
Journal of Computer Science 4 (2): 95-102, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Nader Mohamed, The College of Information Technology, UAE University, P.O. Box 17551, Al Ain,
UAE Tel: +971-3-7135519 Fax: +971-3-7672018

95

A Middleware Service for Increasing Applications Integration Availability

Nader Mohamed and Jameela Al-Jaroodi

The College of Information Technology, UAE University, P.O. Box 17551, Al Ain, UAE

Abstract: Middleware has become an integral part of many distributed applications offering effective
integration and interoperability solutions. In some situations a problem may occur where the
integration of distributed information applications may be affected by scheduled unavailability of one
or more of these applications. The scheduled unavailability occurs due to several reasons including
application or data backup, software or hardware maintenance for the application’s platform, executing
periodic processes such as file reorganization or end-of-period processes, application maintenance, or
application migration. This research introduces a new middleware service called Active Persistent
Service. Unlike regular middleware persistent services, this active service can provide consistent
responses instead of the unavailable applications for other applications. This service helps increase the
integration availability of distributed applications without fully replicating the application environment
such as application platforms, application programs and application data. The proposed service can be
used to maintain the integration among distributed applications during scheduled unavailability of one
of these applications. In addition, the proposed service enables highly available applications
integrations while maintaining the data and state consistency of the applications. This service provides
a cost-effective solution for increasing the availability of applications integration.

Key words: Middleware, highly available applications, distributed information applications

INTRODUCTION

 Integration middleware[6,10,17,20] has become one of
the important infrastructure components in many
information technology departments. With the existence
of robust integration middleware infrastructures, new
applications can be easily developed and integrated
with existing applications. Using integration
middleware, the degree of information assurance and
integrity within any department can be easily
maintained. In addition, the process of information
exchange among the applications is performed in a
reliable way. This allows companies to maintain their
investment in high-cost legacy systems by using
middleware to integrate new business services and
functions with these systems.
 Service reliability and availability is an important
component of the information assurance
requirements[4]. The quality of many business functions
in many organizations relies on the existence of highly
reliable and available computer services. The quality of
applications such as business-to-business and e-
commerce applications is highly affected by the degree
of reliability and availability of the supporting
computer services. For example, the information flow

in e-commerce services start from the user’s browser,
through the Internet infrastructure, to the web server of
the company that provides the services and to one or
more back office applications within the company. One
of the main issues related to having high quality of
services for such e-commerce applications is the
availability of integration among the different
applications involved in the system.
 The main challenge in the integration process
among distributed information applications is the
integration availability. While new applications must be
available continuously, many legacy applications were
designed to work for a certain number of hours and
suspend for other hours of the day. Some legacy
applications are suspended for some time for data
backups, end-of-day processing, end-of-month
processing, system and software upgrades, maintenance
and/or end-of-year processing. These scheduled
suspensions are usually not acceptable for high quality
service-oriented applications. Therefore, some efforts
were invested to solve this problem using server
redundancies and full replication of databases.
Moreover, some researchers have also worked on
optimizing these methods to achieve better
performance[3,7,9,11]. However, these techniques are

J. Computer Sci., 4 (2): 95-102, 2008

 96

costly since they require full replication of the software,
databases and hardware. In addition, they cannot solve
some of the problems in legacy systems such as
unavailability due to database updates conducted during
end-of-period processes. This is a result of the legacy
systems requiring exclusive access to the databases to
ensure consistency and integrity. Therefore, general
replication techniques cannot be used effectively.
 In this research we introduce a new middleware
service called Active Persistent Service (APS). APS is
an object-oriented framework that provides a generic
approach to active object replication. This service
utilizes an object-oriented cost effective replication
technique to increase the availability of distributed
applications integration during a scheduled
unavailability of one or more involved applications.
This technique is based on the replication of selected
objects of the unavailable applications in temporary
storage. These objects can replace the suspended
application during the unavailability time. In addition,
the proposed technique provides a mechanism to
recover the new transactions performed on the
replicated objects later to the main application without
suspending the integrated application services.

