
Journal of Computer Science 5 (2): 146-153, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: U. Sakthi, Department of Computer Science, Research Scholar, Anna University, Chennai, India
146

Incremental DataGrid Mining Algorithm for Mobility Prediction of Mobile Users

1U. Sakthi and 2R.S. Bhuvaneswaran

1Department of Computer Science, Research Scholar, Anna University, Chennai, India
2Ramanujan Computing Center, Anna University, Chennai, India

Abstract: Problem statement: Mobility prediction is the important issue in Personal Communication
Systems (PCS). Mobile users moving logs are stored in data grid located in different locations.
Distributed data mining algorithm is applied on this moving logs to generate the mobility pattern of
mobile users. As new moving logs are added to the data grid, existing mobility pattern becomes invalid
and it should be updated. One of the existing work to derive the new mobility pattern is re-executing
the algorithm from scratch results in excessive computation. Approach: We had designed new
incremental algorithm by maintaining infrequent mobility patterns, which avoids unnecessary scan of
full database. Incremental data mining algorithm taken lesser time to compute new mobility patterns.
The discovered location patterns can be used to provide various location based services to the mobile
user by the application server in mobile computing environment. Data grid provided geographically
distributed database for computational grid which implements incremental data mining algorithm. We
built data grid system on a cluster of workstation using open source globus toolkit 4.0 and Message
Passing Interface extended with Grid Services (MPICH-G2). Results: The experiments were
conducted on original data sets and data were added incrementally and the computation time was
recorded for each data sets. The performance improvement for increment size of 100 K was about 55%
for 0.20% support count and it is increased to 60% for 0.25% support count. The performance is
increased about 65% for the support count 0.30%. Conclusion: We analyzed our results with various
sizes of data sets and the proof shows the time taken to generate mobility pattern by incremental
mining algorithm is less than re-computing approach. In future the execution time can further be
reduced by balancing the workload of grid nodes.

Key words: Incremental data grid mining, mobility pattern, knowledge grid, mobility rules, parallel

mining

INTRODUCTION

 Data grid is designed to allow large moving logs to
be stored in repositories. In business area it is necessary
to develop environment for analysis, inference and
discovery over the data grid. Therefore, the evolution of
the data grid is represented by knowledge grid offering
high level services for distributed mining and extraction
of knowledge from data repositories available on data
grid[1]. The Knowledge Grid (KG) is a parallel and
distributed architecture that integrates data mining
techniques and grid technologies[4]. The knowledge grid
is exploited to perform distributed data mining on very
large data sets available over grids to find hidden
valuable information, process models to make decisions
and results to make business decisions[5,8]. In present
study knowledge grid is developed to predict the next
location of mobile user in mobile environment. By
using the predicted location, the system effectively

allocate resources to mobile users in the neighbor
location and it is possible to answer the queries that
refer to the future position of mobile users.
 A Personal Communication System (PCS) allows
mobile users to move from one location to another
location since these systems are based on the notion of
wireless access. In mobile system each mobile user is
associated with Home Location Register (HLR) which
stores up-to-date location of the mobile users. These
logs accumulate as large database, in which data mining
technique is applied to find the frequently followed
location. Each Base Station (BS) in PCS is connected
with separate home location register led to the
geographically distributed data grid node. Grid network
was built with cluster of grid node contains moving
logs of mobile users. Existing research work applied
data mining technique on mobile data for path mining
in a single database server[2]. The sequential apriori
algorithm implemented on single grid was proposed

J. Computer Sci., 5 (2): 146-153, 2009

147

in[13]. If size of the moving logs is very large, the
overhead in integrating the data source will be too high.
To overcome this problem data mining algorithm is
executed on conventional distributed environment[6,14].
During the mining process size of the data set
transferred between nodes was reduced by local and
global mining[15]. This method is not efficient with
respect to resource sharing and process co-ordination.
 The most prominent example of distributed
environment is grid, where a large number of
computing and storage units are interconnected over a
high speed network. Data mining is inductive, iterative
process that extracts information or frequent patterns
from large volume of data[3]. Most of the applications
have created large volume of data sets which are
constantly increasing and stored in geographically
distributed locations. A parallel and distributed
algorithm is implemented on computational grid to
mine data stored in data grids. As new moving data is
added to the original data base, the existing mobility
pattern becomes invalid. Instead of executing the
algorithm again we propose new method called
incremental mining algorithm. The knowledge grid is a
parallel and distributed software architecture that
integrates grid technologies and data mining
applications.

