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Abstract: In this study, Convolutional coder software implementation using Viterbi decoding 
algorithm for bitstream that had been encoded using forward error correction was presented. It 
discussed the detailed description and steps involved in simulating a communication channel using 
convolutional encoding with Viterbi decoding. The steps involved generating random binary data, 
convolutionally encoding the data, passing the encoded data through a noisy channel, quantizing the 
received channel symbols and finally performing Viterbi decoding on quantized channel symbols to 
recover original binary data. In this study, researchers aim was to convince and to explain the reader 
the advantages of convolutional coding with Viterbi decoding over conventional decoding techniques 
in terms of BER. 
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INTRODUCTION 

 
 The purpose of this study is to implement software 
that convolutionally code bitstream in the transmitter 
side and then decode that bitstream in the receiver side 
using Viterbi decoding algorithm on the bases of 
forward error correction technique. The purpose of 
Forward Error Correction (FEC) is to improve the 
capacity of a channel by adding some carefully designed 
redundant information to the data being transmitted. The 
process of adding this redundant information is known 
as channel coding. More particularly, this project will 
focus primarily on the Viterbi decoding algorithm itself. 
Viterbi decoding was developed by Andrew J. Viterbi, a 
founder of Qualcomm Corporation[1]. Since then, other 
researchers have expanded on his work by finding good 
convolutional codes, exploring the performance limits of 
the technique and varying decoder design parameters to 
optimize the implementation of the technique in 
hardware and software. The Viterbi decoding algorithm 
is also used in decoding trellis-coded modulation, 
invented by Gottfried Ungerboeck in 1982. This is the 
technique used in telephone-line modems to squeeze 
high ratios of bits-per-second to Hertz out of 3 kHz-
bandwidth analog telephone lines[5]. Viterbi decoding is 
one of two types of decoding algorithms used with 
convolutional encoding the other type is sequential 
decoding. Sequential decoding has the advantage that it 
can perform very well with long-constraint-length 
convolutional codes, but it has a variable decoding 

time[2]. The discussion of sequential decoding 
algorithms will not be highlighted here since it is 
beyond the scope of this project. 
 

MATERIALS AND METHODS 
 
 In this study will go in detailed description of the 
algorithms for generating random binary data, 
convolutionally encoding the data, passing the encoded 
data through a noisy channel, quantizing the received 
channel symbols and finally performing Viterbi 
decoding on the quantized channel symbols to recover 
the original binary data.  
 Convolutional coding and block coding are the two 
major forms of channel coding. Convolutional codes 
operate on serial data, one or a few bits at a time. Block 
codes operate on relatively large (typically, up to a 
couple of hundred bytes) message blocks. There are a 
variety of useful convolutional and block codes and a 
variety of algorithms for decoding the received coded 
information sequences to recover the original data[5,7].  
 Convolutional encoding using Viterbi decoding is a 
FEC technique that is particularly suited to a channel in 
which the transmitted signal is corrupted mainly by 
Additive White Gaussian Noise (AWGN). You can 
think of AWGN as noise whose voltage distribution 
over time has characteristics that can be described using 
a Gaussian, or normal, statistical distribution, i.e. a bell 
curve. This voltage distribution has zero mean and a 
standard deviation that is a function of the Signal-to-
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Noise Ratio (SNR) of the received signal. Let's assume 
for the moment that the received signal level is fixed. 
Then if the SNR is high, the standard deviation of the 
noise is small and vice-versa. In digital communications, 
SNR is usually measured in terms of Eb/N0, which 
stands for energy per bit divided by the one-sided noise 
density[3].  
 Let's take a moment to look at a couple of 
examples. Suppose that we have a system where a '1' 
channel bit is transmitted as a voltage of -1V and a '0' 
channel bit is transmitted as a voltage of +1V. This is 
called bipolar non-return-to-zero (bipolar NRZ) 
signaling. It is also called binary “antipodal” (which 
means the signaling states are exact opposites of each 
other) signaling. The receiver comprises a comparator 
that decides the received channel bit is a '1' if its voltage 
is less than 0V and a '0' if its voltage is greater than or 
equal to 0V. One would want to sample the output of the 
comparator in the middle of each data bit interval. Let's 
see how our example system performs, first, when the 
Eb/N0 is high and then when the Eb/N0 is lower.  
 

