
Journal of Computer Science 5 (12): 1009-1019, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Nor Fazlida Mohd Sani, Faculty of Computer Science and Information Technology,
 University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia,
 Tel: +603-89466550 Fax: +603-89466577

1009

Implementation of CONCEIVER++: An Object-Oriented Program

Understanding System

1Nor Fazlida Mohd Sani, 2Abdullah Mohd. Zin and 2Sufian Idris
1Faculty of Computer Science and Information Technology,

2Faculty of Science and Information Technology,
University Kebangsaan Malaysia, Malaysia

Abstract: Problem statement: Understanding on computer program is a complex cognitive activity.
It is ability and also a difficult task especially for novice programmer. The object-oriented languages
has widely used in education and industry recently. In programming it is important to have such
software which can aid programmers or students to code the program. But, available program
understanding systems using the plan based approach usually are developed for non-object-oriented
programming languages. Reviewed from the available system also showed that none of the plan
formalisms used is for an object-oriented language. Specifically, problem arises when the existing
system is not usable for teaching programming purposes. Program understanding system with plan
for object-oriented does not exist was the main reason why this research is being carried out.
Approach: Method used on developed the program understanding system named CONCEIVER++ is
Unified Approach (UA). The process involved from UA for developing and testing the system is
iterative development and continuous testing. The process must be iterate and reiterate until satisfied
with the system. In order to test the quality assurance of the system is by choosing the black box
testing strategies. Results: The object-oriented program understanding system has been successfully
implemented. The implementation is tested with an example of Java programming code. The binary
search tree for control flow graph and linked list for plan has been generated. Results of understanding
the meaning or semantic of the program codes also has been produced. The black box testing had
shows that all statements of line of code of the example program have been recognized and the
correctness output has been checked. Conclusion: The understanding module of CONCEIVER++,
which are code/CFG processor, plan processor and recognition engine has been tested. All line of
codes (or nodes) has been recognized and got correct meaning using the developed module.

Key words: Program understanding, implementation, plan base, Control Flow Graph (CFG),

meaning, testing

INTRODUCTION

 Program understanding is an activity that enables
to know the meaning or semantic of programming
codes. It is an important activity in maintaining a
system, debugging a programming code and as one of
activity in reverse engineering process. It also is the
intermediate skill to programmers, suggested by
Romero[1]. Understanding on computer program is a
complex cognitive activity. Therefore, realization of a
system is very beneficial to novice and experience
programmers. Those who involve in programming
activities which is difficult are the programmers.
Knowledge and experienced of programmer in

programming covers writing capability, reading and
understanding of a program code. Understanding of a
program code is ability and also a difficult task
especially for novice programmer. The important skill
for any programmers to be developed is the ability to
read an available program code which being coded by
other programmers[2].
 Research in program understanding is still being
study until now and the common approach used for
supporting program understanding is with completing
the program code through abstraction[1]. The purpose of
this study is to present the implementation of object-
oriented program understanding system,
CONCEIVER++ which is using the abstraction

J. Computer Sci., 5 (12): 1009-1019, 2009

1010

approach. In this study will explain on the approach and
present the detail processes involved in producing the
meaning of statements.

Related works:
Abstraction approach: Abstraction is understanding
approach directly on the source code or system that to
be comprehend. Intermediate representation is always
use with abstraction for the purpose of recognition of
programming code. In abstraction approach, plan based
also used to save all knowledge’s plan for that
programs domain. A recognition plan algorithm will be
used to match the intermediate parts with plan from the
plan based to give understanding or meaning for certain
program codes. The advantages of this approach are
easier to organize user-defined classes or objects and
also to differentiate objects names with methods names.
This is important to organize definitions so that the
related information can be grouped together in common
locations[3]. Furthermore, abstraction can help to
reduced complexity and minimizing the numbers of
details in certain program codes[4], also helps a lot in
the process of understanding purposes. Another
concrete reasons using abstraction is the reliability of
the understanding or inference result is true based on
the source program[5]. Most of the program
understanding algorithm with this approach were using
library of programming plan with multi-heuristics
strategies to find the existence of plans in the source
program. This statement has emphasized in former
researches such as in[6-9].