MATERIALS AND METHODS

 The mobile users move from one location to
another location in a wireless PCS network. The
coverage area of the network is divided into number of
location areas. Each mobile device is linked with the
Base Station (BS). Each Base station contains Home
Location Register (HLR) which stores permanent
details of the mobile users and Visiting Location
Register (VLR) which stores temporary details of the
mobile users. These register includes attributes like user
ID, user location, call time and call duration. User ID
acts as a key for the mobile user records. The
movement history of a mobile user is extracted from
log files and it is stored in grid node for mining
mobility patterns. The movement of mobile user is
called as User Actual Path (UAP) which have the form
UAP = 〈l1, l2,…,ln〉, where n is the number of locations
followed by the mobile user and lk represents kth
location in the movement path.
 In our grid network, mobile user movement history
is geographically distributed in different data grid nodes.
Knowledge grid based mobility pattern mining
algorithm is executed on computational grid over the
data grid to generate the trajectories that are frequently
used by mobile users. The frequently followed

trajectory is named as User Mobility Pattern (UMP)
which is used to generate mobility rules. The
communication of candidate item sets between grid
nodes is achieved by MPICH-G2 and reduces the
computation overhead. Our proposed algorithm is
executed on knowledge grid to generate mobility
patterns from the database distributed on the data grid
node. The execution time of our parallel and distributed
algorithm is relatively small when compared to
sequential algorithm.
 Let UAP = 〈 l1, l2,…,ln〉be the set of locations. A

database DB is a set of mobile user records, where each
record contains set of locations. Let DB = {DB1,
DB2,...,DBm} where m is number of data grid nodes in
grid network and DBk is the database stored in kth data
grid node. Local frequent locations are mined and it is
communicated to all other grid node to find the global
frequent locations called as mobility patterns. Mobility
rules are generated from the mobility patterns which is
in the form of A→B having global confidence c if c%
of records in DB that contain A followed by B.
Mobility rule A→B represents the mobile users current
location is A then he/she will move to location B. The
mobility rule A→B has global support s if s% of
records contains A∪B. In general, mobility prediction
is performed in two steps. 1. Find all mobility patterns:
By definition, each of these location sets will occur at
least as frequently as a predetermined global minimum
support count, min_sup. 2. Mobility rules are generated
from the mobility patterns which satisfy global
minimum support and minimum confidence. Mobility
Rule is the important knowledge derived from database
on a data grid. Moving logs are added incrementally to
the data base. It makes existing mobility rules
invalidate. Re-execution of mining algorithm is not an
efficient process, since it ignores previously discovered
rules and repeats the work that has already been done.
Incremental mining algorithm is a useful technique for
mining mobility rules when logs are added to the data
base continuously.
 The centralized mobility pattern algorithm was
discussed in[4]. In mobile environment, moving log size
is very large. It will increase the overhead to integrate
all the moving logs into one database server. The
algorithm proposed in[4] cannot be efficient for large
data size. Many parallel and distributed variants of
sequential apriori algorithm have been discussed in
other resources[6,7]. In[5], grid implementation of
frequent item sets in a grid environment dealt with sales
transaction of a company. These algorithms[5-7] cannot
be used directly in our domain, because this algorithm
does not take into account the network topology while
generating the candidate patterns. The services and

J. Computer Sci., 5 (2): 146-153, 2009

148

methods for distributed data mining algorithm were
discussed in[5]. The generation of candidate pattern in[5]
is not same as the candidate pattern in mobile
environment. In PCS, only the sequence of neighboring
location of the network can be considered as the
mobility pattern. We propose incremental parallel and
distributed knowledge grid mining approach based on
apriori algorithm for mining mobility patterns in mobile
environment.
 Globus toolkit is the widely used middleware
environment for implementing grid systems. The toolkit
addresses information sharing, security, virtualization,
resource and data management, communication and
fault detection.

