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Abstract: Problem statement: Predicting the tertiary structure of proteins from their linear sequence 
is really a big challenge in biology. This challenge is related to the fact that the traditional 
computational methods are not powerful enough to search for the correct structure in the huge 
conformational space. This inadequate capability of the computational methods, however, is a major 
obstacle in facing this problem. Trying to solve the problem of the protein fold recognition, most of the 
researchers have examined the use of the protein threading technique. This problem is known as NP-
hard; researchers have used various methods such as neural networks, Monte Carlo, support vector 
machine and genetic algorithms to solve it. Some researchers tried the use of the parallel evolutionary 
methods for protein fold recognition but it is less well known. Approach: We reviewed various 
algorithms that have been developed for protein structure prediction by threading and fold recognition. 
Moreover, we provided a survey of parallel evolutionary methods for protein fold recognition. 
Results: The findings of this survey showed that evolutionary methods can be used to resolve the 
protein fold recognition problem. Conclusion: There are two aspects of protein fold recognition 
problem: First is the computational difficulty and second is that current energy functions are still not 
accurate enough to calculate the free energy of a given conformation. 
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INTRODUCTION 
 
 It is a great challenge for nowadays biologists to 
predict the three-dimensional structure of a protein 
from its linear sequence. Proteins, amino acid chains, 
are made up from 20 different amino acids that are 
folded into unique three-dimensional protein structures. 
These structures are determined by their sequence of 
amino acids.  
 In the mean time, there are two experimental 
methods available for determining the three-
dimensional structure of a protein from its amino acid 
sequence: X-ray crystallography and Nuclear Magnetic 
Resonance (NMR). Unfortunately, these methods are 
not efficient enough and that is due to the fact that they 
are expensive and time-consuming. As a result, there is 
a bad need for a fast and reliable computational method 
to predict structures from protein sequences -especially 
since the number of completely-sequenced genomes is 
growing very fast.  
 Biologists have recognized that proteins could have 
similar structural folds even if they have no sequence 
similarity or functional similarity. In fact, the total 
number of structural folds in nature is very small 

compared to the number of known protein sequences. 
(Fold recognition methods try to recognize the 
structural fold of a protein from a structure template 
library, given its sequence information then generate an 
alignment between the query and the recognized 
template protein, from which the structure of query 
protein can be predicted). Fold recognition methods are 
so efficient especially in the following cases: First, 
when the sequence has little or no primary sequence 
similarity to any sequence with a known structure. 
Second, when some model from the structure library 
represents the true fold of the sequence.  
 Although there have been many tests and 
developments of the different fold recognition methods, 
researchers have found out two main points: First, 
current energy functions are not precise enough to 
determine the free energy of a certain conformation; 
Second, there is no direct computational method that 
can recognize the conformation. The size of the 
conformation space is huge. Both of Lathro[13] and 
Akutsu et al.[1] have argued that the protein threading 
problem is NP-complete and MAX-SNP-hard. 
 Many techniques; such as Monte Carlo, Molecular 
Dynamics, Neural Network and Genetic Algorithms, 
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have been used to face the computational difficulty. 
Moreover, researchers, namely Yadgari et al.[28], Liang 
and Wong[14], Krasnogor[12], Unger[24] have used 
evolutionary methods to solve the protein fold 
recognition. On the other hand, researchers like[2,5,8,19], 
have used some parallel methods to solve the problem. 
 
Problem definition: Protein fold recognition methods 
attempt to recognize the suitable template from a 
structure template library for a query protein and 
generate an alignment between the query and the 
recognized template protein, from which the structure 
of query protein can be predicted.  
 Protein fold recognition using the protein threading 
technique has demonstrated a great success[9]. There are 
four steps for the threading technique for protein fold 
prediction for an amino acid sequence.  
 