RESULTS 
 
 Figure 1 shows the results of a channel simulation 
where one million (1×106) channel bits are transmitted 
through an AWGN channel with an Eb/N0 level of 20 dB 
(i.e. the signal voltage is ten times the rms noise 
voltage). In this simulation, a '1' channel bit is 
transmitted at a level of -1V and a '0' channel bit is 
transmitted at a level of +1V. The x-axis of Fig. 1 
corresponds to the received signal voltages and the y-
axis represents the number of times each voltage level 
was received. 
 

 
 
Fig. 1: The results of a channel simulation where one 

million (1×106) channel bits are transmitted 
through an AWGN channel with an Eb/N0 level 
of 20 dB 

 Our simple receiver detects a received channel bit 
as a '1' if its voltage is less than 0V and as a '0' if its 
voltage is greater than or equal to 0V. Such a receiver 
would have little difficulty correctly receiving a signal 
as shown in the Fig. 1. Very few (if any) channel bit 
reception errors would occur. In this example simulation 
with the Eb/N0 set at 20 dB, a transmitted '0' was never 
received as a '1' and a transmitted '1' was never received 
as a '0'. So far, so good.  
 In Fig. 2 the results of a similar channel simulation 
was conducted when one million (1×106) channel bits 
are transmitted through an AWGN channel where the 
Eb/N0 level has decreased to 6 dB (i.e., the signal voltage 
is two times the rms noise voltage). 
 Now observe how the right-hand side of the red 
curve in the Fig. 2 above crosses 0V and how the left-
hand side of the blue curve also crosses 0V.  
 The points on the red curve that are above 0V 
represent events where a channel bit that was 
transmitted as a one (-1V) was received as a zero. The 
points on the blue curve that are below 0V represent 
events where a channel bit that was transmitted as a zero 
(+1V) was received as a one. Obviously, these events 
correspond to channel bit reception errors in our simple 
receiver. In this example simulation with the Eb/N0 set at 
6 dB, a transmitted '0' was received as a '1' 1,147 times 
and a transmitted '1' was received as a '0' 1,207 times, 
corresponding to a bit error rate (BER) of about 0.235%. 
 That's not so good, especially if you're trying to 
transmit highly compressed data, such as digital 
television[4].  
 In this study we will show that convolutional 
coding using Viterbi decoding, allows achieving BER of 
better than 1×10−7 at the same Eb/N0, 6 dB. 
 

 
 
Fig. 2: The results of a channel simulation when one 

million (1×106) channel bits are transmitted 
through an AWGN channel where the Eb/N0 
level has decreased to 6 dB 
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 Convolutional codes are usually described using 
two parameters: the code Rate (R) and the constraint 
Length (L). The code rate, R = k/n, is expressed as a 
ratio of the number of bits into the convolutional 
encoder (k) to the number of channel symbols output by 
the convolutional encoder (n) in a given encoder cycle. 
The constraint length parameter, L, denotes the “length” 
of the convolutional encoder, i.e., how many k-bit stages 
are available to feed the combinatorial logic that 
produces the output symbols. Closely related to L is the 
parameter m, which indicates how many encoder cycles 
an input bit is retained and used for encoding after it first 
appears at the input to the convolutional encoder. The m 
parameter can be thought of as the memory length of the 
encoder[1]. In this study we focused on rate 1/2 
convolutional codes.  
 
Description of the algorithms: The steps involved in 
simulating a communication channel using 
convolutional encoding with Viterbi decoding are as 
follows: 
 
• Generate the data to be transmitted through the 

channel-result is binary data bits  
• Convolutionally encode the data in to channel 

symbols  
• Map the one/zero channel symbols into an antipodal 

baseband signal, producing transmitted channel 
symbols  

• Add noise to the transmitted channel symbols-result 
is received channel symbols  

• Quantize the received channel levels-one bit 
quantization called hard-decision and two to n bit 
quantization is called soft-decision (n is usually 
three or four)  

• Perform Viterbi decoding on the quantized received 
channel symbols-result is again binary data bits  

• Compare the decoded data bits to the transmitted 
data bits and count the number of errors.  