Knowledge grid: Grid computing is the most emerged
area for high performance distributed applications like
knowledge discovery process. Knowledge Gird (KG) is
an integration of basic grid services, data grid services
and computational grid services for distributed data
mining and knowledge discovery[10,12]. We built
Knowledge Grid using the open-source globus toolkit[9].

Globus toolkit services: The basic grid components
provided by the globus toolkit are:

Grid Security Infrastructure (GSI): Provides
authentication (identity of the users and services) based
on certificate produced by certificate authority and
standard X.509. The mutual authentication is provided
by Secure Socket Layer (SSL) protocol.

Monitoring and Data Service (MDS): MDS is an
information service component provides information
about available grid resources and periodically collects
their status. It provides static information like hostname,
operating system and dynamic information like CPU
workload, memory status.

Globus Resource Allocation and Management
(GRAM): responsible for resource allocation, job
creation, monitoring management, job control and
provides interface for job submission on remote
machine.

GridFTP: It is an extension of FTP for parallel data
transfer, file transfer based on GSI authentication
mechanisms.

HeartBeat Monitor (HBM): Responsible for
identifying globus process failures and application
process failures and immediately recovery action can be
taken.

Global Access to Secondary Storage (GASS):
Exposes interfaces that help the clients to access the
data in a uniform manner from heterogeneous data
sources. Data caching service is utilized to improve
data access performance. Metadata catalog and services
allows us to search for a multitude of services, based
upon the object metadata attributes.

Dynamically-Updated Resource Online Co-allocator
(DUROC): It acts as a coordinator between sub jobs
running on different computational grid.

Knowledge grid services: The knowledge grid
contains Core K-Grid layer and High level K-Grid
layer[11]. The Core K-Grid layer of knowledge grid
performs two main services. (1): Knowledge Directory
Service (KDS) manages metadata about data source,
algorithm used for data mining, mining results and
visualization tool. All metadata are represented in
eXtensible Markup Language (XML) documents stored
in Knowledge Metadata Repository (KMR). The
discovered mobility patterns after the execution of
distributed mining process is stored in Knowledge Base
Repository (KBR); (2): The Resource Allocation and
Execution Management Service (RAEMS) generates
data mining process execution plan and it will be stored
in a Knowledge Execution Plan Repository (KEPR).
The execution plan will generate resources request
expressed using the Resource Specification Language
(RSL) for GRAM. The high level K-Grid layer supports
the following services Data Access Service (DAS) is
responsible for accessing data for data mining. Tools
and algorithm access Service (TAAS) is responsible for
loading tools and algorithm defined in KDS. Execution
Plan management Service (EPMS) enables users to
create execution plan by assigning programs to data
resources. On multiple execution of program, different
execution plans are created. Result Presentation Service
(RPS) is responsible for presenting mobility patterns to
the users stored in Knowledge Base Repository (KBR).

Inter-process communication using MPICH-G2:
MPICH-G2 is a grid enabled open source library for
implementing Message Passing Interface (MPI). It
supports parallel and distributed data mining MPI
application to run on cluster of machines of different
architecture. MPICH-G2 uses TCP for inter-machine
communication and vendor API for intra-machine
communication. Our distributed Knowledge grid based
Mobility Pattern Mining (KMPM) algorithm is
executed on several computational grids using MPICH-
G2 component. MPICH-G2 uses RSL script for sub
jobs execution. The design of our parallel and

J. Computer Sci., 5 (2): 146-153, 2009

149

distributed mining of mobility pattern application on
knowledge grid is shown in Fig. 1. Initially Grid
Security Infrastructure (GSI) generates certificates for
the user authentication to sign on other site. The user
can use Monitoring and Discovery Service (MDS) to
select grid node based on memory, CPU load and
network topology. The globus-run command is
executed to submit job on multiple machines by
creating MPI computation. MPICH-G2 uses RSL to
specify the URL of the computational and grid
resources. The RSL script defines the job in the
following way:

+
(&(resourceManagerContact= “kalannia/jobmanager-

pbs”)
(count = 10)
(label = “subjob 0”)
(environment=

(GLOBUS_DUROC_SUBJOB_INDEX 0)
(directory = “/home/sakthi/gridmining”)
(executable = “/home/sakthi/gridmining/KMPM”)
)

 The parameter “resourceManagerContact”
specifies the URL of the cluster resource and the
corresponding jobmanager-pbs. The parameter “count”
specifies the number of nodes required for computation,
and the “label” represents name of the sub-job. The
parameter “environment” specifies the directory in
which the globus is installed. The parameter “directory”
specifies the working directory, and the “executable”
parameter specifies the location of the executable. The
mining job is started on the computational resource by
using GRAM running on each server. The MPICH-G2
calls Dynamically-Updated Request Online Coallocator
(DUROC) library file to start the mining on multiple
computational resources specified by the RSL script.

Parallel and distributed algorithm: Let us assume
there are n processing nodes P1, P2,…,Pn in our
distributed system. The data base contains mobile User
Actual Path (UAP) is distributed over n processing
nodes. In our work, modified form of Count
Distribution (CD) algorithm is used to mine User
Mobility Pattern (UMP) from User Actual Path (UAP).
The locations which are frequently followed by mobile
user are called Mobility Patterns. Count Distribution
algorithm is previously used in various domains. In our
study, CD algorithm is used with new method for
calculating support count of subsequence in UAP. Let
X.sup and X.supi be the global and local support count
of subsequence X at a process Pi. X is globally large if

 Generates resource
specification using
mpirun command

Submission of mult iplejobs using
globusrun command

 DUROC
 Coordinator

 MDS

GASS

TCP communication
between clusters Vendor API

Local Scheduler

GRAM

 Authentication
 using GSI

Job Manager

PBS job Script

GRAM

 Authentication
 using GSI

Job Manager

PBS job Script

Local Scheduler

P4 P5 P6 P1 P2 P3

Fig. 1: Inter-process communication

X.sup>S and locally large if X.supi > Si, where S is
Global minimum support and Si is local minimum
support at Pi. Our KMPM algorithm is executed on n
processing nodes in parallel. Intermediate results are
transferred to other nodes using send and receive
commands of MPICH-G2. The pseudo code for KMPM
algorithm is given below:

// pseudo code for local mining at a process Pi
KMPM()
input: moving path of mobile users
output: local frequent mobility pattern
LSk = null //k is the length of subsequence
for each UAP a∈ Di
 find the subsequence of UAP and put it in S

J. Computer Sci., 5 (2): 146-153, 2009

150

 for each subsequence s ∈ S
 //calculate the support count and store it in LSk
 s.count = s.count+s.suppInc
 end for
 end for

// pseudocode for global mining at kth pass
globalmining()
input: local frequent patterns
output: global frequent patterns
k = 1
while (GSk ≠ null)
 for every from 1 to n increment by 1
 node Pi exchange and merge local support counts
 of LSk with all n nodes and find the global support
 count of all subsequence and store it in GSk
 end for
for each subsequence in GSk
 if the global support count of subsequence is
 above the minimum global support count then put
 the subsequence in global mobility pattern GMPk
 end for
 increment k by 1
end while

 The above algorithm is an adaptation apriori
algorithm in a distributed environment. Every process
generates subsequence of length k called as Local
Subsequence (LSk) and then calculates local support
count for each LSk. These subsequence local support
count is exchanged with all other process to generate
Global Subsequence (GSk) and then calculates global
support count for each GSk. The subsequences which
have a support count greater than the threshold global
support count are selected as Global Mobility Pattern
(GMPk). For instance, consider UAPs 〈4, 6, 8, 0, 5〉, 〈2,
4, 8, 0, 6〉 and 〈1, 2, 4, 6〉 where the number 4 represents
location of mobile user. The support count of the
subsequence 〈4, 6〉 can be calculated as follows. s.count

= s.count+suppInc and suppInc=
1

1 totdis+ where totdis is

the number of location between 4 and 6. s.count value
is 2 because it appears in 1st and 3rd UAP. In 2nd UAP
there are two locations between 4 and 6. Therefore the

support value for 4 and 6 is 〈4,6〉.count = 2+ 21
1
+ = 2.33.