Step 1: Construct a protein structure template library 
Step 2: Design a scoring function to measure the 

fitness between the target sequence and the 
template 

Step 3: Design an efficient algorithm for searching 
over all the templates in the library 

Step 4: Find the best alignment between the target 
sequence and the template by Minimizing the 
scoring function[9] 

 
Protein threading: Aligning the query to the template 
is the main element (componont) of the protein 
threading problem. The second step is to figure out the 
best alignment among all possible alignments between 
the query and the template and that is by looking for an 
alignment that produces a proper score function 
Yanev[29] . 
 A query is defined as a sequence of amino acids of 
a protein. A template, however, is the three-dimensional 
coordinates of all atoms for each amino acid in the 
sequence which is known as a series of cores (such as 
α-helix, β-sheet), loops, links and turns. Threading a 
query against a template is to determine which basic 
folds the amino acids of the query can fit and then 
compute the free energy of the query[8]. The word 
threading implies that we drag the sequence step by 
step through each location on each template, but in fact 
we are searching for the best arrangement of the 
sequence on that template, as measured by some 
scoring function. 
 The protein threading process is shown in Fig. 1. 
 Threading is a difficult computational problem and 
has been described and proved to be NP-complete[13] 
and hence should be addressed by effective heuristics. 
Also it has been proved that the protein threading 
problem is MAX-SNP-hard, which means that it cannot 
be approximated to an arbitrary accuracy in polynomial 
time[1]. 

 
 

Fig. 1:  Protein threading process 
 

MATERIALS AND METHODS 
 
Overview of protein fold recognition methods: Many 
researchers have tried different techniques; such as 
Molecular Dynamics, Monte Carlo, Genetic Algorithms 
and Neural Network in order to face the computational 
difficulty of protein fold recognition problem. The 
following part, however, discusses different successful 
approaches for protein fold recognition. 
 
Neural network: Jones[10] introduces a new method for 
fold recognition. This method uses a traditional 
sequence alignment algorithm to produce alignments 
which are then evaluated by a method derived from 
threading techniques. Each threaded model is evaluated 
by a neural network in order to produce a single 
measure of confidence in the proposed prediction. So 
his study can be divided into three stages: (i) alignment 
of sequences, (ii) calculation of pair potential and 
salvation terms and (iii) evaluation of the alignment 
using a neural network. Jones[10] implemented 
GenTHREADER Protocol and GenTHREADER 
program. This method has been applied to the genome 
of Mycoplasma genitalium, his results shows that as 
many as 46% of the proteins derived from the predicted 
protein coding regions have a significant relationship to 
a protein of known structure. In some cases, only one 
domain of the protein can be predicted, giving a total 
coverage of 30% when calculated as a fraction of the 
number of amino acid residues in the whole proteome. 
The authors claim that the speed of this method, along 
with its sensitivity and low false-positive rate makes it 
ideal for automatically predicting the structure of all the 
proteins in a translated bacterial genome (proteome).  
 In terms of developing the method further, the 
authors   claimed   that   this   approach   could  easily 
be extended to take into account any number of input 
parameters   and   any   sources   of   sequence-structure  
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information. We can note that GenTHREADER is able 
to produce structurally similar models for one-half of 
the targets, but significantly accurate sequence-structure 
alignments were produced for only one-third of the 
targets. Another note that it is able to find the correct 
answer for the vast majority of the easy targets if a 
structurally similar fold was present in the server's fold 
libraries. However, among the hard targets it is able to 
produce similar models for only 40% of the cases, half 
of which had a significantly accurate sequence-structure 
alignment.      
 Kuang Lin et al[11]. have trained an artificial neural 
network model to predict compatibility of amino acid 
sequences with structural environment. They called 
their program TUNE (Threading Using Neural 
nEtwork). But their model is not trained to discriminate 
native protein structures. They tested their model on the 
discrimination of protein decoy and native 3D structure, 
its performance is comparable to pseudo-energy 
functions with atom level structural description, better 
than the two functions with residue level structural 
descriptions. They used the protein structure 
classification CATH to select training and test sets. All 
the native structures in the decoy sets used for assessing 
ANN models. 
 Mcguffin and Jones[15] have improved and 
benchmarked GenTHREADER method; their 
improvements increase the number of remote 
homologies that can be detected with a low error rate 
which imply a higher reliability of score which also 
increase the quality of the models improved. 
 Nan Jiang et al.[17] proposed a new fold recognition 
model with mixed environment-specific substitution 
mapping (called MESSM) with three key features: (i) a 
structurally-derived substitution score is generated 
using neural networks. (ii) a mixed environment-
specific substitution mapping is developed by combing 
the structural-derived substitution score with sequence 
profile from well-developed sequence substitution 
matrices. (iii) a support vector machine is employed to 
measure the significance of the sequence-structure 
alignment. They tested their model on two benchmark 
problems ;Wallner’s Benchmark and Fischer’s 
Benchmark, the model MESSM was found to lead to a 
good performance on protein fold recognition. 
 