Plan base and formalism: Plan base is the important
component for any program understanding system,
usually with abstraction approach. This is because of
the plan base is the library of inference knowledge for
each program code that will be identified by the system.
The terms ‘plan’ for program analysis research
literature, is used for referring to different subjects such
as: (1) Abstract representation for fragment of code; (2)
Programming heuristics; (3) Programming abstraction
concept; and (4) Knowledge to identify programming
concept[10].
 According to Wills[9], an experienced programmer is
keep on redeveloping lots of hierarchy for program design
by recognizing from the data structure and algorithm
which is commonly used and typically know how to do
the higher level abstraction. The common computerize
structure that being used called as cliché. Cliché is a
frequently appears pattern in program codes, such as
algorithm, data structure or pattern specific domains. Plan
is the representation of cliché. The objective of plan
recognition is identifying cliché by using the plan. There

were three approach of plan recognition, which is top-
down, bottom-up and hybrid which combining the top-
down and bottom-up approach[11].
 Plan that use for the understanding purposes must
be formatted into a standard format. The standard form
is vital so the derived plan formed in the same format
and easily accessed using specified recognition
algorithm. Plan formalism is the language design that
being used for creating plans. This formalism must be
designed to ensure each plan that will be created is in
even formed. There are several plan formalisms used by
previous researchers. One of is a Plan Calculus in
Programmer’s Apprentice system is for Lisp
language[12]. There was a plan formalism to recognize
COBOL programming language by[13]. This formalism
is use in development of program understanding system
named concept recognizer.
 Review from the available system had shows that
none of the plan formalisms used is for an object-
oriented language. Therefore in this study, based on the
Kozaczynski’s plan formalism, specific plan formalism
for object-oriented language will be developed by
relating the results of understanding and debugging.
The chosen of Kozaczynski’s plan formalism is because
of the capability for representing knowledge of
programming code with two concepts, language and
abstract concepts. For debugging purposes, each
common error will be detected driven by the absence of
matched plan for certain code statement, results from
the recognition or understanding engine. The results of
recognition will be displays in details for every node of
control flow graph which represent the recognized
programming codes. The control flow graph is the
intermediate representation of programming codes that
is use in CONCEIVER++. The detailed explanation of
control flow graph has been presented in Sani et al.[14].
 Plan base for CONCEIVER++ stored all plans that
being retrieved by recognition engine. Plans in
CONCEIVER++ contain knowledge for understanding
and debugging. All the available system which use
plan-based recognition approach, not integrate the
debugging knowledge together with understanding
knowledge in their plan formalism, except for PAT[10]
and GRASPR[12]. Plan for PAT system has a knowledge
to identify bugs that relates to the program code. PAT’s
plan represents the logical of algorithm, while plan
developed in CONCEIVER++ represents the common
form of statement of code that being used several times.
Near-miss cliché recognition in GRASPR involves the
use of clichés library for detecting instance of cliché in
program using graph parsing algorithm, which differ
than in CONCEIVER++ implementation, plan
recognition algorithm.

J. Computer Sci., 5 (12): 1009-1019, 2009

1011

Automated program understanding: Lots of
researchers’ groups have focused their efforts in
developing tool and technique for automating program
understanding. Different program understanding
systems are tends to apply different representative
framework and heuristics in recognition algorithm.
Example, Concept Recognizer by Kozaczynski and
Ning[8] used top-down library based approach for plan
recognition. This system recognizing plan using
heuristic approach, specific rules and constrains
instruction using representation of component and
constraint of plan. Source code will be transformed into
abstract syntax tree. The plan recognition algorithm
starts by collecting all patterns from the library, then
matching all components to the program, come out with
a set of potential plans with all components matched.
After that, the constraint part of the set of plans will be
implemented. Limpiyakorn[15] says that plan
representation in Concept Recognizer is simple and
unambiguous, also algorithm used is successful to
recognize plan in COBOL programs.
 Representation of abstraction emitting information
that not needed such as syntax tree omits format
variations, while control flow graph omitting variation
for control statements. Representation replacing codes
with abstract model such as event for Quicili[16,17]
represents syntax tree entity. Abstraction was needed
for recognition because it will simplify searching area
for program representation. In addition, abstract
representations have multiple use if there any missing
information. Syntax tree and control flow graph will
retain the same execution.

Learning of programming: The learning of
programming aspect is stressed out since research focus
is concentrate on learning of programming towards
students in university level. In learning of
programming, one of the most problem faces by
students in writing program codes is programming
errors. The students always feel unmotivated on trying
to read and understand the meaning of the fragment of
program code in order to correct the error. That is why
we developed a program understanding system which
can help the students. Since the study is on the object-
oriented language, some explanation on object-oriented
languages will be discussed here with several
researches in program understanding that use the
object-oriented concept or language. Object orientation
is not only programming paradigm. Hoffman[18] has his
opinion that it is a design paradigm. Hoffman also said
that relationship between components can be designed
with scattered, non-procedure. But at the same time, the
low level aspects of object-oriented language are the
same as the procedural languages.

