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Abstract: Problem statement: Mobility prediction is the important issue in Personal Communication 
Systems (PCS). Mobile users moving logs are stored in data grid located in different locations. 
Distributed data mining algorithm is applied on this moving logs to generate the mobility pattern of 
mobile users. As new moving logs are added to the data grid, existing mobility pattern becomes invalid 
and it should be updated. One of the existing work to derive the new mobility pattern is re-executing 
the algorithm from scratch results in excessive computation. Approach: We had designed new 
incremental algorithm by maintaining infrequent mobility patterns, which avoids unnecessary scan of 
full database. Incremental data mining algorithm taken lesser time to compute new mobility patterns. 
The discovered location patterns can be used to provide various location based services to the mobile 
user by the application server in mobile computing environment. Data grid provided geographically 
distributed database for computational grid which implements incremental data mining algorithm. We 
built data grid system on a cluster of workstation using open source globus toolkit 4.0 and Message 
Passing Interface extended with Grid Services (MPICH-G2). Results: The experiments were 
conducted on original data sets and data were added incrementally and the computation time was 
recorded for each data sets. The performance improvement for increment size of 100 K was about 55% 
for 0.20% support count and it is increased to 60% for 0.25% support count. The performance is 
increased about 65% for the support count 0.30%. Conclusion: We analyzed our results with various 
sizes of data sets and the proof shows the time taken to generate mobility pattern by incremental 
mining algorithm is less than re-computing approach. In future the execution time can further be 
reduced by balancing the workload of grid nodes.  
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INTRODUCTION 
 
 Data grid is designed to allow large moving logs to 
be stored in repositories. In business area it is necessary 
to develop environment for analysis, inference and 
discovery over the data grid. Therefore, the evolution of 
the data grid is represented by knowledge grid offering 
high level services for distributed mining and extraction 
of knowledge from data repositories available on data 
grid[1]. The Knowledge Grid (KG) is a parallel and 
distributed architecture that integrates data mining 
techniques and grid technologies[4]. The knowledge grid 
is exploited to perform distributed data mining on very 
large data sets available over grids to find hidden 
valuable information, process models to make decisions 
and results to make business decisions[5,8]. In present 
study knowledge grid is developed to predict the next 
location of mobile user in mobile environment. By 
using the predicted location, the system effectively 

allocate resources to mobile users in the neighbor 
location and it is possible to answer the queries that 
refer to the future position of mobile users.   
 A Personal Communication System (PCS) allows 
mobile users to move from one location to another 
location since these systems are based on the notion of 
wireless access. In mobile system each mobile user is 
associated with Home Location Register (HLR) which 
stores up-to-date location of the mobile users. These 
logs accumulate as large database, in which data mining 
technique is applied to find the frequently followed 
location. Each Base Station (BS) in PCS is connected 
with separate home location register led to the 
geographically distributed data grid node. Grid network 
was built with cluster of grid node contains moving 
logs of mobile users. Existing research work applied 
data mining technique on mobile data for path mining 
in a single database server[2]. The sequential apriori 
algorithm implemented on single grid was proposed 
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in[13]. If size of the moving logs is very large, the 
overhead in integrating the data source will be too high. 
To overcome this problem data mining algorithm is 
executed on conventional distributed environment[6,14]. 
During the mining process size of the data set 
transferred between nodes was reduced by local and 
global mining[15].  This method is not efficient with 
respect to resource sharing and process co-ordination.  
 The most prominent example of distributed 
environment is grid, where a large number of 
computing and storage units are interconnected over a 
high speed network. Data mining is inductive, iterative 
process that extracts information or frequent patterns 
from large volume of data[3]. Most of the applications 
have created large volume of data sets which are 
constantly increasing and stored in geographically 
distributed locations. A parallel and distributed 
algorithm is implemented on computational grid to 
mine data stored in data grids. As new moving data is 
added to the original data base, the existing mobility 
pattern becomes invalid. Instead of executing the 
algorithm again we propose new method called 
incremental mining algorithm. The knowledge grid is a 
parallel and distributed software architecture that 
integrates grid technologies and data mining 
applications.  
 