BACKGROUND

 Many organizations have a number of new and
legacy business applications that are built by different
vendors. These applications are built to support specific
business functions. These applications are usually built
using different programming languages and they work
on different hardware and operating system platforms.
Some of these applications are new while others are
older legacy applications. Examples of new
applications are e-commerce, business-to-business
(B2B), e-Government and electronic banking systems
while the legacy applications are accounting, banking,
payroll, customer order, products management and
stock inventory control systems. The new business
applications are not usually built from scratch and they
normally rely on the functions of the existing legacy
applications.
 One of the main challenges for these organizations
is how to integrate these applications[12,14,21]. Integration
among applications is needed for many reasons
including: To exchange and share information among
the applications, to reuse functions and services
provided by other applications and to introduce new
functions to an application. For example, Internet
banking systems need to be integrated with a customer
accounting system to process the transactions requested
by the customer. Customer order systems need to be

integrated with stock inventory control systems in order
to exchange information about the availability of the
merchandise. Therefore, having a good integration
among these applications not only maintains
information integrity and consistency but also saves a
lot of operational efforts and costs.
 The difficulty and complexity of applications
integration is attributed to many reasons:
 The applications may be distributed on different
machines with heterogeneous architectures and
operating systems.
 The applications may have different interfaces. For
example, newer applications may use XML, Remote
Method Invocation, CORBA and DCOM interfaces.
While old applications may use CICS and nonstandard
text messaging interfaces. Integrating applications with
different interfacing technologies is always difficult and
challenging.
 The applications may run on different machines
with different speeds. For example application X can
send 10 requests per second to application Y, which is
only able to process 4 requests per second. The requests
in this case may be lost if there is no mechanism to
provide reliable communications and buffering
techniques between them.
 The applications may have different operational
and transactional requirements. For example a request
from an application should be processed as a single
transaction by two different applications.
 The applications may have different availability
modes and needs. For example, e-Commerce
applications are designed to work continuously 7 days
a week, 24 h a day, while many legacy applications
such as accounting systems were designed to only
operate during the standard business hours.
 As a result, the integration process of the new
business applications with the legacy applications has
become an important and complex task. Middleware
commercial products such as BEA Tuxedo[2], IBM
WebSphere MQ[10] and Software AG EntireX[19] are
used to facilitate the integration process and provide the
necessary functionalities to ensure reliability and
integrity among other requirements. These products
deal with applications as black boxes through their
Advanced Programming Interfaces (APIs) where each
box consists of unknown application modes and
databases. These middleware products solve the first
four of the challenges listed above. For example most
of these products support different types of platforms
and operating systems. Some of these products provide
mechanisms and development tools to integrate
applications that support different types of interfaces.
For example EntireX allows windows based

J. Computer Sci., 4 (2): 95-102, 2008

 97

applications to transparently use CICS transactions in a
mainframe using DCOM interface. In addition, most of
these middleware products provide brokering services
to add reliability for the integration. Furthermore, most
of these products support distributed transactions.
 Some of these products also provide persistent
services to partially solve the fifth point. The persistent
service in middleware provides a mechanism to store a
sent message in persistent storage whenever the
receiver application is not available. The stored
messages can be recovered later when the application
becomes available. This type of service provides an
easy way to allow integrated distributed applications to
continue their operations. However, it cannot provide a
solution for integrated distributed applications that
require instant request/reply communications unless
application and data replication is used. In the case
where full replication is available, the Integration
middleware can be used as a router for requests
between the original application and the replicated one.

APPLICATIONS INTEGRTAION
AND AVAILABILITY

 Service availability is an important aspect of
information assurance requirements[4]. In addition, one
of the challenges in the integration process between
new applications and legacy applications is the
integration availability. While new applications must be
available continuously, many legacy applications were
designed to work for a certain number of hours and
suspend for other hours. Some legacy applications
require to be suspended for a specific amount of time
for periodic operations. These scheduled suspensions
are usually not acceptable for high quality service
applications. Some efforts were invested to solve this
problem using full applications redundancies and full
replication of the databases. This solution requires
complete software, hardware and data replication which
is very costly and not affordable by many small-size
organizations. In addition, they cannot solve some of
the problems in legacy systems such as unavailability
for updates during end-of-period processes. This is due
to the fact that most legacy systems require exclusive
access on the databases, which renders all replicas to be
suspended at the same time. Therefore general
replication techniques cannot be used in such cases.
 To explain the problem further, consider the
applications case in Fig. 1. We have two integrated
applications X and Y. Function A is part of application
X and function B is part of application Y. Executing
function A in application X requires executing function
B in application Y. Consider that application X is

