
Journal of Computer Science 5 (1): 11-22, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: R. Saravanan, 1Department of Computer Science and Engineering,
 Pacheri Sri Nallathangal Amman College of Engineering and Technology, Dindigul, India

11

Providing Reliability in Replicated Middleware Applications

1R. Saravanan and 2N. Ramaraj

1Department of Computer Science and Engineering,
Pacheri Sri Nallathangal Amman College of Engineering and Technology, Dindigul, India

2G Katha Muthu Engineering College, Chennai, India

Abstract: Problem statement: Data inconsistency is raised in actively replicated environment due to
non-determinism in the applications that defeats the purpose of replication as a fault-tolerance strategy.
Approach: We proposed an efficient framework RTC which ensured determinism among the replicas
in fault tolerance middleware applications. This method exploits the technique of statically analyzing
the application source code of client and identifies the variables and system calls which lead to non-
deterministic state in the replicas. The source code consists of non-deterministic variables and system
calls which are identified and set the flag field. The client request consist of flag field and the service
request, which is sent to all the servers through time stamp based replication protocol (TSP) that
facilitate the multiple clients and the request is sent to the servers. The distributed coordination method
was initiated if necessary; otherwise send any one response of the servers to the client by duplicate
removal. Distributed coordination which involves, the selection of a primary replica based on the time
stamp value. It is responsible for taking all non-deterministic decisions. The state of the primary
replica was updated to all other replica connected asynchronously to maintain consistency. Results:
We evaluated our technique by increasing the contamination percentage of non-determinism and
increasing number of replicas. Conclusion: The method suggested by us reduces the communication
and synchronization overhead which was proved through implementation. We evaluate our technique
for the active replication of servers using micro benchmarks that contain various sources of non-
determinism. Multi-threading, system call, shared I/O and random ().

Key words: Non-determinism, fault-tolerance system, distributed coordination, active replication,

time stamp based replication

INTRODUCTION

 Replication of components is a common technique
for providing fault tolerance in distributed systems. The
concept of replication is the creation and distribution of
multiple identical copies (Replicas) of a component
across a system so that the failure of a replica can be
masked by the availability of other replicas. There are
essentially four kinds of replication styles[8]-active
replication, semi-active (leader-follower) replication,
passive replication and coordinator-cohort replication.
In active replication (state-machine approach[18]), each
server replica processes every client invocation and
returns the response to the client. With active
replication the availability of system is more when
comparing to any other replication technique. Care
must be taken to ensure that only one of these duplicate
responses is actually delivered to the client. The failure
of a single active replica is masked by the presence of

the other active replicas that also perform the operation
and generate the desired result. Semi-active (or leader-
follower) replication is a hybrid replica organization
technique which accommodate non-deterministic
replicas with an availability nearly as high as in active
replication. As in active replication, all replicas receive
a request; however, one replica (the leader) plays a
special role. Whenever the leader makes a non-
deterministic decision, it notifies the other replicas (its
followers) of its choice. The followers are then forced
to take the same decision. This guarantees that the state
evolution in all replicas is the same. In semi-active
replication, only the leader replica replies to clients.
 With passive replication, only one of the server
replicas designated the primary, processes the client’s
invocations and returns response to the client. With
warm passive replication, the remaining passive
replicas, known as backups, are preloaded into memory
and synchronized periodically with the primary replica

J. Computer Sci., 5 (1): 11-22, 2009

 12

so that one of them can take over if the primary replica
fails. With cold passive replication, however, the
backup replicas are “cold,” i.e., not even running, as
long as the primary replica is operational. To allow for
recovery, the state of the primary replica is periodically
check pointed and stored in a log. If the existing
primary replica fails, a backup replica is launched, with
its state initialized from the log, to take over as the new
primary. Both active and passive replication styles
require mechanisms to support state transfer. For
passive replication, the transfer of state occurs
periodically from the primary to the backups, from the
existing primary to a log, or from the log to a new
primary; for active replication, the transfer of state
occurs when a new active replica is launched and needs
its state synchronized with the operational active
replicas. Also note that passive replication cannot be
used to mask byzantine failures as there is only one
single replica executing, the backups serve only as
warm stand-bys.
 Coordinator-cohort replication is another hybrid
replica organization, very similar to semi-active
replication. It has been developed in the context of the
Isis toolkit[4]. From the point of view of the
communication pattern, it is very similar to passive
replication, the only difference being that all replicas
receive a request. This makes it possible to mask even
failures of the primary replica; the client does not have
to re-send a request. However, only the coordinator
handles the request and updates the cohort replicas by
means of checkpoints. The result is therefore
determined by the execution on the coordinator, which
may be non-deterministic. If the coordinator fails, one
of the cohorts becomes the new coordinator and
proceeds with execution from the last checkpoint.
Checkpoints therefore must be coordinated with respect
to output
 Determinism[13] is an important property that
requires the replication to work consistently. A
component is said to be deterministic if it contains no
characteristics that could cause replicas to become
inconsistent with each other. A Component is said to be
deterministic, when started from the same initial state
and supplied the same ordered sequence of input
messages, should reach the same final state and produce
the same output. But in real time application, while
executing some system calls and variables, replicas
enter in to non-deterministic state.
 One simplistic approach to avoid non-determinism
that forbids the use of multithreading, shared memory,
local I/O, system calls, random numbers and timers. In
fact this approach is adopted by the industrial standards
such as Fault-Tolerant CORBA[15]. In real world

application we wish to use all these non-deterministic
functions. Application state can be in any one of the
three mutually exclusive categories: pure non-
determinism, contaminated non-determinism and pure
determinism.
 In a Pure non-determinism, any functions are the
originating source of non-determinism and affect the
server’s state. Examples include system calls such as
gettimeofday or random, change the server’s state non-
deterministically. For example the variable det is
nondeterministic:

for (int j = 0; j < 100; j++)
det [j] = random ()