MATERIALS AND METHODS 
 
 The mobile users move from one location to 
another location in a wireless PCS network. The 
coverage area of the network is divided into number of 
location areas. Each mobile device is linked with the 
Base Station (BS). Each Base station contains Home 
Location Register (HLR) which stores permanent 
details of the mobile users and Visiting Location 
Register (VLR) which stores temporary details of the 
mobile users. These register includes attributes like user 
ID, user location, call time and call duration. User ID 
acts as a key for the mobile user records. The 
movement history of a mobile user is extracted from 
log files and it is stored in grid node for mining 
mobility patterns. The movement of mobile user is 
called as User Actual Path (UAP) which have the form 
UAP = 〈l1, l2,…,ln〉, where n is the number of locations 
followed by the mobile user and lk represents kth 
location in the movement path. 
 In our grid network, mobile user movement history 
is geographically distributed in different data grid nodes. 
Knowledge grid based mobility pattern mining 
algorithm is executed on computational grid over the 
data grid to generate the trajectories that are frequently 
used by mobile users. The frequently followed 

trajectory is named as User Mobility Pattern (UMP) 
which is used to generate mobility rules. The 
communication of candidate item sets between grid 
nodes is achieved by MPICH-G2 and reduces the 
computation overhead. Our proposed algorithm is 
executed on knowledge grid to generate mobility 
patterns from the database distributed on the data grid 
node. The execution time of our parallel and distributed 
algorithm is relatively small when compared to 
sequential algorithm.  
 Let UAP = 〈 l1, l2,…,ln〉be the set of locations. A 

database DB is a set of mobile user records, where each 
record contains set of locations. Let DB = {DB1, 
DB2,...,DBm} where m is number of data grid nodes in 
grid network and DBk is the database stored in kth data 
grid node.  Local frequent locations are mined and it is 
communicated to all other grid node to find the global 
frequent locations called as mobility patterns. Mobility 
rules are generated from the mobility patterns which is 
in the form of A→B having global confidence c if c% 
of records in DB that contain A followed by B. 
Mobility rule A→B represents the mobile users current 
location is A then he/she will move to location B. The 
mobility rule A→B has global support s if s% of 
records contains A∪B. In general, mobility prediction 
is performed in two steps. 1. Find all mobility patterns: 
By definition, each of these location sets will occur at 
least as frequently as a predetermined global minimum 
support count, min_sup. 2. Mobility rules are generated 
from the mobility patterns which satisfy global 
minimum support and minimum confidence. Mobility 
Rule is the important knowledge derived from database 
on a data grid. Moving logs are added incrementally to 
the data base. It makes existing mobility rules 
invalidate. Re-execution of mining algorithm is not an 
efficient process, since it ignores previously discovered 
rules and repeats the work that has already been done. 
Incremental mining algorithm is a useful technique for 
mining mobility rules when logs are added to the data 
base continuously.  
 The centralized mobility pattern algorithm was 
discussed in[4]. In mobile environment, moving log size 
is very large. It will increase the overhead to integrate 
all the moving logs into one database server. The 
algorithm proposed in[4] cannot be efficient for large 
data size. Many parallel and distributed variants of 
sequential apriori algorithm have been discussed in 
other resources[6,7]. In[5], grid implementation of 
frequent item sets in a grid environment dealt with sales 
transaction of a company. These algorithms[5-7] cannot 
be used directly in our domain, because this algorithm 
does not take into account the network topology while 
generating the candidate patterns. The services and 
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methods for distributed data mining algorithm were 
discussed in[5]. The generation of candidate pattern in[5] 
is not same as the candidate pattern in mobile 
environment. In PCS, only the sequence of neighboring 
location of the network can be considered as the 
mobility pattern. We propose incremental parallel and 
distributed knowledge grid mining approach based on 
apriori algorithm for mining mobility patterns in mobile 
environment.  
 Globus toolkit is the widely used middleware 
environment for implementing grid systems. The toolkit 
addresses information sharing, security, virtualization, 
resource and data management, communication and 
fault detection.  
 
Knowledge grid: Grid computing is the most emerged 
area for high performance distributed applications like 
knowledge discovery process. Knowledge Gird (KG) is 
an integration of basic grid services, data grid services 
and computational grid services for distributed data 
mining and knowledge discovery[10,12]. We built 
Knowledge Grid using the open-source globus toolkit[9]. 
 