 
 You may notice that we left out the steps of 
modulating the channel symbols onto a transmitted 
carrier and then demodulating the received carrier to 
recover the channel symbols. This is because we can 
accurately model the effects of AWGN even though we 
bypass those steps[3]. 
 
Generating the data: Generating the data to be 
transmitted through the channel can be accomplished 
quite simply by using a random number generator. A 
uniform distribution of numbers on the interval between 
0 to a maximum value of one, we can say that any value 

less  than half of the maximum value is a zero, any 
value greater than or equal to half of the maximum 
value is a one. 
 
Convolutionally encoding the data: Convolutionally 
encoding the data is accomplished using a shift register 
and associated combinatorial logic that performs 
modulo-two addition. (A shift register is merely a chain 
of flip-flops wherein the output of the nth flip-flop is 
tied to the input of the (n+1)th flip-flop. Every time the 
active edge of the clock occurs, the input to the flip-flop 
is clocked through to the output and thus the data are 
shifted over one stage.) The combinatorial logic is often 
in the form of cascaded exclusive-or gates. As a 
reminder, exclusive-or gates are two-input, one-output 
gates often represented by the logic symbol shown in 
Fig. 3 with truth-table shown below. 
 The exclusive-or gate performs modulo-two 
addition of its inputs. When you cascade q two-input 
exclusive-or gates, with the output of the first one 
feeding one of the inputs of the second one, the output 
of the second one feeding one of the inputs of the third 
one, etc., the output of the last one in the chain is the 
modulo-two sum of the q+1 inputs. Another way to 
illustrate the modulo-two adder and the way that is 
most commonly used in textbooks, is as a circle with a 
+ symbol inside, thus⊕. 
 Now that we have the two basic components of the 
convolutional encoder (flip-flops comprising the shift 
register and exclusive-or gates comprising the 
associated modulo-two adders) defined, let's show in 
Fig. 4 of  a  convolutional  encoder  of  R = 1/2, K = 3, 
m = 2 codes: 
 In this encoder, data bits are provided at a rate of k-
bits per second. Channel symbols are output at a rate of 
n = 2k symbols per second. The input bit is stable 
during the encoder cycle. The encoder cycle starts when 
an input clock edge occurs. When the input clock edge 
occurs, the output of the left-hand flip-flop is clocked 
into the right-hand flip-flop, the previous input bit is 
clocked into the left-hand flip-flop and a new input bit 
 

 
 
Fig. 3: A logical symbol of exclusive-or gate[6] 
 
Table 1: Exclusive-or gate truth-table[6] 
Input A Input B Output (A xor B) 
0 0 0 
0 1 1 
1 0 1 
1 1 0 
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Fig. 4: Coder of R = 1/2, K = 3, m = 2 code 
 
becomes available. Then the outputs of the upper and 
lower modulo-two adders become stable. The output 
selector (SEL A/B block) cycles through two states-in 
the first state, it selects and outputs the output of the 
upper modulo-two adder, in the second state, it selects 
and outputs the output of the lower modulo-two adder.  
 The encoder shown in Fig. 4 encodes the K = 3, (7, 
5) convolutional code. The octal numbers 7 and 5 
represent the code generator polynomials, which when 
read in binary (1112 and 1012) correspond to the shift 
register connections to the upper and lower modulo-two 
adders, respectively. This code has been determined to 
be the “best” code for rate 1/2, K = 3. It is the code we 
will use for the remaining discussion, for reasons that 
will become readily apparent when we get into the 
Viterbi decoder algorithm.  
 Now let's consider the following input data stream 
and the corresponding output data stream:  
 Let the input sequence date, d = 0101110010100012 
and the outputs of both of the flip-flops in the shift 
register are initially cleared, i.e. their outputs are zeroes. 
The first clock cycle makes the first input bit, a zero, 
available to the encoder. The flip-flop outputs are both 
zeroes. The inputs to the modulo-two adders are all 
zeroes, so the output of the encoder is 002.  
 The second clock cycle makes the second input bit 
available to the encoder. The left-hand flip-flop clocks 
in the previous bit, which was a zero and the right-hand 
flip-flop clocks in the zero output by the left-hand flip-
flop. The inputs to the top modulo-two adder are 1002, 
so the output is a one. The inputs to the bottom modulo-
two adder are 102, so the output is also a one. So the 
encoder outputs 112 for the channel symbols.  
 The third clock cycle makes the third input bit, a 
zero, available to the encoder. The left-hand flip-flop 
clocks in the previous bit, which was a one and the 
right-hand flip-flop clocks in the zero from two bit-times 
ago. The inputs to the top modulo-two adder are 0102, so 
the output is a one. The inputs to the bottom modulo-
two adder are 002, so the output is zero. So the encoder 
outputs 102 for the channel symbols. And so on. The 
timing  diagram  that  shows  the process is shown in 
Fig. 5. 