 Shared state among threads also falls within this
category. However, we treat shared state in a special
way each access of shared state by a thread is
considered to be a separate source of non-determinism.
For example, consider a single shared variable between
two threads; if each thread accesses this variable four
times, then, there exist eight separate instances of pure
non-determinism. It is immaterial that these eight
instances happen to involve the same variable. The
Contaminated non-determinism covers the state that has
any dependency, direct or indirect, on an instance of
pure non-determinism. Contaminated state captures the
effect of pure non-determinism when it is executed and
it is propagated to the rest of the application. An
example is the contaminated variable bar that depends
on the purely nondeterministic variable det:

for (int j = 0; j < 100; j++)
{det [j] = random (); bar [j+100] = det [j] ;}

 Pure determinism indicates the state that has no
dependency or whatsoever on the identified pure non-
determinism. This category of state will always be
consistent across all server replicas. An example is:

int x = random (); b = 5; return b

 Here the variable x is nondeterministic, but its
value does not affect the server state.
 The objective of the research is to permit the
programmers to continue and create distributed
applications and even they can use functions and
variables that cause non-deterministic state across the
replicas. To provide fault tolerance among the replicas,
we are using CORBA fault tolerance middleware. With
the active replication of servers, existing method[14]
involves delay, synchronization over head of replicas
(Use of Group Communication Protocol) and

J. Computer Sci., 5 (1): 11-22, 2009

 13

communication overhead while transferring the state
information (transfer-ckpt, transfer-contam) of any one
of the server to client and again from the client it is
communicated to all the servers actively connected in
the network. In this study we have proposed a
framework RTC (Real Time Compensation). To avoid
synchronization over head of replicas, we are using the
time stamp based replication (TSP approach[17]) instead
of group communication protocol and reduce the
communication overhead (Delay and Congestion) by
sending the state of the primary replica directly to other
secondary replicas (Leader-follower) actively
connected and thus avoiding the state transfer to the
client and maintain determinism in all the replicas.

MATERIALS AND METHODS

An overview: The following assumptions are made
about the system. RTC relies on having complete
access to the application’s source code, along with the
ability to modify it prior to deployment. Specifically,
we assume that we are allowed to modify the source
codes of the client, the server and the IDL interfaces of
all objects. Both the client and server source code must
be available for analysis, although only the server is
replicated. We also assume that all of the application
state can be determined statically. The replicas are
replicated in several sites and are communicate each
other to reliable FIFO channels.
 Our approach involves the static analysis of the
source code in the client and set the flag field if non-
deterministic variables and system calls are found and it
is sent to server together with client request. The
program analysis also tracks all live variables and their
dependencies that lead to non-deterministic state in the
replica.
 The server replicas are actively replicated. The
client request is passed to all the server replicas through
the time stamp based replication together with the flag
field. It ensures that all the replicas execute the client’s
request in the same order. Server replicas check the flag
field, if it is true, the client request consists of non-
deterministic variables and execution this clearly leads
to non-deterministic state in the replicas. The following
activities are performed while handling non-
determinism in the replicas:

• Server replicas receive the client request and check

the flag field. If it is true, initiate the distributed
coordination method

• Distributed coordination method involves selection
of primary replica based on the time stamp value,
one replica is selected as primary and others are

called secondary replicas. The flag is true; the
request is processed by the primary replica

• Then the state of the primary is propagated to other
replicas connected actively and maintains
consistent state in all the replicas. The replicas send
responses to the client. Using duplicate removal,
only one response is allowed to client

• It is not necessary to connect all the replicas in lock
step synchronizing state. All the server replicas
allowed to be connected in asynchronous mode

• Communication overhead is reduced, because there
is no state transfer between the client and server

• If the flag is false, allow the replicas to execute the
client request. The server replicas send responses
to the client. The same response received from
different replicas leads to duplication of results.
Our frame work (RTC) ensures to send only one
response to the client

 The client-server architecture is implemented using
CORBA (JacORB)[20] and it will act as a vehicle
between client and server. The replicas form a group
called Replica Service Group and it is identified
through the logical address G. Servers (Replicas) are
replicated in several sites and each replica site consist
of a frame work RTC and the server. The server
provides all the service to the client. The RTC is
residing between the client and the server. RTC is
responsible for ensuring the consistency of the replicas.
 A client sends a service request to the RTC. RTC
verifies the flag field of the request and it is forwarded
to their corresponding replica and also the other RTC in
the different replica site. Replica executes the client
request and the response is sent back to RTC. RTC is
responsible to send the server response to the client.
Verification of flag field may rise to two cases. Case 1-
Flag field is true, case 2-Flag field is false. We handle
the non-determinism according to the flag status.

Case 1: Flag field is true; it means the client request
consisting of variables and system calls which may
leads to non deterministic state, if they are executed in
the server. It is necessary to initiate the distributed
coordination method.

Case 2: Flag field is false; it means the client request
does not having any variables and system calls which
may leads to non-deterministic state in the server and
not necessary to invoke the distributed coordination
method. The client request is executed by the server and
the response in sent to the client through RTC.

Source program analysis framework: To perform
program analysis, the application source code is
statically analyzed[19] and finds the variables and system

J. Computer Sci., 5 (1): 11-22, 2009

 14

calls that will lead to non-deterministic state in the
replicas if executed. For static program analysis, we
have used the CC-RIDER[6] the free open source
software.