Globus toolkit services: The basic grid components 
provided by the globus toolkit are:  
 
Grid Security Infrastructure (GSI): Provides 
authentication (identity of the users and services) based 
on certificate produced by certificate authority and 
standard X.509. The mutual authentication is provided 
by Secure Socket Layer (SSL) protocol.  
 
Monitoring and Data Service (MDS): MDS is an 
information service component provides information 
about available grid resources and periodically collects 
their status. It provides static information like hostname, 
operating system and dynamic information like CPU 
workload, memory status.  
 
Globus Resource Allocation and Management 
(GRAM): responsible for resource allocation, job 
creation, monitoring management, job control and 
provides interface for job submission on remote 
machine. 
 
GridFTP: It is an extension of FTP for parallel data 
transfer, file transfer based on GSI authentication 
mechanisms.  
 
HeartBeat Monitor (HBM): Responsible for 
identifying globus process failures and application 
process failures and immediately recovery action can be 
taken. 

Global Access to Secondary Storage (GASS):  
Exposes interfaces that help the clients to access the 
data in a uniform manner from heterogeneous data 
sources. Data caching service is utilized to improve 
data access performance. Metadata catalog and services 
allows us to search for a multitude of services, based 
upon the object metadata attributes. 
 
Dynamically-Updated Resource Online Co-allocator 
(DUROC): It acts as a coordinator between sub jobs 
running on different computational grid.  
 
Knowledge grid services: The knowledge grid 
contains Core K-Grid layer and High level K-Grid 
layer[11]. The Core K-Grid layer of knowledge grid 
performs two main services. (1): Knowledge Directory 
Service (KDS) manages metadata about data source, 
algorithm used for data mining, mining results and 
visualization tool. All metadata are represented in 
eXtensible Markup Language (XML) documents stored 
in Knowledge Metadata Repository (KMR). The 
discovered mobility patterns after the execution of 
distributed mining process is stored in Knowledge Base 
Repository (KBR); (2): The Resource Allocation and 
Execution Management Service (RAEMS) generates 
data mining process execution plan and it will be stored 
in a Knowledge Execution Plan Repository (KEPR). 
The execution plan will generate resources request 
expressed using the Resource Specification Language 
(RSL) for GRAM. The high level K-Grid layer supports 
the following services Data Access Service (DAS) is 
responsible for accessing data for data mining. Tools 
and algorithm access Service (TAAS) is responsible for 
loading tools and algorithm defined in KDS. Execution 
Plan management Service (EPMS) enables users to 
create execution plan by assigning programs to data 
resources. On multiple execution of program, different 
execution plans are created. Result Presentation Service 
(RPS) is responsible for presenting mobility patterns to 
the users stored in Knowledge Base Repository (KBR).  
 
Inter-process communication using MPICH-G2: 
MPICH-G2 is a grid enabled open source library for 
implementing Message Passing Interface (MPI). It 
supports parallel and distributed data mining MPI 
application to run on cluster of machines of different 
architecture. MPICH-G2 uses TCP for inter-machine 
communication and vendor API for intra-machine 
communication. Our distributed Knowledge grid based 
Mobility Pattern Mining (KMPM) algorithm is 
executed on several computational grids using MPICH-
G2 component. MPICH-G2 uses RSL script for sub 
jobs execution. The design of our parallel and 
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distributed mining of mobility pattern application on 
knowledge grid is shown in Fig. 1. Initially Grid 
Security Infrastructure (GSI) generates certificates for 
the user authentication to sign on other site. The user 
can use Monitoring and Discovery Service (MDS) to 
select grid node based on memory, CPU load and 
network topology. The globus-run command is 
executed to submit job on multiple machines by 
creating MPI computation. MPICH-G2 uses RSL to 
specify the URL of the computational and grid 
resources. The RSL script defines the job in the 
following way: 
  

+ 
(&(resourceManagerContact= “kalannia/jobmanager-

pbs”) 
(count = 10) 
(label = “subjob 0”) 
(environment= 

(GLOBUS_DUROC_SUBJOB_INDEX 0) 
(directory = “/home/sakthi/gridmining”) 
(executable = “/home/sakthi/gridmining/KMPM”) 
) 

