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Abstract: Problem statement: The algebraic expression of the Advanced Encryption Standard (AES) 
RIJNDAEL S-box involved only 9 terms. The selected mapping for RIJNDAEL S-box has a simple 
algebraic expression. This enables algebraic manipulations which can be used to mount interpolation 
attack. Approach: The interpolation attack was introduced as a cryptanalytic attack against block 
ciphers. This attack is useful for cryptanalysis using simple algebraic functions as S-boxes. Results: In 
this study, we presented an improved AES S-box with good properties to improve the complexity of 
AES S-box algebraic expression with terms increasing to 255. Conclusion: The improved S-box is 
resistant against interpolation attack. We can develop the derivatives of interpolation attack using the 
estimations of S-box with less nonlinearity. 
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INTRODUCTION 

 
 The interpolation attack is a technique for attacking 
block ciphers built from simple algebraic functions. A 
block cipher algorithm may not include any algebraic 
property that can be efficiently distinguishable, since an 
interpolation attack can be applied to such a block 
cipher which leads to the leakage of information about 
the secret key.  
 This mathematical property has effective 
implications using a block cipher with a fixed secret 
key. If the ciphertext is described as a polynomial -with 
unknown coefficients-of the plaintext, and if the degree 
of this polynomial is sufficiently low, then a limited 
number of plaintext-ciphertext pairs is capable to 
completely determine the encryption function[1]. 
Constructing this polynomial will not immediately yield 
the key. Actually this is a polynomial that emulates the 
encryption function. It produces valid ciphertexts from 
given plaintexts.  
 It can be applied by constructing an implicit 
polynomial expression involving parts of the plaintext 
and the ciphertext. 
 Now, we can check the polynomial against another 
value that was not used in the construction to test it. If 
the polynomial produces the correct result, then we 
have guessed the key bits. This allows the cryptanalyst 
to encrypt and decrypt data for the unknown key- 
without doing any key-recovery. 

 In this article, we first describe the main parts of 
AES (RIJNDAEL) which consists of the individual 
transformations and AES S-box. We will introduce the 
interpolation attack with considering of the points of 
weakness and strength in AES S-box. Finally, we will 
discuss the manner of doing interpolation attack using 
the different representations of AES S-box. 
 

MATERIALS AND METHODS 
 
AES cryptosystem (RIJNDAEL cipher): The 
RIJNDAEL cipher, designed by Daemen and Rijmen[2] 
in 1998, is a successor of SQUARE. It was submitted to 
the US National Institute of Standards and Technology 
(NIST) in response to an open call for 128 bit block 
ciphers. It was, together with 14 other candidates, 
extensively evaluated during two years, before NIST 
announced in 2000 that RIJNDAEL would replace DES 
and become the new AES. Just as its predecessor 
SQUARE, RIJNDAEL was specifically designed to 
resist differential and linear cryptanalysis. 
 In RIJNDAEL cipher, the individual 
transformations SubBytes, ShiftRows, MixColumns, 
and AddRoundKey process the state[3]. The SubBytes 
transformation is a non-linear byte substitution that 
operates independently on each byte of the state using a 
substitution table (S-box). AES S-box is presented in 
hexadecimal form in Fig. 1.  
 Actually, S-box is non-linear substitution table 
which used in several byte substitution transformations 
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and in the Key Expansion routine to perform a one-for-
one substitution of a byte value. This S-box is invertible 
and constructed by composing two transformations:  
 
• Take the multiplicative inverse in the finite field 

GF(28) 
• Apply the following affine transformation over 

GF(2): 
 

i i (i 4) mod8 (i 5) mod 8 (i 6) mod 8 (i 7) mod8 ib b b b b b c+ + + +′ = ⊕ ⊕ ⊕ ⊕ ⊕   (1) 

 
for 0 i 8≤ ≤ , where bi and cj are the ith bit of the b and c, 
respectively. 
 In Matrix form, the affine transformation element 
of the S-box can be written as: 
 

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

b b1 0 0 0 1 1 1 1 1

b b1 1 0 0 0 1 1 1 1

b b1 1 1 0 0 0 1 1 0

b b1 1 1 1 0 0 0 1 0

b b1 1 1 1 1 0 0 0 0

b b0 1 1 1 1 1 0 0 1

b b0 0 1 1 1 1 1 0 1

b b0 0 0 1 1 1 1 1 0
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     ′
     ′     = +     ′
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 The design principle for the RIJNDAEL S-box is 
influenced by linear and differential cryptanalysis and 
also interpolation attacks. The designers considered 
these criteria: 
 
• Invertibility 
• Minimization of the largest non-trivial correlation 

between linear combinations of input bits and 
linear combination of output bits 

• Minimization of the largest non-trivial value in the 
XOR table 

• Complexity of its algebraic expression in GF(28) 
• Simplicity of description 
 
 The affine transformation (1) does not affect the 
properties with respect to the first 3 criteria, but if 
properly chosen, allows the S-box to satisfy the 4rth 
criterion. 
 We have chosen an affine mapping which has a 
very simple algebraic expression. It can be seen as 
modular polynomial multiplication followed by an 
addition:  
 

7 6 2

7 6 5 4 8

b(x) (x x x x) a(x)

(x x x x 1)mod x 1

= + + + +
+ + + + +

 

 
 
Fig. 1: S-box: Substitution values for the byte xy (in 

hexadecimal format) 
 
 The modulus has been chosen as the simplest 
modulus possible. The multiplication polynomial is 
selected from the set of polynomials coprime to 
themodulus as the one with the simplest description. 
The constant is selected such that S-box has no fixed 
points (S box(a) a)− = and no “opposite fixed points” 

(S box(a) a)− = . 
 