It will increase the accuracy of the support counting.
This algorithm will generate more accurate Global
Mobility Patterns (GMP).

Mobility rule generation: In our Knowledge grid, after
the execution of parallel and distributed mining
algorithm, Mobility Patterns (MP) are stored in
Knowledge Base Repository (KBR). It can be used to

generate mobility rules. For example, Mobility pattern
is 〈4, 6, 8〉.
 Mobility rules are as follows:

〈4〉→〈 6, 8〉
〈4, 6〉→〈8〉

 From the UMPs, all possible mobility rules are
generated and their confidence value is calculated. In
general, mobility rule R is represented as 〈t1, t2,..,ti〉→

〈ti+1,ti+2,..,tp〉. Confidence value for the rule R is
calculated using the following formula:

Confidence (R) =
1 2 i

i 1 i 2 p

t , t ,..., t .count

t ,t ,...t .count+ +

〈 〉

〈 〉

 Then the mobility rules which have a confidence c
higher than a predefined confidence threshold (confmin)
are selected. These mobility rules can be used in next
phase for mobility prediction. The mined mobility rule
is compared with the current location of mobile user to
predict the next possible locations.

Mobility prediction: In mobile web environment, next
location of mobile users is predicted using mobility rule
and current location of the mobile user. Mobility rule
contains two parts namely, head-the part before the
arrow and tail- the part after the arrow. Our process
generates set of rules whose head matches with the
current location of the mobile user. These rules are
called as matching rules. The first location in the tail of
the matching rule and match value is stored in the
resultant array. Match value is calculated by summing
up the support value of the UMP and confidence of the
rule. The matching rules in the array are sorted in
descending order with respect to match value. This
process generates most confident and frequent rules.
The parameter m defines number of predictions
required. It selects only first m locations from the
resultant array. In Fig. 2, there are three locations 4, 6
and 8. For example, currently the mobile user is in
location 4. Our algorithm generates matching rules
〈4〉→〈6〉 and 〈4〉→〈8〉. The match value is calculated for
each predicted location and stored in resultant array.
Resultant array contains two values [(6, 78.56), (8,
68.56)]. If m = 1, then the location 6 will be predicted
as next location. If m = 2, then the locations 6 and 8 are
the predicted as next locations. The predicted location
can be used by expert system to provide location based
service to the mobile user.

Incremental mobility rule mining: The parallel and
distributed algorithm is executed on data grid to find
the mobility pattern when moving logs are added to and

J. Computer Sci., 5 (2): 146-153, 2009

151

Mobile client

Server

Mobile client

Server

Server

Location 6
4

Location 8

Locat ion 4

Mobile client

Fig. 2: Movement of mobile user in GSM network

Table 1: Parameters used in experiment
Sr. No. Notation Meaning
1 DB Transactions in original database
2 db Transactions that are newly added
3 DB+ Transactions in the updated
 database DB ∪db
4 GMP+,GMPDB,GMPdb Mobility pattern the respective
 database
5 NMP(GMP+), NMP
 (GMPDB) and
 NMP(GMPdb) Negative Border in
 the respective database
6 NMP infrequent pattern sequences
 which did not satisfy the
 minimum support
7 MLdb new moving log transactions
 added to the database

removed from the database without re-executing the
algorithm. The algorithm uses the concept of negative
border for data mining by maintaining the infrequent
mobility pattern. Infrequent sequence represents the set
of sequences, which did not satisfy the minimum
support. The various parameters used in our experiment
is shown in Table 1. During each pass of the data
mining algorithm, the set of sequences (GSk) are
computed from the previous mobility patterns (GMPk-1).
The negative border with infrequent sequence is found
by NMPk = GSk-GMPk. where NMPk represents the
infrequent sequence in kth pass. The algorithm for
updating the mobility pattern as follows:

Function updatemobilitypattern (GMPDB,
NMP(GMPDB), MLdb)
compute GMPdb
for each sequence s ∈ GMPDB ∪ NMP(GMPDB) do
 tdb(s) = number of transaction in db containing s
 GMP+ = φ
for each sequence s ∈ GMPDB do

 if (tDB (s)+ tdb(s)) >minsup
 then GMP+ = GMP+ ∪s
for each sequence s ∈GMPdb do
 if s ∪GMPDB and s ∈NMPdb and
 (tDB (s)+ tdb(s))> minsup then
 GMPdb+ = GMPdb+∪s
 if GMPDB ≠ GMPdb+ then
 NMP(GMP+) = negativebordergen(GMP+)
 else NMP(GMPDB+) = NMP(GMPDB)
if GMPDB ∪ NMP(GMPDB) ≠ NMP(GMPDB+) ∪
NMP(GMPDB) then
 s = GMPDB+
repeat
 compute s = s ∪NMP (s)
until s does not grow
GMPDB+ = {× s | support(x) > = minsup}

 Initially the original transactions are mined to
generate the Global Mobility Pattern (GMPDB) for the
specified minimum support. While the Mobility
Patterns are generated, their negative border
GMP(GMPDB) is also generated and retained. The
negative border is used to avoid re-computation when
new transactions are added to the database. When new
moving log transactions are added to the database (db)
the frequent mobility pattern for the new transactions
(GMPdb) are generated for the user specified minimum
support. There are three cases to update the mobility
pattern. (1): The support count is calculated for each
sequence in the (GMPDB) from the (GMPdb) if the
minimum support is satisfied and GMPDB is updated.
(2): The support count of sequence that is common to
both GMPdb and NMPdb are counted and GMPDB is
updated if support count is specified. Some set of
sequences in NMP(GMPDB) may not satisfy the support
count and it would remain in ∪ NMP(GMPDB). (3): The
sequences that are in GMPdb not in (GMPDB) are
counted. The sequences in GMPdb would satisfy the
support count is added to (GMPDB).

RESULTS AND DISCUSSION

 The experiments have been performed on
Oracle10G and PostgreSQL installed in globus toolkit
4.0 middleware in Scientific Linux environment.
Initially the transactions in the database are considered
as original database and datasets are added
incrementally for three runs of algorithm to show the
performance of Incremental Mining algorithm (IM)
over Re-Computing algorithm (RC). The data sets
represented in the form of T5I2D1000K, where
5 denotes the average number of locations in the user
moving path, 2 denotes support count of locations in the
dataset and 1000 K denotes the total number of
transactions in K. The experiment is conducted for 0.30,
0.25 and 0.20% support count.

J. Computer Sci., 5 (2): 146-153, 2009

152

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

RC IM RC IM RC IM 0.2 0.25 0.3

Support value in percentage

C
o

m
p

u
ta

tio
n

 tim
e

 (s
e

c)

100%
90%
80%
70%
60%

Fig. 3: Dataset T5I2D1400K, Data added increment of

100K from 1000K

0
1000

2000
3000
4000
5000

6000
7000

RC IM RC IM RC IM
0.2 0.25 0.3

Support value in percentage

100%
90%
80%
70%
60%

C
o

m
p

u
ta

tio
n

 ti
m

e
(s

ec
)

Fig. 4: Dataset T5I2D1400K, Data added increment of

200K from 600K

 From the Fig. 3 it is noted that the performance
improvement for increment size of 100 K was about
55% for 0.20% support count and it is increased to 60%
for 0.25% support count. The performance is increased
about 65% for the support count 0.30%. From the Fig. 4
the performance improvement was about 50% for
0.20% and it is increased to 55% for the support count
0.25%. The performance is increased 60% for the
support count 0.30%.