  
 The parameter “resourceManagerContact” 
specifies the URL of the cluster resource and the 
corresponding jobmanager-pbs.  The parameter “count” 
specifies the number of nodes required for computation, 
and the “label” represents name of the sub-job. The 
parameter “environment” specifies the directory in 
which the globus is installed. The parameter “directory” 
specifies the working directory, and the “executable” 
parameter specifies the location of the executable. The 
mining job is started on the computational resource by 
using GRAM running on each server. The MPICH-G2 
calls Dynamically-Updated Request Online Coallocator 
(DUROC) library file to start the mining on multiple 
computational resources specified by the RSL script.  
 
Parallel and distributed algorithm: Let us assume 
there are n processing nodes P1, P2,…,Pn in our 
distributed system. The data base contains mobile User 
Actual Path (UAP) is distributed over n processing 
nodes. In our work, modified form of Count 
Distribution (CD) algorithm is used to mine User 
Mobility Pattern (UMP) from User Actual Path (UAP). 
The locations which are frequently followed by mobile 
user are called Mobility Patterns. Count Distribution 
algorithm is previously used in various domains. In our 
study, CD algorithm is used with new method for 
calculating support count of subsequence in UAP. Let 
X.sup and X.supi be the global and local support count 
of subsequence X at a process Pi. X is globally large if  
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mpirun command 

Submission of mult iplejobs using 
globusrun command 
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Local Scheduler 
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Fig. 1: Inter-process communication 
 
X.sup>S and locally large if X.supi > Si, where S is 
Global minimum support and Si is local minimum 
support at Pi. Our KMPM algorithm is executed on n 
processing nodes in parallel. Intermediate results are 
transferred to other nodes using send and receive 
commands of MPICH-G2. The pseudo code for KMPM 
algorithm is given below: 
  
// pseudo code for local mining at a process Pi 
KMPM( ) 
input: moving path of mobile users 
output: local frequent mobility pattern 
LSk = null //k is the length of subsequence 
for each UAP a∈  Di 
     find the subsequence of UAP and put it in S 
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     for each subsequence s ∈  S 
  //calculate the support count and store it in LSk 
  s.count = s.count+s.suppInc 
     end for 
 end for 
 
// pseudocode for global mining at kth pass 
globalmining() 
input:  local frequent patterns 
output: global frequent patterns 
k = 1 
while (GSk ≠ null) 
 for every from 1 to n increment by 1 
 node Pi exchange and merge local support counts 
 of LSk with all n nodes and find the global support 
 count of all subsequence and store it in GSk 
 end for 
for each subsequence in GSk 
  if the global support count of subsequence is 
 above the minimum global support count then put 
 the subsequence in  global mobility pattern GMPk 
 end for 
 increment k by 1 
end while 

 
 The above algorithm is an adaptation apriori 
algorithm in a distributed environment. Every process 
generates subsequence of length k called as Local 
Subsequence (LSk) and then calculates local support 
count for each LSk. These subsequence local support 
count is exchanged with all other process to generate 
Global Subsequence (GSk) and then calculates global 
support count for each GSk. The subsequences which 
have a support count greater than the threshold global 
support count are selected as Global Mobility Pattern 
(GMPk). For instance, consider UAPs 〈4, 6, 8, 0, 5〉, 〈2, 
4, 8, 0, 6〉 and 〈1, 2, 4, 6〉 where the number 4 represents 
location of mobile user. The support count of the 
subsequence 〈4, 6〉 can be calculated as follows. s.count 

= s.count+suppInc and suppInc=
1

1 totdis+  where totdis is 

the number of location between 4 and 6. s.count value 
is 2 because it appears in 1st and 3rd UAP. In 2nd UAP 
there are two locations between 4 and 6. Therefore the 

support value for 4 and 6 is 〈4,6〉.count = 2+ 21
1
+  = 2.33. 

It will increase the accuracy of the support counting. 
This algorithm will generate more accurate Global 
Mobility Patterns (GMP).  
 