 The use of object-oriented paradigm has showed
the achievement’s results in software engineering such
as maintenance and the usability is easy to achieve. It is
relates with encapsulation, inheritance and
polymorphism that includes in the object-oriented
paradigm. Because of these concepts, object-oriented
codes have been used widely and with variety in
implementation the same task. Lieberherr and
Holland[19] explained that the good object-oriented
programming styles and techniques are by writing small
candidate functions. Therefore, it produces a system
that contains numbers of several small modules.
 The available program understanding systems
using the plan based approach usually are developed for
non-object-oriented programming languages, there are
such as Programmer’s Apprentice[12], GRASPR[9],
PROUST[20], Talus[21], PAT[10], CONCEIVER[22] and
BUG-DOCTOR[23]. But the object-oriented languages
has widely used in education and industry recently.
Obviously in local and foreign countries, this new
paradigm programming language has been used in
teaching of computer programming and has been
proved by Arif[24], Bruhn and Burton[25], Gerailt[26] and
Madden and Chambers[27]. Therefore, an object-
oriented program understanding system is needed
specifically for teaching of programming.
 Most of the available programs understanding
systems are specially developed for maintaining a
system in an organization. Problem arises when the
existing system is not usable for teaching programming
purposes. By the fact that it can help students on
learning programming, reading and understanding
certain program codes. Currently, object-oriented
programming languages have been widely used to learn
programming at many universities, local or abroad.
Program understanding system with plan for object-
oriented does not exist was the main reason why this
research is being carried out. The main purpose of our
study is to develop a program understanding system for
object-oriented language that is Java using plan base
approach. Knowledge relates to programming codes
will be parsed and represented or transformed into
intermediate representation and then the information
about program will be kept as programming plan in the
plan base.
 Kutti et al.[28] have said that the simplicity and
versatile nature of Java has made it popular as a
general-purpose language within the Computer Science
community. Apart from that Java also has a deviation
such as the case of declaring reference pointers. The
declaration syntax of a reference pointer looks like
declaring a normal variable. According to Kutti et al.[28]
again, to interpret the meaning is depends on the

J. Computer Sci., 5 (12): 1009-1019, 2009

1012

intuition of the programmers. The meaning will become
wrong if the programmers are the novices. Even the
experienced also will make the same mistake. For
learning of programming purposes, the program
understanding system can helps the programmers to
identified the correct meaning for each statements of
object-oriented programming codes especially Java.
This is also the importance of developing one program
understanding system which aid in the learning process.

Plan formalism for conceiver++: The plan formalism
is based on the plan formalism by Al-Omari[22],
Kozaczynski et al.[13] and Ning[10]. CONCEIVER++
adds the debugging function in the plan formalism and
modifies the plan formalism for object-oriented
language. One of the program understanding systems
that has the debugging facilities is PAT[10]. The
difference between PAT and CONCEIVER++ is that
the plans inside PAT represent the algorithms while the
plan for CONCEIVER++ represents the stereotyped
fragments of statement line of code.
 The plan formalism developed for
CONCEIVER++ is based on the Java programming
language syntax. The main role of the understanding
engine is to find plans that match the program codes. If
it is found, then the explanation will be generated. If it
is not found it may due to the presence of errors in the
given plan. So, the debugging engine will check the
program based on the bugs segment of plan to determine
the error, which is the output. The initial design of plan
formalism has been discussed in Sani et al.[29]. After
some refining process on the formalism to represents
the knowledge, we found that some of the programming
language structure itself is very important to support the
recognition process. Therefore, the plan formalism is
refined based on the structure of the Java program or
cliché. Based on the object-oriented program structure
or cliché, the structure of a Java program is commonly
consists of name of variable, value of variable,
operator, relational operator, modifier, class name,
method name and object reference. The result is the
plan formalism for Java programming language
contains of several segments. Each segment represents
certain information for the plan that will use to
recognize a statement line of code. The explanation of
all segments of plan is as follows:

• Plan number: Each plan is refer through a number
• Plan name: Each plan has a name
• Modifier: Will recognize public, private or

protected modifier
• Class name: Name of the class
• Method name: Name of a method in certain class.

• Declarator: Initialization of identifier in certain
class

• Relational operator: Operator <, <=, >, >=, == and
!=

• Identifier 1, 2, 3: Variable name used in a plan.
• Integer: Integer value of variable
• Constraint:
• Plan: Plan that involved in inferring the plan
• Debugging: Logic error that may exist in plan
• Plan connection: Other plans that connects to this

plans
• Meaning: Explanation of the plan

 This is the plan formalism that is going to be used
to create the programming plans.

MATERIALS AND METHODS

 For development and testing of the
CONCEIVER++, methodology that will be use is
Unified Approach (UA). The process involved from
UA for developing and testing the system is iterative
development and continuous testing. The process must
be iterate and reiterate until satisfied with the system.
Since testing often uncovers the weaknesses of the
design, usually it will provides additional information
that want to use, by repeating the entire process, taking
what have been learned and reworking on the design or
moving to re-prototyping and retesting. This refining
cycle will be continuing through the development
process until satisfied with the results[30]. Then finally,
the prototype will be transformed into actual system.
The process of iterative development and continuous
testing is shown in Fig. 1.
 In effort to test the quality assurance of the system
is by choosing the black box testing strategies. In a
black box, the test item is treated as “black”, since its
logic is unknown[30]. In this testing, we are trying to put
Java program codes and examine the resulting output
from the recognition engine of CONCEIVER++. We
had chosen this strategy because according to
Bahrami[30], black box testing works very nicely in
testing objects in an object-oriented environment. The
steps involved in doing the test are as below:

• A program code will be taking as source to the

system:
• This source code has to be parsed and

transformed to produce the abstract syntax tree
(AST)

• AST will be structured into nodes of line of
program codes. This is for the nodes
representing the AST will then use for creating
the control flow graph (CFG)

J. Computer Sci., 5 (12): 1009-1019, 2009

1013

Fig. 1: Iterative development and continuous testing

• CFG will be created for the source code:

• CFG will show the execution flow of the
source code. The CFG is created manually
during this step

• The information of data flow also will be
annotated in the CFG

• Information of each CFG’s node will be saved
in text file and will be as input to recognition
engine of understanding module

• File which kept information of CFG will be
generated and all the information will be hold by
binary search tree (BST) data structure. While, plan
that been saved in the plan base will be accessed
and put in the linked list data structure. These two
structures will be run and input into the recognition
engine

• The BST and linked list will be matched to come
out with the understanding result. The result for
each node of BST will be shown

Understanding module of Conceiver++: An overall
process in the understanding module of
CONCEIVER++ is that, programming code written by
students has to be parsed and transform using the parser
and transformer components. Output from it is in form
of Control Flow Graph (CFG) and being kept in one
file. The CFG file will read by the code/CFG
processor and then all the CFG information will be put
in binary search tree structure. In the other side, plan
which has been kept in plan base will be access by the
plan processor. Plans is read and put into linked list
structure. These tree and linked list will be as input to
the recognition engine. The recognition engine will
match the data from both structure type and will
come out with the result of understanding to the user of
this system. The detailed model of CONCEIVER++
can be read from Sani et al.[31].
 This module has been divided into three parts that
are code/CFG processor, plan processor and recognition
engine. In this research, the user in this module is
students or lecturers. Users will write a Java program
codes and then insert to the understanding module to be

inferred by the system. At the same time, plans will be
accessed from plan base for the purpose of inferring the
codes. Below discuss on each part of the understanding
module. In presenting the results, one example of Java
programming code is used to describe the detail
processes. This is importance in the implementation and
testing process in order to check the accuracy of the
system output. The discussion below starts by selecting
a select sort program as the input or source program
into the module.

RESULTS AND DISCUSSION

 The implementation is discussed and described by
using the example shows the execution process of a
select sort program that will be understood by students.
The original program is parsed and transformed to AST
form and then converted into CFG. The resulted CFG
form is then will be executed using Understanding
Module of CONCEIVER++. The document of
understanding for each line of the program code will be
shown.

Example of select sort program: The implementation
of the select sort program written in object-oriented
programming language that is Java. The select sort
program covers the fundamental concepts. The
concepts are variable initialization, assignment and
control statement, methods and array. Figure 2 shows
the normalized select sort program. This normalized
program has undergone the parsing and transforming
process to produce the AST. Normalization is not the
main focus of this study, but for this explanation
purposes, we just take it as the normalize code is used
for implementation purposes. AST is a tree
representation of the abstract syntactic structure of
program code. It is originates from the parse tree
without including the semantic of the program. The
AST of each line of code of the select sort program is
illustrated in Table 1.

CFG for the select sort program: The AST only show
the simplified form of the program after undergoing the
parsing and transforming process. The flow of the
program is actually shown in the CFG. The CFG that is
produced for the select sort program is illustrated in
Fig. 3. The Fig. 3 shows the nodes and arrow for the
select sort program implementation. One node in the
CFG represents one line of program source code.
 The CFG starts with the node that is written as
Start and then to node number 2. The node number 2
corresponds with line 2 of the select sort program in
Fig. 2 and line of code number 2 in Table 1.

J. Computer Sci., 5 (12): 1009-1019, 2009

1014

Fig. 2: The select sort program

The process continues until the last node, which is
written as End. Every node carries the information of
each line of code. Fig. 3 also shows the flow of data of
the node, which is represented as dotted arrow and the
variable name represented as dotted box. The flow of
data annotated with CFG is the value that will be used
in the understanding or recognition process.

Generation of Binary Search Tree (BST) for
CFG: The information of each line of code for each
node and the flow of data is used as the input to
code/CFG processor in the understanding module.
After the system has produced the CFG, information
for each node is transformed and saved into the BST
data structure. The result of CONCEIVER++ for
the code/CFG processor part is shown in Fig. 4.