Application X

Function A

Application Y
Middleware

Function B

Fig. 1: A case of two integrated applications

designed to be available continuously 24 h a day while
application Y is designed to be available for only 22 h a
day to allow exclusive time to perform backups, end-of-
day process and any other off-line application related
functionalities. As a result function A in application X
will only be available 22 h of the day.
 There are many integration cases among
applications where they need to exchange information
with other applications through executing specific
function APIs. In most of these cases, the number of
these functions and the information needed for the
integration represent a small subset of the whole
application functions and data. For example, in any
bank, there is the main banking system which contains
information about all customers, accounts related to the
customer, accounts related to the bank branches, loans,
time deposits, foreign currencies, cheque books,
traveler's cheques, etc. When we integrate web
applications that provide Internet Banking services with
the main banking system, only a small set of the
functions and data from the main banking system will
be used. Therefore, a backup system is needed for the
main banking system to provide the services and data
for the Internet banking system during the
unavailability time of the main banking system, only
the needed functions and data of the main banking
system need to be replicated. The availability in
applications integration can be solved if there is a full
or partial replication for the functions provided by the
unavailable server application and some mechanisms to
ensure data consistency at all times. Consider that
application X is integrated with server application Y
where application Y provides some services to
application X. The mechanism of integration may be
through remote procedure calls, request/reply text
messages, XML messages, Web Services, etc. Consider
that the set of functions provided by application Y to
application X is {f1, f2, f3,…, fn}. These functions can
be classified into two types: read-only functions and
update functions. The read-only functions do not
change the state of the server application, while update
functions do change or alter the state of the server
applications. Since read-only requests do not affect the
state of the database in application Y, then the solution
is straight forward. Simple replication techniques

J. Computer Sci., 4 (2): 95-102, 2008

 98

Application X
Application Y’

Middleware
Application Y

Fig. 2: An integrated application with it replica

will provide the required availability. The problems
occur when updates are made on the data in application
Y and this is the main focus of this research.
 Consider application Y has a backup version Y’ in
which each application has their own database and
machine as shown in Fig. 2. In the normal case, the
integration middleware forwards application X requests
to application Y. If application Y is not available, the
middleware can forward application X requests to the
backup version Y’. One of the main issues with the
update functions is to maintain data consistency
between applications Y and its backup Y’. Data
replication between application Y and its backup Y’ can
be achieved using two methods:

• Before switching off application Y, the up-to-date

data of application Y should be manually
transferred to application Y’. This can be done by
interrupting application X requests and the
middleware and copying the latest data from
application Y to backup application Y’. After the
copying process, application X requests and the
middleware can resume their operations with
application Y'. After application Y becomes
available, the journal of application Y’ should be
recovered to application Y. During the recovery,
the new requests from application X should be
suspended. The suspension of application X
requests is needed to maintain consistency of the
data during the replication and recovery processes.
The result of this approach is the unavailability of
the application Y or Y’ for same duration it would
take to transfer the data from Y to Y’ and vice
versa. This time will greatly depend on the size of
the databases and the number of transactions taking
place, which could be very long for large scale
applications

• Having a data replication process between
applications Y and Y’ continuously running such
that Y’ will always have an up-to-date copy of the
data. Therefore, whenever application Y needs to
be suspended, the middleware directly forwards the
new requests from application X to application Y’.
At a later stage when application Y becomes
available, the journal of application Y’ can be
recovered to application Y. During the recovery

process, the requests from application X should be
suspended to maintain the consistency of the data
by maintaining the order of the updates. In this
case, the unavailability of the application will be
reduced to that of the time it takes to recover the
data from Y’ to Y

 In both methods, there is suspension time, where
the integration between, application X and application
Y or its backup Y’ is unavailable. This suspension time
is needed to maintain the consistency of the application
data.

ACTIVE PERSISTENT SERVICE

 Active Persistent Service provides reliable
mechanisms to replicate the needed subset of
application functions before suspending the integrated
application. This replication is done by creating a
number of objects that emulate the functions of the
unavailable application. These objects can provide the
same services provided by the suspended application.
Before any integrated application is suspended,
replicated objects that emulate the needed functions of
the application are created. The types of these objects
depend on the main integration class which is discussed
next. The main advantage of the service is that it allows
increasing the availability of integration without fully
replicating the unavailable application and without
suspending the service provided by other applications
during the copying or recovery processes. Here we
discuss the solution architecture and describe the
mechanisms of maintaining availability and data
consistency of the integrated applications.