Mobility rule generation: In our Knowledge grid, after 
the execution of parallel and distributed mining 
algorithm, Mobility Patterns (MP) are stored in 
Knowledge Base Repository (KBR). It can be used to 

generate mobility rules. For example, Mobility pattern 
is 〈4, 6, 8〉. 
 Mobility rules are as follows: 
 
〈4〉→〈 6, 8〉 
〈4, 6〉→〈8〉 
 
 From the UMPs, all possible mobility rules are 
generated and their confidence value is calculated. In 
general, mobility rule R is represented as 〈t1, t2,..,ti〉→ 

〈ti+1,ti+2,..,tp〉. Confidence value for the rule R is 
calculated using the following formula: 
 

Confidence (R) =  
1 2 i

i 1 i 2 p

t , t ,..., t .count

t ,t ,...t .count+ +

〈 〉

〈 〉   

 
 Then the mobility rules which have a confidence c 
higher than a predefined confidence threshold (confmin) 
are selected. These mobility rules can be used in next 
phase for mobility prediction. The mined mobility rule 
is compared with the current location of mobile user to 
predict the next possible locations. 
 
Mobility prediction: In mobile web environment, next 
location of mobile users is predicted using mobility rule 
and current location of the mobile user.  Mobility rule 
contains two parts namely, head-the part before the 
arrow and tail- the part after the arrow. Our process 
generates set of rules whose head matches with the 
current location of the mobile user. These rules are 
called as matching rules.  The first location in the tail of 
the matching rule and match value is stored in the 
resultant array. Match value is calculated by summing 
up the support value of the UMP and confidence of the 
rule. The matching rules in the array are sorted in 
descending order with respect to match value. This 
process generates most confident and frequent rules. 
The parameter m defines number of predictions 
required. It selects only first m locations from the 
resultant array.  In Fig. 2, there are three locations 4, 6 
and 8. For example, currently the mobile user is in 
location 4. Our algorithm generates matching rules 
〈4〉→〈6〉 and 〈4〉→〈8〉. The match value is calculated for 
each predicted location and stored in resultant array. 
Resultant array contains two values [(6, 78.56), (8, 
68.56)].  If m = 1, then the location 6 will be predicted 
as next location. If m = 2, then the locations 6 and 8 are 
the predicted as next locations. The predicted location 
can be used by expert system to provide location based 
service to the mobile user.  
 
Incremental mobility rule mining: The parallel and 
distributed algorithm is executed on data grid to find 
the mobility pattern when moving logs are added to and 
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Fig. 2: Movement of mobile user in GSM network 
 

Table 1: Parameters used in experiment 
Sr. No. Notation Meaning 
1  DB Transactions in original database 
2 db Transactions that are newly added 
3 DB+ Transactions in the updated  
  database DB ∪db 
4 GMP+,GMPDB,GMPdb Mobility pattern the respective 
  database  
5 NMP(GMP+), NMP 
 (GMPDB) and 
 NMP(GMPdb) Negative Border in  
 the respective database 
6 NMP infrequent pattern sequences  
  which did not satisfy the  
  minimum support 
7 MLdb new moving log transactions  
  added to the database 

 
removed from the database without re-executing the 
algorithm. The algorithm uses the concept of negative 
border for data mining by maintaining the infrequent 
mobility pattern. Infrequent sequence represents the set 
of sequences, which did not satisfy the minimum 
support. The various parameters used in our experiment 
is shown in Table 1. During each pass of the data 
mining algorithm, the set of sequences (GSk) are 
computed from the previous mobility patterns (GMPk-1). 
The negative border with infrequent sequence is found 
by NMPk = GSk-GMPk. where NMPk represents the 
infrequent sequence in kth pass. The algorithm for 
updating the mobility pattern as follows: 