CC-RIDER: CC-RIDER, is a unique and powerful
code visualization tool, promotes efficiency and
productivity. This enables to understand source code
quickly. CC-RIDER is not merely a class browser-it
provides complete information on functions, variables,
enum values and macros. It is uniquely designed to
work with the tools already using and helps to easily
penetrate the complexity of the source code. Figure 1
shows the two main components of the CC-RIDER
package, the Analyzer and the Visualizer and how they
interact with the project’s source code to facilitate
editing and documenting the code.
 A database is created to store all the details of the
source files like header files, functions, variables,
dependency of the variables and system calls. The
analyzer then processes the source modules and header
files to the database, which contains detailed
interrelationships between all symbols in the source
code. Once a database is built, the Visualizer provides
several ways to explore edit and document the code.

Analyzer

Visualizer

Compiler definitions file
(.DEF)

Project file
(.CPJ)

CC-RIDER
DATABASE

(.CC)

Tree charts
Browsing/Editing Documentation

Modules
(.C.CPP)

Header Files
(.H.HPP)

Compiler
header files
(.H.HPP)

External
editors

Fig. 1: Components of CC-RIDER

CC-RIDER reveals detailed information about the
symbols, where and how they're used along with
complex member inheritance relationships, macro
expansions and template instantiations. The Class
Hierarchy view is a graphical representation of the class
inheritance structure of the program. Function calls and
data references are represented as differently shaped
nodes in the tree. These trees are extremely useful for
examining the structure of C applications. The Project
Statistics window shows statistics about the analyzed
application, for example: the number of source code
lines, number of comments, number of classes, macros,
functions and enums. Using the statistics information,
we have found the source code consist of system calls
and functions which lead to non deterministic state in
the server. A flag field is introduced and set to true if
nondeterministic variables are found in the source code.
Otherwise set the flag field to zero. This flag field is
send to the server together with the client request.

Design details of time stamp based replication
protocol (TSP): To ensure that the states on the
replicas are consistent, it is required that (a) the code
running on the replicas be deterministic and, (b) the
clients’ requests must be sent to the replicas in the same
order. Since multiple clients might send requests to
replicas simultaneously, a total order is needed when
multicasting clients’ requests to the replicas. Total order
means all requests are delivered to the replicas in the
same order even if the senders of the requests are
different. Group communication primitives[4] can be
used to ensure the ordering of the clients’ requests in
active replication. However, replication schemes using
group communication primitives suffer from high
overhead due to the high synchronization cost amongst
the replicas[21]. To reduce the synchronization overhead,
we are using time stamp based replication protocol to
ensure total ordering of client request.
 The TS Protocol, the system is based on the state
machine approach[18]. The TS protocol allows the
replicas to reach an agreement on the order in which the
clients’ requests are processed. In TSP, each client’s
service request is given a unique timestamp. The
replicas carry out the execution of the clients’ requests
in their timestamps’ order. That is, a request with a
smaller timestamp will be executed before a request
with a larger timestamp. TSP assumes that it is rare that
different clients send service requests to the replicas
simultaneously.
 The TS protocol is running a part of RTC Thus,
when a client’s request is received by a RTC; the RTC
sends the request to the RTC’s replica for immediate
execution. Meanwhile, the RTC exchanges information

J. Computer Sci., 5 (1): 11-22, 2009

 15

with the other RTCs to determine whether the request
has been executed in the correct order.
 Each replica keeps a logical clock defined in[11].
The logical clock is an integer counter which increases
monotonically. It is initialized to 0. A timestamp is a
pair (l_clock, ip) where ip is the IP address of a replica
and l_clock is the logical clock value of the replica. The
“>” relation between two timestamps, (l_clock1, ip1)
and (l_clock2, ip2), is defined:

(l_clock1, ip1)> (l_clock2, ip2) ⇔ (l_clock1>l_clock2)

.
∨ ((l_clock1 = l_clock2)

.
∧ (ip1 > ip2))

 The logical clock, l_clock, of a replica is updated
according to the statements S1 and S2 described below:

• S1 when a replica, say r, receives a service request

from a client, the logical clock is updated as below:

 l_clock ← l_clock+1

• S2 when a replica, say r, receives a multicast

request, say m, from another replica:
 let (l_clock, ip) be the timestamp of m, l_clockr

be the logical clock of r and, ipr be IP address of r
 if (l_clock, ip) > (l_clockr, ipr)
 then l_clockr ← l_clock+1
 else l_clockr ← l_clockr+1

 A MsgList on a replica holds received clients’
service requests before the requests are processed by
the replica. A ProcessedList is used to record the
requests that have been executed by the replica. op(m)
denotes the operation that is invoked by the client’s
service request m. l_clock is the logical clock value of
the RTC and ip is the IP address of the RTC. ip is also
used as the ID of the RTC.
 S3 when receive a request, m, from a client:

• m.init_receiver ← ip
• update l_clock according to S1
• m.timestamp ← (l_clock, ip)
• multicast m to all the replicas (including itself) in

the service group

 When a RTC receives a client’s request, say m, the
RTC sets the init_receiver attribute of m to indicate that
the RTC will be responsible for returning the response
to m to the client (line 1 of S3). m is given a timestamp
(line 3 of S3). Since l_clock increases monotonically
(S1 and S2), m’s timestamp is larger than the
timestamps of any other requests on the RTC. Then, m

is multicast to all the other RTCs. So that it can be
executed on all the replicas.
 S4 when receive a multicast request m:

• update l_clock according to S2
• generate an acknowledgment, ack and,

ack.timestamp ← (l_clock, ip)
• send ack to m.init_receiver
• let wrong_set = {msg | (msg.timestamp >

m.timestamp)
.
∧ (msg is in ProcessedList)}

• for each msg such that msg ∈ wrong_set do
• (1) undo op(msg)
• (2) remove msg from ProcessedList and add msg to

MsgList
• end-for
• add m to MsgList and sort MsgList into ascending

order according to the timestamps of the messages
in MsgList

 When a RTC, say r, receives a multicast request
from another RTC, r generates an acknowledgment
message, ack and assigns a timestamp to ack (line 2 of
S4). According to line 1 of S4 and S2, the timestamp
assigned to ack is greater than the timestamps of all the
requests previously received by r. m’s sender is
m.init_receiver (line 4 of S3). ack is sent back to m’s
sender (line 3 of S4). ack helps m’s sender to decide
whether m has been executed in the correct order. Since
all replicas should execute the requests in the order
determined by the timestamps of the requests (i.e., the
requests with smaller timestamps should be executed
before the requests with larger timestamps), r needs to
check whether any requests have been executed in a
wrong order. Set wrong_set contains all the requests
that have been executed in a wrong order (i.e., the
requests whose timestamps are greater than m’s
timestamp and have been executed before m is
received). For all the requests that have been executed
in a wrong order, the operations triggered by these
requests are undone (line 6 of S4) and these requests are
added to MsgList for re-execution (line 7 of S4).After
changes are made to MsgList, the requests in the list are
re-sorted to ensure that they will be delivered to the
replica in ascending timestamp order (line 9 of S4).
 S5 when receive an acknowledgment for
message m:

• m.ack ← m.ack+1
• if (m.ack = total) and (m is in ProcessedList)
• send the result of op(m) to the client that sends m
• end

J. Computer Sci., 5 (1): 11-22, 2009

 16

 m.ack (line 1 of S5) records the number of
acknowledgments received for a multicast request m.
total (line 2 of S5) represents the number of replicas in
a service group. Assume that (a) a RTC, say p1,
multicasts a request m to a RTC, say p2 and, (b) p2
sends multicast messages m’1, …, m’n to p1 before
sending the acknowledgment for m to p1. Since the
communication channels between the replicas have the
FIFO property, when p1 receives m’s acknowledge
from p2, p1 must have received m’1, …, m’n sent by p2.
According to line 4-8 of S4, when p1 receives m’1, …,
m’n, p1 has carried out the operations to ensure that m
and m’1, …, m’n are executed in the correct order on p1.
In other words, if m’i.timestamp < m.timestamp where
1 ≤ i ≤ n, p1 would have scheduled m’i to be processed
before m. According to S1 and S2, it can be seen that if
p2 multicasts a request msg after sending the
acknowledgment for m, then msg’s timestamp must be
greater than m’s acknowledgement’s timestamp.
 Thus, if p1 has received the acknowledgments for
m from all the replicas, p1 knows that it has scheduled
to execute all the requests whose timestamps are less
than m.timestamp before m. Hence, p1 knows that m’s
execution order is correct. This is because clients’
requests are executed in their timestamps’ order. As a
result, if the replica has completed the execution of m,
p1 can return the result of the execution to the client
(line 2-4 of S5).
 S6 when receive the result of op(m) from the
replica:

• cache the result of op(m) and, add m to the end of

ProcessedList
• if ((m.ack = total) and (m.init_receiver = ip)) send

the result of op(m) to the client
 end-if
• if MsgList is not empty
• let fm be the first request in MsgList
• remove fm from MsgList and send fm to the

replica
• end-if

 When the replica completes the processing of a
client’s request, the RTC stores the result of the
processing to cope with possible failure of the RTC that
receives the client’s request. If the RTC is responsible
for sending the result back to the client (i.e.,
m.init_receiver = ip) and the RTC has received the
acknowledgments for the request from all the replicas,
as explained for S5, the result of the processing can be
sent to the client (line 2 of S6). Then, the next message
in MsgList is sent to the replica for processing (line 3-6

of S6). After being processed by the replica, the request
messages are added to the ProcessedList.
 Thus, the list might grow infinitely. To avoid this
problem, the RTCs periodically broadcast a list of
messages that have been acknowledged by all the
RTCs. For a message m, if m and all its predecessors in
ProcessedList have been acknowledged, m and its
predecessors can be removed from ProcessedList.

Design details of distributed coordination method:
The client request together with the flag field is passed
to the RTC of the one replica. The RTC receiving the
client request is responsible to multicast the request to
all the server replicas actively in the group. Let us
consider the client request r1, together with the flag
field. (Client _ req1+Flag+Receiving time of the request
in the RTC, IPc) Where IPc is the IP address of the
client. The time stamp[17] of the incoming request is
calculated using the value of the Time scheduler of the
respective RTC. The Time Scheduler preserve the
incoming time of the last client request (Lr).
 For example, the time stamp value of RTCi is Ti. Ti
= Incoming time of the last request (Lr) ~ Incoming
time of the recent client request. This is the way the
time stamp value is calculated in each RTC and
compared with the time stamp values of other RTCs.
The time stamp value of client request1 for the different
RTCs
 Ti < Ti+1 < T i+2 < T i+3 ….. then Ti is selected. The
time stamp value of the RTC is least, it will act as a
primary RTC. The client request is executed by the
primary RTC-server replica and the value is updated to
the other replicas actively connected.
 As shown in Fig. 2a and b, the replicas update the
value according to primary, thus consistency is
maintained in all the replicas. This method avoids the
time delay raised by sending the state information from
client to server.