Interpolation attack: The interpolation attacks depend 
only on the number of S-boxes and number of rounds in 
the cipher. This attack is independent of the sizes of the 
S-boxes. 
 Based on the following theorem, Jakobsen and 
Knudsen[4] introduced the interpolation attack in 1997.  
 
Theorem 1: Let R be a field. Given 2n elements 
x1,x2,…,xn∈R, y1,y2,…,yn∈R, where the xis are distinct. 
Define:  
 

n
j

i
i 1 1 j n, j i i j

x x
f (x) y

x x= ≤ ≤ ≠

−
=

−∑ ∏  (2) 

 
 Then f(x) is the only polynomial over R of degree 
at most n-1 such that f(xj) = yj  for 1≤i≤n. This equation 
is known as the Lagrange interpolation formula. 
 Based on this theorem, in the cipher algorithm, 
every ciphertext is describable as polynomial inclusive 
of plaintext, which its coefficients are the specific 
functions of the key. It means that the ciphertext can be 
interpolated by a polynomial in the plaintext and key 
variables, i.e., by Lagrange interpolation. 
 If the message length be m, and the describer 
polynomial of the cipher consists of nonzero 
coefficients {n | n<2m}, then the interpolation attack is 
done, with having n plaintexts and corresponding 
ciphertexts.  
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 Actually, if the number of terms in polynomial be 
less, then we can get the coefficients of polynomial, 
instead of the key variables. If the number of nonzero 
coefficients is n, then we can form an equations system 
by n equations and n unknowns, with having n 
plaintexts and corresponding ciphertexts. With solving 
of such system, we will find the coefficients and we 
will have a specific polynomial from input to output. 
Using this polynomial, we can recover the ciphertext 
without the knowledge about key.  
 
The performing of interpolation attack over AES S-
box: Using the interpolation attack, SHARK 
cryptosystem[5] was analyzed by Knudsen and 
Jakobsen[4]. This cryptosystem was designed by AES 
designers, whereas they had enough information about 
the interpolation attack. But this is not certain reason 
for resistance of SHARK against interpolation attack. In 
this cryptosystem, a carefully chosen S-box imposes 
most number of terms on the equations. Since in the 
polynomial representation of S-box, the all possible 
terms will be with hamming weights 7.With forming of 
the equation for one round cipher, we have:  
 

1 2S(x k ) k y+ + =                                                    (3) 

 
x = Plaintext 
y = Cipher text  
          
which x and y are known but, k1and k2 are unknowns. 
 Using extension (3), we can find a polynomial in 
terms of x with 255 terms of degree 254, such that all 
possible powers of x appear in it. So, the interpolation 
attack is not possible. Since in the AES, S-box equation 
has the all possible terms with hamming weights 7, it 
can be seen that all terms appear in the representation of 
other rounds and the number of terms cannot be less 
than 2m, so the interpolation attack is impossible even 
on one round. 
 Now, we can express this question: Is interpolation 
attack possible using S-box estimation? As an example, 
if we form the describer polynomial of one round using 
S85(x) estimation, then we will have 31 terms with 
nonzero coefficients instead of 255 terms, namely, we 
can get the coefficients with using 31 suitable texts 
instead of using 255 texts. Since the probability of truth 
for every pair is: 
 
1 86

( )
3 255

≅  

 
 We thus need (31×3 = 93) pairs of plaintext and 
ciphertext for solving of this probable equation, which 

is less than 255. The computational complexity of this 
attack is more than exhaustive key search attack, so it is 
not successful. 
 

RESULTS AND DISCUSSION 
 
 Jakobsen and Knudsen presented interpolation 
attacks in[4] as a reaction to ciphers using algebraically 
constructed S-Boxes such as those proposed by 
Nyberg[6]. In fact, interpolation attacks were the first 
demonstration of successful polynomial-based algebraic 
attacks against block ciphers. Interpolation attacks work 
by expressing the relationship between the plaintext and 
ciphertext for a fixed key as either one or as a vector of 
polynomials.  
If the degree of these polynomials is low enough, the 
coefficients of the polynomials can be interpolated from 
a number of plaintext/ciphertext pairs. A key-dependent 
equivalent of the encryption or the decryption algorithm 
has then been determined. In[4] upper bounds on the 
data complexity-the number of required pairs for 
known-plaintext interpolation attacks-are given for 
selected examples. In general, this number increases 
exponentially with the degree of the polynomial 
function describing the S-Box, the number of rounds 
and the number of elements in the internal state.  
 Since AES provides “full diffusion” after only two 
rounds, so it can be considered resistant against the 
interpolation attack. 
 

CONCLUSION 
 
 We described the interpolation attack against AES 
cryptosystem which utilized from algebraic properties 
of AES. We also introduced the version of AES S-box 
which was resistant against interpolation attack. Finally 
we illustrated the new directions for the future research. 
We can develop the derivatives of interpolation attack 
using the estimations of S-box with less nonlinearity. 
Also, one can speed up the attacks using the Newton 
interpolation instead of Lagrange interpolation.   
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