Identifying the main integration class: The set of
functions provided by a server application to the clients
can be related to one or more real-life object types. For
example, application Y may provide functions related
to customers, courses, accounts, or orders to application
X. Application X can view these objects in Application
Y as a set of objects related to one or more class types.
Each of these object types can be considered as the
main integration class. In each class type, multiple
related functions can be performed. For example, in
banking systems, the main banking systems may
provide functions to request and manipulate customer
accounts for other systems such as the electronic
banking systems[1,5,8,15,16,18]. For each customer, the
main banking system provides interfaces for different
functions such as account balance inquiry, account
transfers, cash withdrawal and bill payments. All these
functions are related to the customers. Therefore, the

J. Computer Sci., 4 (2): 95-102, 2008

 99

customer class can be identified by the integration
middleware as the main integration class with the main
banking system. Within that main class subclasses may
be defined. For example under a customer object,
multiple account objects can be defined. In general, if
an application provides information about customers to
other applications, then the middleware takes the
customer class as the main integration class for this
application. Other applications can get information for
different customer objects through that integration
middleware. Each customer object provides complete
services to replace the suspended application with
regard to a specific customer. Therefore, to verify if the
customer class is the main class we need to verify that
all functions in the main application (e.g., the main
banking system) used by other applications for a
specific customer can be done within a single customer
object related to that specific customer.
 The approach used in this research depends on
identifying the main integration classes. These
integration classes provide a number of functions for
other applications. The main integration classes define
the main object types used for the integration.
Integration classes can be easily identified in distributed
object applications. In distributed applications
implemented using distributed object middleware such
as CORBA, objects are distributed in multiple
machines. Each set of objects in a machine can
represent an application. Client objects in one of the
integrated applications can invoke a method in a server
object. The client objects will receive responses from
the server object. Both invocation and responding are
achieved through messages sent across the network.
The server objects class can be classified as the main
integration class. If an application is not implemented
using the object-oriented approach, the integration
middleware can still view the services provided by this
application as one or multiple integration classes. An
integration class for any application represents and
combines all services related to the application. In this
research to simplify the explanation of active persistent
service we will consider a single integration class case.

The solution architecture: The solution can be
embedded in any integration middleware platform. The
solution consists of a set of components including
emulated integration objects creation and storage,
emulated application process, transaction logs and
request forwarder. In addition, for each integrated
application, there are two processes: object-based
copying and object-based transaction recovery. The
first process is used to transfer the function of a specific
application to the active persistent service and the

second process is to recover transactions that were
completed during the suspension period.

Emulated integration objects creation and storage:
To have active persistent service as part of any
integration middleware, the middleware administrator
needs to define the integration class for the application
that may be unavailable for some time. This integration
class should be implemented by the middleware
administrator. In this class the data structure for the
integration class must be defined in addition to a
number of methods or functions. Each of these methods
represents a specific function provided by the
integration class. For example, for the main banking
system, the main integration class is the customer class.
When this class is integrated with other applications
such as Internet Banking, the methods that need to be
defined in this class are for getting a list of customer
accounts, account balance, account transfer, account
balance enquiry, mini-statement, etc. All these
functions are needed by the Internet Banking system
from the main banking system. Therefore, the created
class should also have a method to support each
function needed by the other applications. For each
method there is input and output. The input can be
considered as the request sent by the other applications.
The output generated from calling that method is
basically the response that needs to be sent back to the
application that sent the request. For example, a request
for checking an account balance should contain the
customer and account numbers. This request can be
considered as an input for the method related to the
balance enquiry function. The output generated from
calling that method is the current account balance that
needs to be sent to the application that made the
request.
 The defined class must also contain a default and
public method update (msg). This default method will
be called by the active persistent service to update the
data structure of the customer object. The user needs to
implement that method to update the object fields. Java
can be used to implement the integration classes.
 Emulated integration objects are stored in the
object storage. Each emulated integration object has a
unique key and a state. Each emulated integration
object can have one of two states, active or inactive.
Active state means that the object can be used to serve a
request. Inactive state means the object can not be used
and a request should be forwarded to the original
application which will serve the request. For example,
in the banking environment if a request that belongs to
a specific customer is coming to the middleware, the
request can be served by the corresponding object if the

J. Computer Sci., 4 (2): 95-102, 2008

 100

object is active. Otherwise, the request will be
forwarded to the main banking system which will serve
the request.

Emulated application process and transactions log:
This process invokes the appropriate method at the
specified emulated integration object if a request for
that integration object is received. The output of that
method will be returned as a response for the request.
The application emulation process will receive other
applications’ requests if and only if the requests belong
to the active emulated integration objects. If a request
belongs to an active object then, the request will be
performed by the application emulation process and the
request will be recorded on a transaction log. That
transaction log keeps all requests conducted with active
objects for later recovery.