The implementation of the system: Requests sent by
clients are included with the flag field. Each client
request has a unique ID. The ID is used for detecting
possible duplicated clients’ requests in the event of
replica failure. Each RTC consists of two modules, i.e.,
a Message Handler (MH) and a Failure Detector (FD)
as shown in Fig. 3. A client application program
interacts with an MH to exchange requests and
responses. The MH is responsible for (a) handling the
request messages received from clients, (b) recording
the IDs of the messages received from clients, (c)
holding copies of the responses to clients’ requests and
sending responses back to the clients (if necessary), (d)
running the TS protocol to interact with the MHs of
other RTCs and, (e) handling failure of the replicas.

J. Computer Sci., 5 (1): 11-22, 2009

 17

 (a) (b)

Fig. 2: (a): Nodes R1, R2 and R3 form a coordination

group; (b): The state of primary replica is
propagated to other replicas

Fig. 3: Middleware for replicated client server

application

The FD is responsible for monitoring the failure of the
other replicas. The FD is implemented as a class � S
failure detector[7]. The MH puts the received clients’
requests in the MsgList. The MH sends the request in
the MsgList to its corresponding replica one at a time.
That is, a request is not sent to the replica until the
response to the previous request in the list is received
from the replica. This ensures that the requests are
executed by the replica in the order determined by the
TS protocol. Only the service requests sent to the same
operation need to be ordered. Requests sent to different

operations do not need to be ordered. Thus, for each
service operation offered by the replicas, the MHs run a
TS protocol thread to multicast and order the requests
sent to the operation. Each operation has its own
MsgList set up on each of the MHs. Thus, requests for
different operations can be sent to the replicas
simultaneously as long as these requests are ordered in
their respective MsgLists.
 When an MH receives a response from its replica,
it stores the response in its buffer in order to handle
possible failure. An MH receives a client’s request
either (a) directly from the client or (b) from another
MH. Case (b) occurs if the client sends the request to a
different MH in the service group; and, consequently,
the request is multicast to all other MHs in the service
group. As a result, each MH also receives requests that
are not directly sent to it by clients. When a response to
a client’s request is received, the MH that receives the
client’s request directly is responsible for returning the
response to the client. After delivering the response to
the client, the MH asks the other RTCs to delete the
response from their buffers. Clients need to handle the
failure of a replica in the sense that the clients need to
connect to another replica in the service group. If a
replica fails before a client sends its request, the failure
is discovered when the client attempts to connect to the
replica’s RTC and fails in its attempt. In this case, the
client will send its request to another replica’s RTC. If
the RTC fails, the client loses the connection to the
RTC. In this case, the client attempts to establish a
connection with another replica’s RTC in the service
group.
 After a client connects to another RTC, the client
resends its request. Re-sending the request is necessary.
This is because the failed RTC might fail before it
multicasts the client’s request to other RTCs. However,
the resending of the request might result in duplicated
request since the failed RTC might have multicast the
client’s request to other RTCs before it fails. To cope
with message duplication problem, when an MH
receives a request, it uses the ID of the request to check
whether the same request has been received previously.
If the request has been received previously and been
processed in the failure recovery phase, the MH does
not multicast the request to the other replicas. In this
case, the response to the request will be sent to the
client when the response is available. The FDs monitor
whether a replica fails by exchanging messages with
each other. When a replica fails (i.e., the replica’s FD
does not respond to other FDs’ messages), the RTCs
enter the recovery phase. During the recovery phase,
the replicas do not accept any client request. In the
recovery phase, the MHs run the consensus protocol

J. Computer Sci., 5 (1): 11-22, 2009

 18

in[4] to agree on the execution order of the clients’
requests that have been received by the MHs. These
requests are marked as having been sorted. When the
responses to these requests become available, the
replicas that receive the requests from the clients
directly can send the responses to the clients
immediately. The recovery phase ends after the MHs
reach agreement on the execution order of the clients’
requests.

Re-execute contaminated non-determinism: Another
technique to maintain consistency among the replicas
by executing all the possibilities of compensation
snippets. The divergence state of the replica is nullified
by executing the compensation snippets. We insert
prepared portions of code that can be executed to re-
generate the contaminated non-determinism, if provided
the pure non-determinism (i.e., the origin of the
contamination) as an input. Each of the replicas are
requested to perform compensation, before processing
the next request, by first setting the pure
nondeterministic part of its state to the received
nondeterministic struct and then re-executing the
inserted code-snippets to regenerate the corresponding
contaminated non-determinism. At the end of this
compensation, each replica is consistent and is ready to
process the current request.
 Compared to transfer-contam (the state transfer
between client to server), the reexec-contam technique
should incur lower communication overheads due to the
reduced amount of nondeterministic state being
piggybacked back and forth; however, the tradeoff is
that run-time latency is increased by the reexection of
the compensation snippets at the server side. Also,
reexec-contam requires more compile-time analysis and
source-code modification to the server-side than
transfer-contam. This is because additional control-flow
passes are needed to isolate the code that encapsulates
the contaminated nondeterministic state. The client-side
code is the same as in transfer-contam. Obviously,
reexection is justified when the compensation overhead
is out-weighed by the communication overhead of the
transfer techniques.

RESULTS

 Communication overhead is reduced in our method
because; there is no state transfer between server replica
and the client. The state transfer over head is directly
proportional to the amount of actual non-determinism
that exists within the application, e.g., if only 5% of the
application is actually nondeterministic, our
compensation overheads should be incurred only for

that portion of the application. After the compensation
is performed in the primary, its state is propagated to all
the actively connected replicas. The total delay is the
combination of actual delay incurred during the
execution of compensation snippets and the delay
involved while propagating the primary state to all
other server replicas.
 We conducted our experiments in the distributed
environment, with homogeneous test-bed nodes. Each
node run the Linux operating system on a 2.8 GHz-64 bit
AMD processor, 256 KB cache and 512MB RAM over
a 100Mbps LAN. In our experiments, we do not load
the nodes with any other running programs other than
RTC, our micro-benchmarks and the native OS utilities
that typically run on each node. Each replica runs on
separate node. We evaluate a number of metrics
(communication overhead, compensation overhead,
server-side processing time and round-trip time) under
fault-free conditions.