CONCLUSION

 In this study, we have proposed incremental
parallel and distributed algorithm implemented on
Knowledge grid to predict the next location of mobile
user in a mobile web computing system. Incremental
algorithm performs better when compared to re-
computation for larger datasets. In the first step of
mining algorithm, mobility patterns are mined from the
User Access Path (UAP) and mobility rules are
generated using mobility patterns. Finally current
location of mobile user is compared with the mobility
rule to predict the location of mobile user. By using the
predicted movement, the system can effectively allocate
resources and provide location based services to the
mobile users. Knowledge Grid based Mobility Pattern
Mining (KMPM) algorithm for mobility prediction
needs less computation time compared to sequential

mobility prediction algorithm and it supports scalability.
The proposed approach shows how the Knowledge
Grid system is used for distributed data analysis. Also
compared to other distributed system, grid reduces the
message communication overhead using MPICH-G2
technology. The subsequence exchange between
processes is effectively achieved by using MPICH-G2.
In future the study can be extended by applying the
work load balancing concept for distributed data mining.

REFERENCES

1. Luo, C., L. Anil Pereira and M. Soon Chung, 2006.

Distributed mining of maximal frequent itemsets
on a data grid system. J. Super Comput., 379: 71-90.
DOI: 10.1109/71.485502

2. Gokhan Yavas, dimitrios Katsaros, Ozgur Ulssoy
and Yannis manolopoulos, 2005. A data mining
approach for location prediction in mobile web
environments. Data Knowl. Eng., 549: 121-146.
DOI: 10.1016/j.datak.2004.09.004

3. Shearer, C., 2000. The CRISP-DM model: The
new blueprint for data mining. J. Data Warehous.,
5: 13-22. DOI: 10.1136/qshc.2004.012831

4. Wu-Shan Jiang and Ji-Hui Yu, 2005. Distributed
data mining on the grid. Proceedings of
International Conference on Machine Learning and
Cybernetics, Aug. 18-21, IEEE Xplore Press,
USA., pp: 2010-2014
DOI: 10.1109/ICMLC.2005.1527275

5. Mario Cannataro, Antonio Congiusta, Andrea
Pugliese, Talia and Paolo Trunfio, 2004.
Distributed data mining on grids: Services, tools
and applications. IEEE Trans. Syst. Man Cybernet.,
34: 2451-2465.
DOI: 10.1109/TSMCB.2004.836890

6. Cristian Aflori and Mitica Craus, 2007. Grid
implementation of apriori algorithm. Adv. Eng.
Software, 38: 295-300,
http://dx.doi.org/10.1016/j.advengsoft.2006.08.011

7. Thuraisingham, B., 2000. A primer for
understanding and applying data mining. IEEE
Educ. Activit. Depart., 2: 28-31.
http://dx.doi.org/10.1109/6294.819936

8. Agrawal, R., T. Imielinski and A. Swami, 1993.
Mining association rules between Sets of items in
large databases: Proceedings of ACM SIGMOD
International Conference on the Management of
Data., May 25-28, Washington, DC., United States,
pp: 207-216

 http://doi.acm.org/10.1145/170035.170072
9. Oracle, Java Stored Procedures developers Guide.,

http://otn.oracle.com/doc/oracle8i_816/java/a8135
3/toc.htm

J. Computer Sci., 5 (2): 146-153, 2009

153

10. Cannataro, M. and D. Talia, 2003. The knowledge
grid. Commun. ACM., 46: 89-93.
 http://doi.acm.org/10.1145/602421.602425

11. http://www.globus.org/toolkit
12. Foster and C. Kesselman, 2001. The Anatomy of

the grid: Enabling scalable virtual organizations:
Intl. J. Super Comput. Applied, 2150: 1-4.
http://www.springerlink.com/content/flddyth66lrqd
k36/

13. Cristian Aflori and Mitica Craus, 2007. Grid
implementation of Apriori algorithm. Adv. Eng.
Software, 38: 295-300.
DOI: 10.1016/j.advengsoft.2006.08.011

14. Agrawal, R. and J. Shafer, 1996. Parallel mining of
association rules. IEEE Trans. Knowl. Data Eng.,
8: 962-969. DOI: 10.1109/69.553164

15. Assaf Schuster, Ran Wolff and Dan Trock, 2005. A
high-performance distributed algorithm for mining
association rules. Knowl. Inform. Syst. J., 7: 458-
475. http://dx.doi.org/10.1007/s10115-004-0176-3