Requests forwarder: The request forwarder is a
process that checks the state of the integration object
when a corresponding request arrives. In a normal
operation mode when a server application is available,
all related emulated integration objects are inactive.
When the request forwarder receives a request for an
object with a specific key, it checks the state of the
corresponding object. All requests for inactive objects
should be forwarded by the request forwarder to the
main server application, while all requests for active
objects should be forwarded by the request forwarder to
the emulated application process. If the object for a
specific request is not available in the object storage,
the object can be considered inactive and all its
corresponding requests should be forwarded to the
original server application.

Object-based copying process: The object-based
copying is a process that relates to a specific server
application. A user can start this process before
switching off the server application. This process copies
the information of the integration objects from the
server application to the object storage. For each
integration object, an emulated integration object will
be created in the object storage. This copying is done
by the active persistent service object by object. For
example, if the main integration object is the customer,
then an object will be created for each customer. The
list of the customers will be taken from the server
application as the first step to create all integration
objects. After creating each customer object, the object
will be immediately activated. At any given time during
the execution of that process some integration objects
will be active while others will be inactive. Therefore,
the process of applications integration will continue

without any suspension. An application request will be
served by either the active replication service if the
corresponding objects are active or by the original
application if the corresponding objects are inactive.
 The process of copying individual objects usually
takes few milliseconds. During that copying, any
request that belongs to that object will be suspended
during the copying process. This is to make sure that all
changes because of the requests that belong to the
integration object will be conducted in a consistent
manner. Any changes to the data of that object or
customer are done either in the original application or
to the data structure of that object at the object storage
of the active persistent service platform.

Object-based transaction recovery process: This
process can be executed by the user when the original
application is ready to be used again. It recovers the
transactions completed during the suspension period.
The recovery is done based on the integration objects.
All transactions belonging to a specific integration
object are recovered at the same time. During that
recovery, the middleware will suspend any new request
for that specific individual integration object. This is to
maintain data consistency for that integration object as
explained earlier. After transaction copying of a
specific integration object, the object will be inactivated
such that any new request for that integration object
will be performed by the original application. Copying
a single object takes a very short time and will be
generally unnoticeable by the requesting application or
in the worst case will be perceived as minor delay.

APPLICATION

 A real-life implementation of the proposed solution
was used at Al-Ahli Bank, Bahrain, to increase the
availability of the e-banking services. The e-banking
system at Al-Ahli Bank includes ATM, POS and
Internet banking. The Bank’s main banking system runs
on an AS/400 while the ATM/POS controllers run on
RS/6000 and the Internet banking controller runs on
another AS/400. The proposed solution was used as a
part of the integration among these different
applications. Before implementing this solution, the
service was interrupted for at least 45 min on a daily
basis for the end-of-day process. The proposed solution
eliminated the service interruption while maintaining
the reliability, security and integrity. In addition, the
proposed solution is used when software or hardware
maintenance on the banking system or machines is
required. Long software and hardware maintenance
operations are performed during weekends and holidays

J. Computer Sci., 4 (2): 95-102, 2008

 101

Class Customer
{ // Integration object data

private int customerNumber;
private int noofAccounts;
private int[] accountNumber;
private int[] accountBalance;
public Customer()

{ // Integration object initialization
}
// Integration object functions
public reply account_balance(String request)

{ ………
}

public reply account_statement(String request)
{ ……..
}

public reply cash_withdrawal(String request)
{ .………
}

public reply account_transfer(String request)
{ .………
}

}

Fig. 3: Customer integration class

without interrupting the e-banking services. A customer
class was used as the integration class with the main
banking system, (Fig. 3).
 Another application that the Active Persistent
Service was used for is during the migration of the main
banking system from an IBM Mainframe to an AS/400
machine. All e-banking systems were connected to the
main banking system in the IBM Mainframe through a
middleware with active persistent service. The
migration of the main banking system was a three-day
process. It was planned to take place during a three-day
official holiday during which only the e-banking
services were needed to be available for the customers.
To avoid any interruptions for the e-banking services,
the active persistent service was used to replicate all
needed integration objects from the mainframe before
starting the migration process. After three days, the
migration process completed and a transaction recovery
process was executed. This process moved the three-
day transactions to the new banking system in AS/400
also using the APS technique. Therefore, the three-day
migration was done without any interruptions of the e-
banking services. At the same time, the consistency of
the data of the main banking systems was maintained.