Methodology: In our experiments, we vary the
following low-level parameters:

• Replication style:

• Active
• Semi-active replication

• Replication degree: 1, 2, 3 or 4 server replicas
• Number of clients: Single client
• Percentage of contamination. (10, 20, 30 and 40%)

 Tested for the following bench marks:

• Lotus (Base line bench mark)
• Compensation technique
(a) State propagation (Maintain the determinism

among the replicas, the state of the primary replica
is propagated to all the replicas actively
connected.)

(b) Reexection of compensation snippets

Request arrival rate: The clients insert a pause of 0,
0.5, 2, 8 or 32 ms. The lack of a pause (0 ms) represents
bursty client activity.

Micro-benchmarks: We have developed two micro-
benchmarks to compare our various compensation
techniques. The two micro-benchmarks are identical in
many way, they both constitute a two-tier application,
i.e., with a single client and a single replicated server.
Both micro-benchmarks use multi-threading with
homogeneous threads, identical code at each of the
server replicas (except for the fact that each replica

J. Computer Sci., 5 (1): 11-22, 2009

 19

stores a unique, hard-coded server_id SID) and
identical initial state to start out with. Each micro-
benchmark contains an array of 10,000 longs that
represents its state. Pure non-determinism involves
generating a random number and assigning it to one of
the elements in the array. Contaminated state is
subsequently created by performing arithmetic on the
random number and assigning the result to another
element in the array.
 The server state is changed in different ways:
Varying the pure non-determinism (contamination) to
10, 20, 30 and 40%. For each value of pure non-
determinism, we vary the amount of contaminated non-
determinism to 10, 20, 30 and 40%. For each of the
above state combinations, we evaluate each of our
compensation techniques i.e., execution of propagation
snippets and reexec-contamination and comparing with
the existing technique. This is clearly depicted in the
graphs. Note that we can compare all of the techniques
for a given x% of non-determinism. The Lotus case
simply serves as a baseline for performance
comparison. We also vary other parameters, such as the
number of replicas (1-4), amount of multithreading (2-6
threads) and amount of state (100, 1000 and 10,000
longs).

Empirical observations: We observe the effects on the
round-trip time when increasing the amount of
contaminated non-determinism and increase the number
of replicas within the micro-benchmark. The amount of
contamination is gradually increased by 10, 20, 30 and
40% and tested for all micro benchmarks. Second the
non-determinism for these results is fixed at 30% and
the number of replica is gradually increased. Note that
the algorithm has a significant amount of processing
time. This is readily visible when comparing these
results with propagation technique and re-execution of
compensation technique.

Varying amount of contamination: Figure 4 shows
the effect on the roundtrip time of increasing the
amount of contaminated non-determinism within the
micro-benchmark. The amount of pure non-
determinism for these results is varied based on the
percentage of contamination and 3 replicas are used.
Because pure nondeterministic state is handled
identically across all of our various techniques, the
graph demonstrates how each technique handles an
increase in contaminated state.

 The processing time increases slightly across all
techniques because additional work is done due to the
increased amount of contaminated state. However, in

our approach the processing time is relatively small
compared to the communication overhead of passing
the entire state back and forth of client to server. We
eliminate the communication overhead by avoiding the
state transfer between client and servers and allow the
servers to communicate with each others through
distributed coordination method.
 The most interesting observation here is due to the
fact that communication overhead does not dominate
processing time. For instance, with the following
percentage of ex. 10, 20 and 30% contamination, our
approach shows the lower overhead comparing to
transfer-ckpt by transferring the state of any one replica
to other replicas actively connected by invoking
distributed coordination method. Transfer-ckpt appears
to have higher overheads because of transferring the
state between client and servers. Reexec-contam comes
under next level of overheads. This is because the
increased processing time outweighs the
communication overhead for lower amounts of
contaminated states.

Varying degree of replication: As shown in the Fig. 5,
the amount of pure and contaminated non-determinism
is constant, but the number of replicas is varied. For
every additional replica, the communication load
increases because all of the replicas send their
nondeterministic state, along with their responses, to
the client in case of transfer-ckpt. But in the method we
suggested, the communication over head is only due to
the propagation of the state of one primary replica to
other replicas.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Trans Ckpt Reexec Propa Lotus

R
ou

nd
 tr

ip
-t

im
e

(M
ic

ro
 s

ec
)

Contamination 10%

Contamination 20%

Contamination 30%

Contamination 40%

Fig. 4: Benchmark of RTT for increasing percentage of

contamination

J. Computer Sci., 5 (1): 11-22, 2009

 20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Trans Ckpt Reexec Propa Lotus

R
ou

nd
 tr

ip
-t

im
e

(M
ic

ro
 s

ec
)

1 Replica
2 Replica

3 Replica
4 Replica

Fig. 5: Benchmark of RTT for increasing number of

Replicas

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

10% 20% 30% 40% 50%
Percentage of contamination

R
ou

nd
 tr

ip
-t

im
e

(M
ic

ro
 s

ec
)

Propagation of states among replicas

Re-exec contamination

Fig. 6: Cross-over between the propagation of state

and the reexec-contam technique for increasing
contamination percentage

 We can observe from the Fig. 6, the Cross-over
performance between the propagation of states to all the
replicas and re-execution of snippets in each replica.
Our technique propagation of state is dominated in all
aspects when comparing to re-execution of snippets.