  
 
Fig. 5: The timing diagram of the encoder for the first 6-

bits 
 
 After all of the inputs have been presented to the 
encoder, the output sequence will be:  
 

00 11 10 00 01 10 01 11 11 10 00 10 11 00 112 
 
 Notice here that we have paired the encoder 
outputs-the first bit in each pair is the output of the 
upper modulo-two adder, the second bit in each pair is 
the output of the lower modulo-two adder.  
 You can see from the structure of the R = 1/2, K =3 
convolutional encoder and from the case given above 
that each input bit has an effect on three successive pairs 
of output symbols. That is an extremely important point 
and that is what gives the convolutional code its error-
correcting power. The reason why will become evident 
when we get into the Viterbi decoder algorithm.  
 Now if we are only going to send the 15 data bits 
given above, in order for the last bit to affect three pairs 
of output symbols, we need to output two more pairs of 
symbols. This is accomplished by clocking the 
convolutional encoder flip-flops two (= m) more times, 
while holding the input at zero.  
 This is called “flushing: the encoder and results in 
two more pairs of output symbols. The final binary 
output of the encoder is thus: 
 

O/P = 00 11 10 00 01 10 01 11 11 10 00 10 11 00 11 10 112 
 
 If we don't perform the flushing operation, the last 
m bits of the message have less error-correction 
capability than the first through (m-1)th bits had. This is 
an important thing if we are going to use this FEC 
technique in a burst-mode environment. So's the step of 
clearing the shift register at the beginning of each burst. 
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The encoder must start in a known state and end in a 
known state for the decoder to be able to reconstruct the 
input data sequence properly. 
 Now, let's look at the encoder from another 
perspective. We can think of the encoder as a simple 
state machine. The case above has two bits of memory, 
so there are four possible states. Let's give the left-hand 
flip-flop a binary weight of 21 and the right-hand flip-
flop a binary weight of 20. Initially, the encoder is in the 
all-zeroes state. If the first input bit is a zero, the encoder 
stays in the all zeroes state at the next clock edge. But if 
the input bit is a one, the encoder transitions to the 102 
state at the next clock edge. Then, if the next input bit is 
zero, the encoder transitions to the 012 state, otherwise, 
it transitions to the 112 state. The following table gives 
the next state given the current state and the input, with 
the states given in binary 
 Table 2 is often called a state transition table. We'll 
refer to it as the next state table.  
 Now let us look at a table that lists the channel 
output symbols, given the current state and the input 
data, which we'll refer to as the output table. 
 With Table 2 and 3, we can completely describe the 
behavior of the example rate 1/2, K = 3 convolutional 
encoder. Table 2 and 3 have 2(K-1) rows and 2k columns, 
where K is the constraint length and k is the number of 
bits input to the encoder for each cycle. Table 2 and 3 
will come in handy when we start discussing the Viterbi 
decoder algorithm. 
 
Mapping the channel symbols to signal levels: 
Mapping the one/zero output of the convolutional 
encoder onto an antipodal baseband signaling scheme is 
simply a matter of translating zeroes to +1s and ones to -
1s. This can be accomplished by performing the 
operation y = 1-2x on each convolutional encoder output 
symbol. 
 