Table 1: AST for the select sort program
Line of Abstract Syntax Tree Line of Abstract Syntax Tree
code (AST) Code (AST)
2 Root 4 Method Name: main
 Modifier: public Ident: String
 Class Name: SelectionSort Declarator: args
6 Type_specifier: double 9 Statement
 Declarator: myList Ident: System
 Ident: out
 Ident: println
 String: "My list before
 sort is: "
10 Statement 13 Statement
 Ident: printList Ident: selectionSort
 Ident: myList Ident: myList
16 Statement 17 Statement
 Ident: System Ident: System
 Ident: out Ident: out
 Ident: println Ident: println
 String: "My list after
 sort is: "
18 Statement 22 Method Name: printList
 Ident: printList Type_specifier: double
 Ident: myList Declarator: list
23 Statement 24 Ident: I
 Type_specifier: int Cmp level op: <
 Declarator: i Ident: list
 Int: 0 Ident: length
 Ident: i
25 Statement 28 Statement
 Ident: System Ident: System
 Ident: out Ident: out
 Ident: print Ident: println
 Ident: list
 Ident: i
 Operator: +

 String: " "

32 Method Name: selectionSort 33 Statement
 Type_specifier: double Type_specifier: int
 Declarator: list Declarator: i
 Ident: list
 Ident: length
 Operator: -
 Int: 1
34 Ident: i 36 Statement
 Cmp level op: >= Type_specifier: double
 Int: 1 Declarator: currentMax
 Ident: i Ident: list
 Int: 0
37 Type_specifier: int 39 Statement
 Declarator: currentMaxIndex Type_specifier: int
 Int: 0 Declarator: j
 Int: 1
 Ident: j
40 Cmp level op: <= 41 Statement
 Ident: i If
 Ident: j Ident: currentMax
 Cmp level op: <
 Ident: list
 Ident: j
42 Statement 43 Statement
 Ident: currentMax Ident: currentMaxIndex
 Operator: = Operator: =
 Ident: list Ident: j
 Ident: j
48 Statement 49 Statement
 If Ident: list
 Ident: currentMaxIndex Ident: currentMaxIndex
 Ident: i Operator: =
 Ident: list
 Ident: i
50 Statement
 Ident: list
 Ident: i
 Operator: =
 Ident: currentMax

J. Computer Sci., 5 (12): 1009-1019, 2009

1015

Fig. 3: CFG for the select sort program

Fig. 4: Result of code/CFG processor of

CONCEIVER++

The detail information of the BST node cannot be seen
from Fig. 4 Because of this, Fig. 5 shows the details of
two nodes that have been generated. The number of
BST node is also displayed.
 From Fig. 5, the information of each BST node
are tree’s node number, flow graph's node number,
modifier of node, class name of node, method name of
node, declarator of node, comparison operator of node,
identifier of node, integer value of node, understanding
of node and plan matched. However, not all nodes have
all these information. There is no information for
understanding and plan matched. These two
information will be filled when the CFG are recognized
by the understanding processor or recognition engine.

Fig. 5: Information of two BST nodes

In addition, this information will also be used for
higher-level recognition. In Fig. 5, the first CFG node
number 2 and tree node number 35, has the modifier
information that is public and class name of the node is
SelectionSort. The second CFG node number 4 and tree
node number 34, has the main method name
information, args for declarator and String identifier.

Generation of linked list for programming plan:
Plan processor is one of major part in CONCEIVER++.
The process involve in this plan processor part is to
read the plan in the plan base. Linked list structure is
generated and each node in the linked list will contain
plan, including the information of the plan. This
generated linked list with plan inside is the output from
this plan processor part and will be as input for the
recognition engine or understanding processor.
 All the information is the data about knowledge of
language based on the plan formalism that had been
mentioned above. Because of the design of the plan
formalism is not the focus of this study, researched has
been done and the resulted plans are based on
discussion has agreed on specifying the information
needed for representing the knowledge. For the
execution purposes of the plan or plan base processor,
data or information for all plans has been kept in a text
file (in.dat). All of these plans will be generated into
linked list data structure mentioned, will input to the
understanding engine. This part or processor is the main
knowledge for the recognition process. Table 2 shows a
few numbers of plans that contain in the plan base.

J. Computer Sci., 5 (12): 1009-1019, 2009

1016

Table 2: Plans’ data or information that contain in the text file
 Identifier
Plan Plan ----------------------------------
No. name Modifier Class Method Declrator CmpOp Ident1 Ident2 Ident3 Integer Const Plan Meaning
101 AssignAValue None None None none None Var1 None None Value None None This.code.is.assigning
 .a.variable
102 AssignAVar None None None None None Var1 Var2 None None None None This.code.is.assigning.
 Var2.to.Var1
103 Assign None None None None Final Var1 None None Value None None This.code.is.assigning
 AConstant .a.constant
104 SimpleOut None None None None None System Out Print None None None This.code.print.output.
 to.the.computer.screen
105 SimpleOut None None None None None System Out Println None None None This.code.print.output.to
 .the.computer.screen
106 SystemExit None None None None None System Exit None Zero None None This.code.is.a.Java.
 predefined.class.to.exit.
 the.system
107 BoolLess None None None None Less Var1 Var2 None None None None This.code.is.a.Boolean.
 Expression.which.Var1.
 is.less.than.Var2
108 BoolLess None None None None Less Var1 None None Value None None This.code.is.a.Boolean.
 Expression.which.Var1
 .is.less.than.Value
109 BoolLessEq None None None None LessEq Var1 Var2 None None None None This.code.is.a.Boolean
 .Expression.which.Var1.
 is.less.than.or.equal.to.Var2
110 BoolLessEq None None None None LessEq Var1 None None Value None None This.code.is.a.Boolean.
 Expression.which.Var1.is
 .less.than.or.equal.to.Value