DISCUSSION

 Existing approach for handling non-determinism is
mentioned as follows. Joseph Slember and Priya

Narasimhan[14] perform the static analyzing of source
code and list the variables and system calls (MEAD[12]
approach) which lead to nondeterministic state in the
server replicas. These variables and system calls are
sent to the servers as a client request. By executing the
client request, the server replica goes to non-
deterministic state. The state of any one of the server
replica is piggybacked to client and it is send to all the
actively connected replicas through group
communication protocol. The replicas execute the
dynamic snippets in order to reduce the divergence
raised with the received replica state. After the
execution of snippets the state of all replicas are
identical and consistent (Deterministic state). In this
method the snapshot (State information) of one replica
is taken and it is spread to all the replicas. Based on the
state information of one replica, all the replicas adjust
their state.
 The delay which the snapshot has taken in one
server and it is piggybacked to the client, (transfer ckpt,
transfer contam) from the client it is sent to all the
servers. The delay is more when the percentage of
contamination is more, because it will take more time to
transfer the contamination state from server to client
and from client to all the servers. Reexection of
dynamic snippets are also used when the transfer of
checkpoint, transfer of contamination dominate more
communication delay. Gaifman[9] targets non-
determinism that arises in concurrent programs due to
environmental interaction. This technique involves
backup replicas lagging behind the primary to ensure
consistency. The technique is transparent to the user,
but the application is actually modified by
transformations that handle multithreading.
 The Multithreaded Deterministic Scheduling
Algorithm[10] aims to handle multithreading
transparently by providing internal and external queues
that together enforce consistency. The external queue
contains a sequence of ordered messages received via
multicast, while each internal queue focuses on thread
dispatching, with an internal queue for each process
that spawns threads. Basile[2] addresses multithreading
using a preemptive deterministic scheduler for active
replication. The approach uses mutexes between
threads and the execution is split into several rounds.
Because the mutexes are known at each round, a
deterministic schedule can be created. This approach
does not require any communication between replicas.
Hypervisor-based fault tolerance[5] involves a virtual
machine that ensures that all non deterministic data is
consistent across the replicas.
 Delta-4 XPA’s semi-active replication[1] addresses
non-determinism through a hybrid replication style that

J. Computer Sci., 5 (1): 11-22, 2009

 21

employs primary-backup replication for all non-
deterministic operations and active replication for all
other operations. In SCEPTRE 2[3], non-determinism
arises from preemptive scheduling. Semi-active
replication is used, with deterministic behavior
enforced through the transmission of messages from a
coordination entity to backup replicas for every non-
deterministic decision of the primaries. Similarly,
Wolf’s piecewise deterministic approach handle non-
determinism by having a primary replica that actually
executes all nondeterministic events, with the results
being propagated to the backups at an observable,
deterministic event.
 TCP tapping[16] captures and forwards non-
deterministic execution information from a primary to
other replicas. The backup replicas gain information
from the primary after it has done the work. The
approach is transparent, but involves setting up routing
tables to snoop on the client-to-server TCP stream, with
the aim of extracting the primary’s non-deterministic
output. The solution involves the interception of I/O
streams of replicas and the appropriate handling of
input and output streams. In this study a new attempt is
proposed to reduce the communication delay and
improve the quality of service in replicated middleware
applications.

CONCLUSION

 We present RTC; a new approach, handling non-
determinism in distributed, replicated applications using
distributed coordination method by exploiting static
program analysis on the application’s source code and
identifies the sources of non-determinism within the
application. We describe two different techniques; one
that involves the state of the primary replica is
propagated to all other server replicas. Another that
involves reexection of contaminated non-deterministic
code. We can support even the active replication of
non-deterministic applications in this manner. Our
empirical evaluation involves various performance-
sensitive techniques by varying amount of
contamination and increasing number of replicas for
distributed middle-ware micro-benchmarks that contain
various sources (multi-threading, system calls and
contamination) of non-determinism. We note that our
current implementations of the propagation of state,
multi-tier applications and nested end-to-end requests
introduce increased complexity in handling non-
determinism, especially with actively replicated tiers.
 The propagation of non-deterministic state is no
longer contained at the client or at any one tier. We
need to handle any non-deterministic state or execution

that propagates to other tiers. This is especially evident
when a failure occurs during an end-to-end request,
resulting in some of the replicas at every tier becoming
inconsistent. Multiple clients are complicate in back-
and-forth compensation technique. But the method
described in this study has no complication because
there is no transfer of back-and-forth compensation of
non-determinism and we would then require
coordination across clients or some alternative way of
ensuring consistency across multiple clients. Both
multi-tier and multi-client fault-tolerant architectures
are part of our ongoing research on the scalable
compensation of non-determinism, but remain outside
the scope of this study.

REFERENCES

1. Barrett, P., P. Bond, A. Hilborne, L. Rodrigues,

D. Seaton, N. Speirs and P. Verissimo, 1990. The
delta-4 Extra Performance Architecture (XPA).
Proceeding of the Symposium on Fault Tolerant
Computing, June 26-28, IEEE Xplore, Newcastle,
UK., pp: 481-488. DOI: 10.1109/FTCS.1990.89386

2. Basile, C., Z. Kalbarczyk and R. Iyer, 2003. A
preemptive deterministic scheduling algorithm for
multithreaded replicas. Proceeding of the
International Conference on Dependable Systems and
Networks, June 22-25, IEEE Xplore, San Francisco,
CA., pp: 149-158.