 
Function updatemobilitypattern (GMPDB, 
NMP(GMPDB), MLdb) 
compute GMPdb 
for each sequence s ∈ GMPDB  ∪ NMP(GMPDB) do 
    tdb(s) = number of transaction in db containing s  
    GMP+ = φ  
for each sequence s ∈ GMPDB do 

  if (tDB  (s)+ tdb(s)) >minsup 
  then GMP+ = GMP+  ∪s 
for each sequence s ∈GMPdb do 
  if s ∪GMPDB and s ∈NMPdb and  
  (tDB  (s)+ tdb(s))>  minsup then 
    GMPdb+ = GMPdb+∪s 
   if GMPDB   ≠ GMPdb+  then 
    NMP(GMP+) = negativebordergen(GMP+)  
    else NMP(GMPDB+) = NMP(GMPDB) 
if  GMPDB  ∪ NMP(GMPDB)  ≠ NMP(GMPDB+) ∪ 
NMP(GMPDB) then 
 s =  GMPDB+  
repeat  
   compute s = s ∪NMP (s) 
until s does not grow 
GMPDB+ = {× s | support(x) > = minsup} 
 
 Initially the original transactions are mined to 
generate the Global Mobility Pattern (GMPDB) for the 
specified minimum support. While the Mobility 
Patterns are generated, their negative border 
GMP(GMPDB) is also generated and retained. The 
negative border is used to avoid re-computation when 
new transactions are added to the database. When new 
moving log transactions are added to the database (db) 
the frequent mobility pattern for the new transactions 
(GMPdb) are generated for the user specified minimum 
support.  There are three cases to update the mobility 
pattern. (1): The support count is calculated for each 
sequence in the (GMPDB) from the (GMPdb) if the 
minimum support is satisfied and GMPDB is updated. 
(2): The support count of sequence that is common to 
both GMPdb and NMPdb are counted and GMPDB is 
updated if support count is specified. Some set of 
sequences in NMP(GMPDB) may not satisfy the support 
count and it would remain in ∪ NMP(GMPDB). (3): The 
sequences that are in GMPdb not in (GMPDB) are 
counted. The sequences in GMPdb would satisfy the 
support count is added to (GMPDB).  
 

RESULTS AND DISCUSSION 
 
  The experiments have been performed on 
Oracle10G and PostgreSQL installed in globus toolkit 
4.0 middleware in Scientific Linux environment. 
Initially the transactions in the database are considered 
as original database and datasets are added 
incrementally for three runs of algorithm to show the 
performance of Incremental Mining algorithm (IM) 
over Re-Computing algorithm (RC). The data sets 
represented    in   the   form   of   T5I2D1000K,   where 
5 denotes the average number of locations in the user 
moving path, 2 denotes support count of locations in the 
dataset and 1000 K denotes the total number of 
transactions in K. The experiment is conducted for 0.30, 
0.25 and 0.20% support count.  
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Fig. 3: Dataset T5I2D1400K, Data added increment of 

100K from 1000K 
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Fig. 4: Dataset T5I2D1400K, Data added increment of 

200K from 600K 
 
 From the Fig. 3 it is noted that the performance 
improvement for increment size of 100 K was about 
55% for 0.20% support count and it is increased to 60% 
for 0.25% support count. The performance is increased 
about 65% for the support count 0.30%. From the Fig. 4 
the performance improvement was about 50% for 
0.20% and it is increased to 55% for the support count 
0.25%. The performance is increased 60% for the 
support count 0.30%. 
 

CONCLUSION 
 
 In this study, we have proposed incremental 
parallel and distributed algorithm implemented on 
Knowledge grid to predict the next location of mobile 
user in a mobile web computing system. Incremental 
algorithm performs better when compared to re-
computation for larger datasets.  In the first step of 
mining algorithm, mobility patterns are mined from the 
User Access Path (UAP) and mobility rules are 
generated using mobility patterns. Finally current 
location of mobile user is compared with the mobility 
rule to predict the location of mobile user. By using the 
predicted movement, the system can effectively allocate 
resources and provide location based services to the 
mobile users. Knowledge Grid based Mobility Pattern 
Mining (KMPM) algorithm for mobility prediction 
needs less computation time compared to sequential 

mobility prediction algorithm and it supports scalability. 
The proposed approach shows how the Knowledge 
Grid system is used for distributed data analysis. Also 
compared to other distributed system, grid reduces the 
message communication overhead using MPICH-G2 
technology. The subsequence exchange between 
processes is effectively achieved by using MPICH-G2. 
In future the study can be extended by applying the 
work load balancing concept for distributed data mining. 
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