Fig. 6: Result of matching or recognition engine for

CONCEIVER++

Result of understanding: The nodes that are stored in
the BST data structure and the plans that are stored in
the linked list are used as the input to the recognition
engine in the understanding module. The recognition
process is by matching the BST with the plans in the
linked list to produce the document of program
understanding.
 The process of matching or recognition in the
recognition engine is based on the structure of object-
oriented programming language. The structure of
object-oriented programming language that consists of
modifier, class name, method names involve for in
class, object name are some of the structures that will
be check to identified for recognizing the line of code
for the Java programming language.

Fig. 7: Information on understanding result

 Some of the result of understanding engine for
CONCEIVER++ of the select sort program is shown in
Fig. 6. In Fig. 6 shows lists of the plan structure, the
structure of the tree and the result of understanding. The
information inside the structures is used in the matching
process. The result that assists the student is the name of
the plan and the explanation of that line of code. Figure 7
is the copy of Fig. 6 that shows the clearer information of
the understanding result and for easy explanation
purposes. The structures of the plan that are matched
with the structures of the tree are modifier, class name
(nama kelas), method name (nama tatacara), declarator,
root (represent comparison operator) and identifier value.

J. Computer Sci., 5 (12): 1009-1019, 2009

1017

Table 3: Testing result
CFG node Plan matched Meaning of understanding Correctness output
2.0 DefClassName This.code.define.the.class.name √
4.0 DefMainMethod This.is.the.main.method.of.this.class √
6.0 DeclareVar This.code.declare.a.variable √
9.0 SimpleOut This.code.print.output.to.the.computer.screen √
10.0 SendMsgToMethod This.code.send.mesej.to.method.for.execution √
22.0 DecMethod This.code.define.a.method √
23.0 DeclareVar This.code.declare.a.variable √
24.0 BoolLess This.code.is.a.Boolean.Expression.which.Var1.is.less.than.Var2 √
25.0 SimpleOut This.code.print.output.to.the.computer.screen √
26.0 Increment This.code.increment.value.of.Var.by.1 √
28.0 SimpleOut This.code.print.output.to.the.computer.screen √
13.0 SendMsgToMethod This.code.send.mesej.to.method.for.execution √
32.0 DecMethod This.code.define.a.method √
33.0 DecAssignArr This.code.assign.array.to.declarator √
34.0 DecBoolGreaterEq This.code.is.a.Boolean.Expression.which.Var.is.greater.than.or.equal.to.Value √
36.0 DecAssignVar This.code.assign.variable.to.declarator √
37.0 DeclareVar This.code.declare.a.variable √
39.0 DeclareVar This.code.declare.a.variable √
40.0 DecBoolLessEq This.code.is.a.Boolean.Expression.which.Var.is.less.than.or.equal.to.Var1 √
41.0 BoolLess This.code.is.a.Boolean.Expression.which.Var1.is.less.than.Var2 √
42.0 AssignAVar This.code.is.assigning.Var2.to.Var1 √
43.0 AssignAVar This.code.is.assigning.Var2.to.Var1 √
45.0 Increment This.code.increment.value.of.Var.by.1 √
48.0 BoolNotEq This.code.is.a.Boolean.Expression.which.Var1.is.not.equal.to.Var2 √
49.0 AssignAVar This.code.is.assigning.Var2.to.Var1 √
50.0 AssignAVar This.code.is.assigning.Var2.to.Var1 √
52.0 Decrement This.code.decrement.value.of.Var.by.1 √
17.0 SimpleOut This.code.print.output.to.the.computer.screen √
18.0 SendMsgToMethod This.code.send.mesej.to.method.for.execution √
22.0 DecMethod This.code.define.a.method √
23.0 DeclareVar This.code.declare.a.variable √
24.0 BoolLess This.code.is.a.Boolean.Expression.which.Var1.is.less.than.Var2 √
25.0 SimpleOut This.code.print.output.to.the.computer.screen √
26.0 Increment This.code.increment.value.of.Var.by.1 √
28.0 SimpleOut This.code.print.output.to.the.computer.screen √
√: Indicates that the CFG node and plan is matched correctly and give correct understanding for that particular code

In Fig. 7 for example, the tree node number 2 is
recognized from the plan named DefClassName and the
line of code explains the definition of the class name.
From the Fig. 7, the tree node number 4 is recognized
from the plan named DefMainMethod and the meaning
of the line of code explains that, it is the main methods
of the class.