 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
1209926

3. Bestaoui, S., 1995. One solution for the non-
determinism problem in the SCEPTRE2 fault
tolerance technique. Proceeding of the 7th Euro
Micro Workshop on Real-Time Systems, June 14-
16, IEEE Xplore, Odense, Denmark, pp: 352-358.
DOI: 10.1109/EMWRTS.1995.514332

4. Birman, K.P., 1996. Building Secure and Reliable
Network Applications. 1st Edn., Manning
Publications Co., USA, ISBN: 10:884777295, pp: 591.

5. Bressoud, T.C. and F.B. Schneider, 1996. Hyper
visor-based fault-tolerance. ACM Trans. Comput.
Syst., 14: 80-107.

 http://www.cs.cornell.edu/fbs/publications/HyperF
Tol.pdf

6. Westernwares Product Version 6.2. Introduction to
CC-Rider. the source code analyzing tool kit.
http://www.westernwares.com/info/info.htm

7. Chandra, T.D. and S. Toueg, 1996. Unreliable
failure detectors for reliable distributed systems. J.
ACM., 43: 225-267.

 http://portal.acm.org/citation.cfm?id=226647

J. Computer Sci., 5 (1): 11-22, 2009

 22

8. Frolund, S. and R. Guerraoui, 2000. X-ability: A
theory of replication. Proceedings of the 9th
Annual ACM Symposium on Principles of
Distributed Computing, June 16-19, ACM
Portland, Oregon, United States, pp: 229-237.
http://portal.acm.org/citation.cfm?id=343623

9. Gaifman, H., M.J. Maher and E. Shapiro, 1991.
Replay, recovery, replication and snapshots of
nondeterministic concurrent programs. Proceedings
of the 10th annual ACM symposium on Principles
of Distributed Computing, Aug. 19-21, ACM
Montreal, Canada, pp: 241-255.
http://portal.acm.org/citation.cfm?id=112600.112621

10. Jimenez-Peris, R. , M. Patino-Martinez and S. Arevalo,
2000. Deterministic scheduling for transactional
multithreaded replicas. Proceeding of the 19th
IEEE Symposium on Reliable Distributed Systems,
Oct. 16-18, IEEE Xplore, Nurnberg, Germany,
pp: 164-173. DOI: 10.1109/RELDI.2000. 885404

11. Lamport, L., 1978. Time, clocks and the ordering of
events in a distributed system. Commun. ACM,
21: 558-565.

 http://portal.acm.org/citation.cfm?id=359563
12. Narasimhan, P., T.A. Dumitras, S.M. Pertet,

C.F. Reverte, J.G. Slember and D. Srivastava, 2005.
MEAD: Support for real-time fault-tolerant CORBA.
Concurrenc. Comput. Pract. Exp., 17: 1527-1545.
http://portal.acm.org/citation.cfm?id=1085001

13. Narasimhan, P., L.E. Moser and P.M. Melliar-
Smith, 1999. Enforcing determinism for the
consistent replication of multithreaded CORBA
applications. Proceeding of the 18th Symposium on
Reliable Distributed Systems, Oct. 19-22, IEEE
Xplore, Lausanne, Switzerland, pp: 263-273. DOI:
10.1109/RELDIS.1999.805102

14. Slember, J.G. and P. Narasimhan, 2006. Living
with Non-determinism in replicated Middleware
systems. Proceeding of the ACM/IFIP Conference
on Middleware, Nov. 27-Dec. 1, Melbourne,
Australia, pp: 81-100.

 http://www.pdl.cmu.edu/PDL-FTP/stray/slember-
middle06.pdf

15. Object Management Group, 2000. Fault Tolerant
CORBA Specification, V1.0.
ftp://ftp.omg.org/pub/docs/ptc/00-04-04.pdf

16. Orgiyan, M. and C. Fetzer, 2001. Tapping TCP
streams. Proceeding of the IEEE International
Symposium on Network Computing and
Applications, Oct. 8-10, IEEE Xplore, Cambridge,
MA., USA., pp: 278-289. DOI:
10.1109/NCA.2001.962544

17. Xinfeng, Y., 2007. Providing reliable web services
through active replication. Proceeding of the 6th
IEEE/ACIS International Conference on Computer
and Information Science, July 11-13, IEEE Computer
Society, Washington DC., USA., pp: 1111-1116.
DOI: 10.1109/ICIS.2007.151

18. Schneider, F.B., 1990. Implementing fault-tolerant
services using the state machine approach: A
tutorial. ACM Comput. Survey, 22: 299-319.
http://DOI.acm.org/10.1145/98163.98167

19. Slember, J.G. and P. Narasimhan, 2004. Exploiting
program analysis to identify and sanitize non-
determinism in fault-tolerant, replicated systems.
Proceeding of the Symposium on Reliable
Distributed Systems, Oct. 18-20, Florianopolis,
Brazil, pp: 251-263. DOI:
10.1109/RELDIS.2004.1353026

20. Slember, J.G. and P. Narasimhan, 2006. Non-
determinism in ORB: The perception and the
reality. Proceeding of the 17th International
Conference on Database and Expert Systems
Applications, Sep. 4-8, Krakow, pp: 379-384.
http://portal.acm.org/citation.cfm?id=1155785

21. Ye, X. and Y. Shen, 2005. A middleware for replicated
Web services. Proceedings of the IEEE International
Conference on Web Services, July 11-15, IEEE
Computer Society, Washington DC., USA., pp: 631-638.
http://portal.acm.org/citation.cfm?id=1090954.109
2072&coll=&dl=