Table 2: The next state table 
 Next state, if 
 ------------------------------------------------- 
Current state Input = 0  Input = 1 
00 00 10 
01 00 10 
10 01 11 
11 01 11 

 
Table 3: The output table 
 Next state, if 
 ------------------------------------------------- 
Current state Input = 0  Input = 1  
00 00 11 
01 11 00 
10 10 01 
11 01 10 

Adding noise to the transmitted symbols: Adding 
noise to the transmitted channel symbols produced by 
the convolutional encoder involves generating Gaussian 
random numbers, scaling the numbers according to the 
desired energy per symbol to noise density ratio, Es/N0 
and adding the scaled Gaussian random numbers to the 
channel symbol values.  
 For the uncoded channel, Es/N0 = Eb/N0, since there 
is one channel symbol per bit. However, for the coded 
channel, Es/N0 = Eb/N0+10log10(k/n). For example, for 
rate 1/2 coding, Es/N0 = Eb/N0+10log10(1/2) = Eb/N0-3.01 
dB. Similarly, for rate 2/3 coding, Es/N0 = Eb/N0+10log10 
(2/3) = Eb/N0-1.76 dB.  
 
 The Gaussian random number generator is the only 
interesting part of this task. C only provides a uniform 
random number generator using the function, rand (). In 
order to obtain Gaussian random numbers, we take 
advantage of relationships between uniform, Rayleigh 
and Gaussian distributions:  
 Given a uniform random variable U, a Rayleigh 
random variable R can be obtained by:  
 

2R 2 .ln(1 U) 2ln(1 / (1 U))= σ − = σ −   (1) 
 
where, σ2 is the variance of the Rayleigh random 
variable and given R and a second uniform random 
variable V, two Gaussian random variables G and H can 
be obtained by:  
 
G R cosV
H R sin V

=
=

 (2) 

 
 In the AWGN channel, the signal is corrupted by 
additive noise, n(t), which has the power spectrum No/2 
watts/Hz. The variance σ2 of this noise is equal to No/2. 
If we set the energy per symbol Es = 1, then:  
 

2
s 0E / N 1 / 2= σ   (3) 

 
Where: 
 

s 01 / (2.(E / N ))σ =  (4) 

 
Quantizing the received channel symbols: An ideal 
Viterbi decoder would work with infinite precision, or at 
least with floating-point numbers. In practical systems, 
we quantize the received channel symbols with one or a 
few bits of precision in order to reduce the complexity 
of the Viterbi decoder, not to mention the circuits that 
precede it. If the received channel symbols are quantized 
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to one-bit precision (<0V = 1, >0V = 0), the result is 
called hard-decision data. If the received channel 
symbols are quantized with more than one bit of 
precision, the result is called soft-decision data. A 
Viterbi decoder with soft decision data inputs quantized 
to three or four bits of precision can perform about 2 dB 
better than the one working with hard-decision inputs.  
 It is important to note that, usual quantization 
precision is three bits, where more than three bits 
provides little additional improvement.  
 The selection of the quantizing levels is an 
important design decision because it can have a 
significant effect on the performance of the link. The 
following is a very brief explanation of one way to set 
those levels.  
 Let's assume our received signal levels in the 
absence of noise are -1V = 1, +1V = 0. With noise, our 
received signal has mean +/-1 and standard deviation of: 
 

s 01 / (2.(E / N ))σ =   (5) 

 
 Let's use a uniform three-bit quantizer having the 
input/output relationship shown in Fig. 6, where D is a 
decision level that we will calculate shortly:  
 The decision level, D, can be calculated according 
to the formula: 
 

s 0D 0.5. 0.5. 1 / (2.(E / N ))= σ =   (6) 

 
where, Es/N0 = Energy per symbol to noise density 
ratio[3]. 
 