Result of testing: The results of black box testing
which show the understanding module output for each
nodes of Control Flow Graph (CFG) has been
recognized by the specific plan. Each node which has
been identified with the correct plan and gives the
correct meaning of the node shows the correctness
output of the understanding module that contains three
parts as mentioned above.
 The result of the generated understanding module
for all CFG nodes of the select sort program code is
check to make sure that the output is correct. If it is
wrong or do not have meaning for certain program
code, we check whether there is something wrong on

the logic of the program or the plan base is not
complete to understand the select sort example code.
After refining the development of understanding
module and continuing testing, the result of the
understanding module is correct for all nodes in the
select sort program code. Thus, we can say that the
correctness of output for the understanding module of
CONCEIVER++ is 100 percents matched for select sort
program code. Please refer to Table 3 to prove the
result.

CONCLUSION

 The implementation of CONCEIVER++ has been
discussed in detail in this study. The process of
understanding, specifically the understanding module
which contains three parts, which are code/CFG
processor, plan processor and recognition engine has
been tested and explained. Java programming source
code, the select sort program is used to show the
resulted of correct output for the understanding module

J. Computer Sci., 5 (12): 1009-1019, 2009

1018

by following the black box testing steps as mentioned
in the methodology of the study. From this study we
have shown that all nodes of the example source code
has been recognized and got the correct meaning. For
future works we will do evaluation to the system with
difference case studies to check the effectiveness of the
recognition process to understand the difference style of
written programming codes.

ACKNOWLEDGEMENT

 The authors acknowledge the financial support
(Science Fund) received from the Ministry of Science,
Technology and Innovation (MOSTI), Malaysia via
University Putra Malaysia.

REFERENCES

1. Romero, P., R. Cox, B. du Boulay and R. Lutz,

2003. A survey of external representation
employed in object-oriented programming
environments. J. Vis. Languages Comput., 14: 387-419.
DOI: 10.1016/S1045-926X(03)00036-3

2. Barr, M., S. Holden, D. Philips and T. Greening,
1999. An exploration of novice programming
errors in an object-oriented environment. SIGCSE.
Bull., 31: 42-46. DOI:
http://doi.acm.org/10.1145/349522.349392

3. Stroustrup, B., 1987. What is object-oriented
programming? Lecture Notes Comput. Sci.,
276: 51-70. DOI: 10.1007/3-540-47891-4_6

4. Alagar, V.S. and R. Missaoui 1995. Object-
Oriented Technology for Database and Software
Systems. World Scientific, ISBN: 9810221703, pp: 312.

5. Kozaczynski, W. and J.Q. Ning, 1989. SRE: A
knowledge-based environment for large-scale
software re-engineering activities. Proceeding of
the 11th International Conference on Software
Engineering, (SE’89), ACM Press, Pittsburgh,
Pennsylvania, United States, pp: 113-122. DOI:
http://doi.acm.org/10.1145/74587.74603

6. Quicili, A., Q. Yang and S. Woods, 1998.
Applying plan recognition algorithms to program
understanding. J. Automat. Software Eng., 5: 347-372.
DOI: 10.1023/A:1008608825390

7. Woods, S. and Q. Yang, 1995. Program
Understanding as Constraint Satisfaction. Proc.
Comput. Aid. Software Eng., 7: 318-327. DOI:
10.1109/CASE.1995.465302

8. Kozaczynski, W. and J.Q. Ning, 1994. Automated
program understanding by concept recognition.
Automat. Software Eng., 1: 61-78. DOI:
10.1007/BF00871692

9. Wills, L.M., 1993. Flexible control for program
recognition. Proceedings of the Working
Conference on Reverse Engineering, May 21-23,
IEEE Xplore Press, Baltimore, MD., USA., pp:
134-143. DOI: 10.1109/WCRE.1993.287771

10. Ning, J.Q., 1989. A knowledge-based approach to
automatic program analysis. Ph.D. Thesis,
University of Illinois.
http://portal.acm.org/citation.cfm?id=916199

11. Müller, H.A., 1996. Understanding software
systems using reverse engineering technologies
research and practice. Proceeding of the Tutorial
Presented at 18th International Conference on
Software Engineering, Berlin, Germany, pp: 1-9.

http://www.rigi.cs.uvic.ca/downloads/papers/pdf/us
suret.pdf

12. Rich, C. and L.M. Wills, 1990. Recognizing a
program’s design: A graph-parsing approach.
IEEE. Software, 7: 82-89. DOI: 10.1109/52.43053

