples with complex control flow. Column 1 
corresponds to the benchmark name while subsequent 
columns depict number of lines of code (column 2), 
number of processes (column 3) and number of shared 
signals (column 4) among the processes respectively. 
 Table 7 summarizes the coverage results obtained 
in different categories. First column describes the type 
of interaction while second column gives the total paths 
possible. Third column lists total feasible interactions 
obtained after our methodology. Percentage of pruning 
of infeasible interactions obtained is presented in 
column 4 and CPU time taken is shown in column 5. 
The last column gives the final Interaction Coverage 
achieved after  simulating the design and observing 
the  trace  for  the  identified  feasible  interaction  set. 

Table 5: Coverage results for interactions in b12 
Type max Feasible Pruning (%) IC (%) 
Doubles 1610 404 7409 61.4 
Triples 1000 244 75.6 37.8 
Quartets 2440 192 92.1 14.6  

 
Table 6: Summary of benchmark examples used 
BM LOC No. processes No. signals 
b12 656 4 7 
b13 312 5 9 
b15 741 3 7 

 
Table 7: Results for interaction coverage  
BM Maximum Feasible Pruning CPU (%) Cov. (%) 
b12 5050 840 83.3 1.72 95.3 
b13 379 47 87.5 0.33 100.0 
b15 1836 267 85.4 0.77 98.8 

 
As it is evident from the results, we had achieved very 
efficient pruning for all three examples. The time 
taken by our algorithm is dependent on total number 
of control flow paths in the processes. As the number 
of control flow paths, the total time needed for 
pruning may increase. 
 

DISCUSSION 
 

 Verification of interacting processes in executable 
device models as well as their simulation coverage 
computation is complex. We propose algorithmic 
techniques for identifying feasible interaction sets for 
an arbitrary number of processes. This was a significant 
improvement from our initial investigation[5] where the 
metric was limited to only a pair of processes.  
 Our metric pruned infeasible interactions while 
modeling feasible interactions among multiple 
processes. By using this metric, we considerably 
reduced the number of interactions across multiple 
processes for analysis which reduced the complexity 
integration testing. We obtained pruning of up to 93% 
of interactions in our experiments. This was a 
significant achievement compared to traditional metrics 
where each of the infeasible paths (extra 93% paths that 
were pruned in our technique) is also considered and as 
a result, the coverage results become not practical. Our 
metric fared much better than traditional metrics like 
path coverage in terms of simulation and tractability. 
 With the cross-product machine[4] it would be 
impossible to get 100% coverage on interaction sets 
since a lot of them are infeasible combinations. Our 
metric identifies and eliminates infeasible interactions 
and makes 100% coverage a reality on the feasible set 
of interactions. It would be more appropriate to see 
which interactions are covered with our metric. 
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 In order to check the scalability aspect for our 
proposed metric, we applied our methodology to ITC 
benchmarks b12, b13 and b15, which have a multitude 
of interaction sets. We effectively pruned away 
infeasible interactions and thus reduce verification 
consideration to a limited feasible set of interactions. 
We presented results for triples and quartet process 
interactions to support our method.  
 

CONCLUSION 
 
 We have presented a coverage metric to model the 
interactions between multiple concurrent processes. 
Interactions between complex components are difficult 
for any one designer to understand, making design errors 
related to component interaction difficult to detect. Our 
coverage metric models the meaningful interactions 
between components, while ignoring those interactions 
which are infeasible or unlikely to reveal errors. In this 
way, the number of interactions for evaluation is 
reduced, making coverage computation tractable. The 
research presented in this study can be applied to 
interactions between an arbitrary number of processes.  
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