Perform viterbi decoding: The Viterbi decoder is the 
primary focus of this project. Perhaps the single most 
important concept to aid in understanding the Viterbi 
algorithm is the trellis diagram. Figure 7 shows the 
trellis diagram for our example R = 1/2, K = 3 
convolutional encoder for15-bit messages:  
 The four possible states of the encoder are depicted 
as four rows of horizontal dots. There is one column of 
four dots for the initial state of the encoder and one for 
each time instant during the message.  
 For a 15-bit message with two encoder memory 
flushing  bits,  there  are 17 time  instants  in addition 
to t = 0, which represents the initial condition of the 
encoder. The solid lines connecting dots in the 
diagram represent state transitions when the input bit 
is a one. The dotted lines represent state transitions 
when the input bit is a zero. Notice the 
correspondence between the arrows in the trellis 
diagram and the state transition table discussed above. 

 
 
Fig. 6: Input/Output relationship of uniform, three-bit 

quantizer 
 

 
 
Fig. 7: The trellis diagram for15-bits with two encoder 

memory flushing bits 
 

 
 
Fig. 8: The trellis that are actually reached during the 

encoding of our example 15-bit message 
 
Also notice that since the initial condition of the 
encoder is State 002 and the two memory flushing bits 
are zeroes, the arrows start out at State 002 and end up 
at the same state. The following diagram shows the 
states of the trellis that are actually reached during the 
encoding of our example 15-bit message (Fig. 8). 
 The encoder input bits and output symbols are 
shown at the bottom of the diagram. Notice the 
correspondence between the encoder output symbols 
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and the output table discussed above. Let's look at that 
in more detail, using the expanded version of the 
transition between one time instant to the next shown 
Fig. 9.  
 The two-bit numbers labeling the lines are the 
corresponding convolutional encoder channel symbol 
outputs. Remember that dotted lines represent cases 
where the encoder input is a zero and solid lines 
represent  cases where the encoder input is a one. In 
Fig. 9, the two-bit binary numbers labeling dotted lines 
are on the left and the two-bit binary numbers labeling 
solid lines are on the right.  
 Now let's start looking at how the Viterbi decoding 
algorithm actually works. For our example, we're going 
to use hard-decision symbol inputs to keep things 
simple. (The example source code uses soft-decision 
inputs to achieve better performance.) Suppose we 
receive the above encoded message with a couple of bit 
errors. 
 Each time we receive a pair of channel symbols, 
we compute a metric to measure the "distance" between 
what we received and all of the possible channel 
symbol pairs we could have received. Going from t = 0 
to t = 1, there are only two possible channel symbol 
pairs we could have received: 002 and 112. That's 
because we know the convolutional encoder was 
initialized  to the all-zeroes state  and given one input 
bit = one or zero, there are only two states we could 
transition to and two possible outputs of the encoder. 
These possible outputs of the encoder are 00 2 and 112. 
 The metric used is the Hamming distance between 
the received channel symbol pair and the possible 
channel symbol pairs. The Hamming distance is 
computed by simply counting how many bits are 
different between the received channel symbol pair 
and the possible channel symbol pairs. The results can 
only be zero, one, or two. The Hamming distance (or 
other metric) values computed at each time instant for 
the paths between the states at the previous time 
instant and the states at the current time instant are 
called   branch   metrics.   For   the  first  time  instant, 
 

 
 