13. Kozaczynski, W., J. Ning and A. Engberts, 1992.
Program concept recognition and transformation.
IEEE. Trans. Software Eng., 18: 1065-1075. DOI:
10.1109/32.184761

14. Sani, N.F.M., A.M. Zin and S. Idris, 2008. Object-
oriented codes representation of program
understanding system. Proceeding of the
International Symposium on Information Technology,
Aug. 26-28, IEEE Xplore Press, Kuala Lumpur,
Malaysia, pp: 450-454. DOI:
10.1109/ITSIM.2008.4631595

15. Limpiyakorn, Y. and Burnstein, I., 2003. Applying
the Signature Concept to Plan-Based Program
Understanding. Proceeding of the 19th IEEE
International Conference on Software
Maintenance, Sept. 22-26, IEEE Computer Society,
USA., pp: 325. DOI:
http://doi.ieeecomputersociety.org/10.1109/ICSM.
2003.1235438.

16. Quicili, A., 1993. A Hybrid Approach to
Recognizing Programming Plans. Proceeding of
the IEEE 2nd Workshop on Program
Comprehension, July 8-9, IEEE Xplore Press,
Capri, Italy, pp: 96-103. DOI:
10.1109/WPC.1993.263901

17. Quicili, A., 1994. A memory-based approach to
recognizing program plans. Commun.. ACM.,
37: 84-93.

 http://doi.acm.org/10.1145/175290.175301
18. Hoffman, M.A., 2000. Methodology to support the

maintenance of object-oriented systems using
impact analysis. Ph.D. Thesis, Louisiana State
University.
http://portal.acm.org/citation.cfm?id=933565

J. Computer Sci., 5 (12): 1009-1019, 2009

1019

19. Lieberherr, K.J. and I.M. Holland, 1989. Assuring
good style for object-oriented programs. IEEE.
Software, 6: 38-48. DOI: 10.1109/52.35588

20. Johnson, W.L. and E. Soloway, 1985. PROUST:
Knowledge-based program understanding. IEEE.
Trans. Software Eng., SE-11: 267-275.
http://portal.acm.org/citation.cfm?id=801994

21. Murray, W.R., 2007. Automatic program
debugging for intelligent tutoring systems.
Comput. Intell., 3: 1-16. DOI: 10.1111/j.1467-
8640.1987.tb00169.x

22. Al-Omari, H.M.A., 1999. CONCEIVER: A
program understanding system. Ph.D. Thesis,
University Kebangsaan Malaysia.

23. Burnstein, I. and F. Saner, 2000. Using fuzzy
reasoning to support automated program
understanding. Int. J. Software Eng. Knowl. Eng.,
10: 115-137.

 http://md1.csa.com/partners/viewrecord.php?reque
ster=gs&collection=TRD&recid=516084CI

24. Arif, E.M., 2000. A methodology for teaching
object-oriented programming concepts in an
advanced programming course. SIGCSE. Bull.,
32: 30-34.

 http://doi.acm.org/10.1145/355354.355367
25. Bruhn, R.E. and P.J. Burton, 2003. An approach to

teaching java using computers. SIGCSE. Bull.,
35: 94-99.

 http://doi.acm.org/10.1145/960492.960537
26. Gearailt, A., 2002. Using Java to increase Active

Learning in Programming Courses. Proceeding of
the Inaugural Conference on the Principles and
Practice of Programming, June 13-14, ACM Press,
pp: 107-112.

 http://md1.csa.com/partners/viewrecord.php?reque
ster=gs&collection=TRD&recid=20080280018707
CI

27. Madden, M. and D. Chambers, 2002. Evaluation of
student attitudes to learning the java language.
Proceeding of the inaugural conference on the
Principles and Practice of Programming, June 13-
14, ACM Pres, Dublin, Ireland, pp: 125-130.
http://portal.acm.org/citation.cfm?id=638501

28. Kutti, N.S., Z.A. Al-Khanjari, H.A. Ramadhan and
J. Fiaidhi, 2005. A note towards reshaping java’s
features. J. Comput. Sci., 1: 450-453.
http://www.scipub.org/scipub/detail_issue.php?V_
No=4&j_id=jcs

29. Sani, N.F.M., A.M. Zin, S. Idris and Z. Shukur,
2005. Designing an Understanding and Debugging
Tool (UDT) for Object-oriented programming
language. WSEAS. Trans. Comput., 4: 137-142.
http://portal.acm.org/citation.cfm?id=1363663

30. Bahrami, A., 1999. Object Oriented System
Development using the Unified Modeling
Language. Boston: McGraw-Hill.

31. Sani, N.F.M., A.M. Zin and S. Idris, 2009.
Analysis and design of Object-oriented program
understanding system. Int. J. Comput. Sci. Network
Secur., 9: 125-134.

 http://paper.ijcsns.org/07_book/200901/20090118.
pdf