CONCLUSION

 This research discussed a new middleware service
to enhance the availability of distributed application
integrations. This service is called Active Persistent
Service (APS). APS is based on the object-oriented

paradigm and utilizes the object-oriented design to
achieve its goals. A technique to identify the integration
classes and actively replicate and use these classes was
introduced. When an application needs to be suspended,
the other integrated applications can rely on the
integration middleware and the replicated integration
objects to continue their operations. Objects for each
instant of the integration class are created in the
middleware with the most recent state and
accompanying data made available. The integrated
applications continue operations normally, while the
middleware decides whether to provide the service or
forward the request to the main system depending on
the status of the integration object.
 The approach is very useful for any type of
application integration involving some applications that
cannot execute continuously while other applications
require continuous availability. Examples are banking
systems, online shopping stores, airline reservation
systems and many others. In the examples listed here
the model includes some components that must be
available 7-24 (7 days a week and 24 h a day), while
some components are only available for a limited time
of the day (e.g., during working hours or all day except
the times for updates and backups). In addition any of
these systems will periodically require to be suspended
for maintenance, upgrades, or migration, which will
require active replication to avoid lengthy unavailability
periods of the services.

ACKNOWLEDGMENTS

 A primary version of this research was presented at
The IEEE International Conference on Information
Reuse and Integration, Las Vegas, USA, August 2007.
This research is an extended version.

REFERENCES

1. Asokan, N., P. Janson, M. Steiner and M. Waidner,

1997. State of the art in electronic payment
systems. IEEE Comput., (9): 28-35.

2. BEA Tuxedo web page, 2008.
http://www.bea.com/framework.jsp?CNT=index.ht
m&FP=/content/products/tux/.

3. Bowen, N., D. Sturman and T. Liu, 2000. Towards
continuous availability of internet services through
availability domains. In: International Conference
on Dependable Systems and Networks (DSN
2000), pp: 559.

4. Cummings, R., 2002. The evolution of information
assurance. IEEE Comput., pp: 65-72.

J. Computer Sci., 4 (2): 95-102, 2008

 102

5. Egner, F., 1991. The Electronic Future of Banking.
Naperville, Illinois: Financial Sourcebooks.

6. Emmerich, W., 2000. Software engineering and
middleware: A roadmap. In: Proceedings of the
Conference on The Future of Software
Engineering, (ICSE 2000), Future of SE Track,
ACM Press, pp: 117-129.

7. Felber, P. and P. Narasimhan, 2004. Experiences,
strategies and challenges in building fault-tolerant
CORBA systems. IEEE Trans. Comput.,
53 (5): 497-511.

8. Furche, A. and G. Wrightson, 1996. Computer
Money, A Systematic Overview of Electronic
Payment Systems. Heidelberg, Germany: Dpunkt-
Verlag fur Digitale Technologie GmbH.

9. Garcia-Molina, H. and B. Kogan, 1988. Achieving
high availability in distributed databases. IEEE
Trans. Software Eng., 14 (7): 886-896.

10. Geihs, K., 2001. Middleware challenges ahead.
IEEE Comput., (6): 24-31.

11. IBM WebSphere MQ web page, 2008. http://www-
306.ibm.com/software/integration/wmq/.

12. Krishnamurthy, S., W. Sanders and M. Cukier,
2002. An adaptive framework for tunable
consistency and timeliness using replication. In:
International Conference on Dependable Systems
and Networks (DSN'02), IEEE, Washington, D.C.,
USA.

13. Hasselbring, W., 2000. Information system
integration. Communications of the ACM,
43 (6): 32-38.

14. Lee, J., K. Siau and S. Hong, 2003. Enterprise
integration with ERP and EAI. Commun. ACM,
46 (2): 54-60.

15. Lipis, A. and T. Marschall, 1985. Electronic
Banking. John Wiley and Sons, Inc., New York.

16. Lynch, D. and L. Lundquist, 1996. Digital Money.
The New Era of Internet Commerce, John Wiley
and Sons, Inc., New York.

17. Milojicic, D., 1999. Middleware’s Role, today and
tomorrow. IEEE Concurrency, 3: 70-80.

18. Sciglimpaglia, D. and D. Ely, 2002. Internet
banking: A customer-centric perspective. In:
Proceedings of the 35th Hawaii International
Conference on System Sciences.

19. Software AG EntireX web page, 2008.
http://www.softwareag.com/entireX/.

20. Vinoski, S., 2002. Where is middleware?, IEEE
Internet Comput., (2): 83-85.

21. Vojdani, A.F., 2003. Tools for real-time business
integration and collaboration. IEEE Trans. Power
Syst., 18 (2): 555-562.