Fig. 9: The expanded version of the transition between 

one time instant to the next 

the results are saved as accumulated error metric 
values, associated with states. For the second time 
instant on, the “accumulated error metrics” will be 
computed by adding the previous accumulated error 
metrics to the current branch metrics. 
 At t = 1, we received 002. The only possible 
channel symbol pairs we could have received are 002 
and 112. The Hamming distance between 002 and 002 is 
zero. The Hamming distance between 002 and 112 is 
two. Therefore, the branch metric value for the branch 
from State 002 to State 002 is zero and for the branch 
from State 002 to State 102 it's two. Since the previous 
accumulated error metric values are equal to zero, the 
accumulated metric values for State 002 and for State 
102 are equal to the branch metric values. The 
accumulated error metric values for the other two states 
are undefined. Figure 10 shows the results at t = 1. 
 Note that the solid lines between states at t = 1 and 
the state at t = 0 illustrate the predecessor-successor 
relationship between  the  states  at  t = 1 and the state 
at t = 0 respectively. This information is shown 
graphically in the Fig. 10, but is stored numerically in 
the actual implementation. To be more specific, or 
maybe clear is a better word, at each time instant t, we 
will store the number of the predecessor state that led to 
each of the current states at t.  
 Now let's look what happens at t = 2. We received a 
112 channel symbol pair. The possible channel symbol 
pairs we could have received in going from t = 1 to t = 2 
are 002 going from State 002 to State 002, 112 going from 
State 002 to State 102, 102 going from State 102 to State 
01 2 and 012 going from State 102 to State 11 2. The 
Hamming distance between 002 and 112 is two, between 
112 and 112 is zero and between 10 2 or 012 and 112 is 
one. Adding these branches metric values to the previous 
accumulated error metric values associated with each 
state  that  came  from  to  get  to  the  current  states. At 
t = 1,  we  could   only  be  at  State  002   or  State   102. 
 

 
 
Fig. 10: The Viterbi decoding at stage t = 1 
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Fig. 11: The Viterbi decoding at stage t = 2 
 

 
 
Fig. 12: The Viterbi decoding at stage t = 3 
 
The accumulated error metric values associated with 
those states were 0 and 2 respectively. Figure 11 shows 
the calculation of the accumulated error metric associated 
with each state, at t = 2. 
 That's all the computation for t = 2. What we carry 
forward to t = 3 will be the accumulated error metrics 
for each state and the predecessor states for each of the 
four states at t = 2, corresponding to the state 
relationships shown by the solid lines in the illustration 
of the trellis. 
 Now look at the Fig. 12 for t = 3. Things get a bit 
more complicated here, since there are now two 
different ways that we could get from each of the four 
states that were valid at t = 2 to the four states that are 
valid at t = 3. So how do we handle that? The answer is, 
we compare the accumulated error metrics associated 
with each branch and discard the larger one of each pair 
of branches leading into a given state. If the members 
of a pair of accumulated error metrics going into a 
particular state are equal, we just save that value. The 
other thing that's affected is the predecessor-successor 
history we're keeping. For each state, the predecessor 
that survives is the one with the lower branch metric. If 
the two accumulated error metrics are equal, some 
people use a fair coin toss to choose the surviving 
predecessor state. Others simply pick one of them 
consistently, i.e., the upper branch or the lower branch. 

 
 
Fig. 13: The Viterbi decoding at stage t = 4 
 

 
 
Fig. 14: The trellis that reached during the Viterb 

encoding at stage t =17 
 
It probably doesn't matter which method you use. The 
operation of adding the previous accumulated error 
metrics to the new branch metrics, comparing the 
results and selecting the smaller (smallest) accumulated 
error metric to be retained for the next time instant is 
called the add-compare-select operation. Figure 12 
shows the results of processing t = 3. 
 Note that the third channel symbol pair we 
received had a one-symbol error. The smallest 
accumulated error metric is a one and there are two of 
these.  
 Let's see what happens now at t = 4. The 
processing is the same as it was for t = 3. The results 
are shown in the Fig. 13. 
 Continue this way until t = 17, the trellis should 
look like Fig. 14, with the clutter of the intermediate 
state history removed.  
 The decoding process begins with building the 
accumulated error metric for some number of received 
channel symbol pairs and the history of what states 
preceded the states at each time instant t with the 
smallest accumulated error metric. Once this 
information is built up, the Viterbi decoder is ready to 
recreate  the  sequence  of  bits  that  were  input  to  the 
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Table 4: Accumulated metric for the full 15-bit (plus two flushing 
bits) 

t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
St.002  0 2 3 3 3 3 4 1 3 4 3 3 2 2 4 
St. 012   3 1 2 2 3 1 4 4 1 4 2 3 4 4 
St. 102  2 0 2 1 3 3 4 3 1 4 1 4 3 3 2 
t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
 
Table 5: Surviving predecessor states for each state at each time t 
t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
St.002 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 
St. 012 0 0 2 2 3 3 2 3 3 2 2 3 2 3 2 2 
St. 102 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 
St. 112 0 0 2 2 3 2 3 2 3 2 2 3 2 3 2 2 
 
Table 6: States selected when tracing the path back through the 

survivor state 
t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
 0 0 2 1 2 3 3 1 0 2 1 2 1 0 0 2 
 
convolutional encoder when the message was encoded 
for transmission. This is accomplished by the following 
steps: 
 
• First, select the state having the smallest 

accumulated error metric and save the state number 
of that state  

• Iteratively perform the following step until the 
beginning of the trellis is reached: Working 
backward through the state history table, for the 
selected state, select a new state which is listed in 
the state history table as being the predecessor to 
that state. Save the state number of each selected 
state. This step is called traceback  

• Now work forward through the list of selected 
states saved in the previous steps. Look up what 
input bit corresponds to a transition from each 
predecessor state to its successor state. That is the 
bit that must have been encoded by the 
convolutional encoder  

 
 Table 4 shows the accumulated metric for the full 
15-bit (plus two flushing bits) example message at each 
time t: 
 It is interesting to note that for this hard-decision-
input Viterbi decoder example, the smallest 
accumulated error metric in the final state indicates how 
many channel symbol errors occurred. The following 
state history Table 5 shows the surviving predecessor 
states for each state at each time t: 
 The following table shows the states selected when 
tracing the path back through the survivor state Table 6. 
 Using a Table 7 that maps state transitions to the 
inputs   that   caused   them,   we can now recreate the 
original message. Here is what this table looks like for 
our example R = 1/2 K = 3 convolutional code. 

Table 7: State transitions to the inputs 
 Input was,  Input was,  
Current given next Current given next Current 
state state = 0 state state = 0 state 
002 = 0 0 002 = 0 0 002 = 0 
012 = 1 x 012 = 1 x 012 = 1 
102 = 2 x 102 = 2 x 102 = 2 
112 = 3 0 112 = 3 0 112 = 3 
Note: In the above table, x denotes an impossible transition from one 
state to another state  
 
Table 8: The original message from the message we received 
t = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
C 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 
Note that the two flushing bits have been discarded  
 
So now we have all the tools required to recreate the 
original message from the message we received in 
Table 8. 
 

DISCUSSION 
 
 Convolutional codes are a popular class of coders 
with memory, i.e., the coding of an information block is 
a function of the previous blocks. The Viterbi algorithm 
is an optimal decoding algorithm in the sense that it 
always finds the nearest path to the noisy modification 
of the encoder output sequence and it is quite useful 
when the code has a short memory. Viterbi decoding is 
one the main advantages of convolutional encoding. 
Simplifications offered by Viterbi decoding include the 
use of hamming or Euclidean distances to measure error 
the received codeword, as well as reducing the memory 
requirements half via the introduction of survivor paths. 
The main parameter that requires attention, in Viterbi 
decoding is decoding depth (D). That determines the 
amount of error that can be corrected by the decode 
 

CONCLUSION 
 
 This study presented Convolutional coder software 
implementation using Viterbi decoding algorithm to 
decode bitstream that has been encoded using Forward 
Error Correction  (FEC) to improve the capacity of a 
channel by adding some carefully designed redundant 
information to the data being transmitted through the 
channel. The detailed description and the steps involved 
in simulating a communication channel-using 
convolutional encoding with Viterbi decoding - all have 
been elaborated and discussed in details. The steps 
involved generating the random binary data, 
convolutionally encoding the data, passing the encoded 
data through a noisy channel, quantizing the received 
channel symbols and finally performing Viterbi 
decoding on the quantized channel symbols to recover 
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the original binary data. The steps of modulating the 
channel symbols onto a transmitted carrier and then 
demodulating the received carrier to recover the 
channel symbols have been left out. This is because we 
can accurately model the effects of AWGN even though 
we bypass those steps. Finally, we can say that 
Convolutional Coding with Viterbi Algorithm decoders 
has proven itself as a powerful method that can be rely 
on and trusted. Therefore, we can see that 
Convelutional Coding with Viterbi Algorithm currently 
used in about one billion cellphones, which is probably 
the largest number in any application. 
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