Bayesian networks: Raval et al.[20] present a Bayesian 
network approach for protein fold and superfamily 
recognition. The Bayesian network approach is a 
framework which combines graphical representation 
and probability theory, which includes, as a special 
case, hidden Markov models[20]. They introduced a 
novel implementation of a Bayesian network that can 

learn amino acid sequence, secondary structure and 
residue accessibility for proteins of known three-
dimensional structure. They claimed that the cross 
validation experiments using Bayesian classification 
demonstrate that the Bayesian network model which 
incorporates structural information outperforms a 
hidden Markov model trained on amino acid sequences 
alone.  
  
Structural pattern-based methods: Taylor and 
Jonassen[22] developed a method for evaluation of 
protein models based on residue packing interactions. 
Their method was described to evaluate the register of a 
sequence on a structure based on the matching of 
structural patterns against a library derived from the 
protein structure databank. The computer program that 
implemented the method is called SPREK (Sequence-
structure Pattern-matching by Residue Environment 
Comparison). The authors claimed that the performance 
of SPREK on the decoy models was equivalent to those 
obtained with more complex approaches. Compared to 
previous methods, their approach is very 
straightforward. There are no large tables of potentials 
or any large weight matrices. Despite its simplicity, 
their method did not discard structural information as 
occurs in the majority of methods that consider only 
pairwise residue interactions. The authors maintained a 
description of the structure environment around a 
residue, including the sequential order of the residues in 
the environment and their secondary structure state. A 
major advantage of their method is its ability to operate 
using only the α-carbon atom positions. 
  
Support Vector Machine (SVM): Xu[27] presented a 
Support Vector Machine (SVM) regression approach to 
directly predict the alignment accuracy of a sequence-
template alignment. The authors implemented 
experiments on a large-scale benchmark using their 
Support Vector Machine (SVM) regression approach. 
They claimed that experimental results show that SVM 
regression method has much better performance in both 
sensitivity and specificity than the composition-
corrected Z-score method and SVM regression method 
also performs better than SVM classification method. In 
addition, SVM regression method enables the threading 
program to run faster than the composition-corrected Z-
score method.  
 Sangjo Han et al.[6] resented an alternative method 
for estimating the significance of the alignments. The 
took a query of a protein and aligned it to a template of 
length n in the fold library, then this alignment is 
transformed into a feature vector of length n+1, which 
is then evaluated by Support Vector Machine (SVM). 
The output from SVM is converted to a posterior 
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probability that a query sequence is related to a 
template, given SVM output. According to their results, 
the new method gave significantly better performance 
than PSI-BLAST and profile-profile alignment with Z -
score scheme. The authors claimed that the reason  that 
SVM worked so well is related to the intermediate 
sequence search and its ability to recognize the essential 
features among alignments of remotely related proteins. 
 
Evolutionary methods:  
Genetic algorithms: The first study to introduce GAs 
to the field of protein structure prediction was that of[4]. 
They introduced GAs as a new tool to study proteins. 
Their research showed that the genetic algorithm 
simulation which mimicked important folding 
constraints as overall hydrophobic packaging and a 
propensity of the betaphilic residues for trans positions 
achieved a unique fold. 
 Unger and Moult[24] have developed a genetic 
algorithm search procedure suitable for use in protein 
folding simulations. They used GAs to fold proteins on 
a two-dimensional square lattice in the HP model. They 
maintained a population of conformations of the 
polypeptide chain and changed the conformations by 
mutation, in the form of conventional Monte Carlo 
steps and crossovers in which parts of the polypeptide 
chain are interchanged between conformations. For 
folding on a simple two-dimensional lattice it was 
found that the genetic algorithm is dramatically 
superior to conventional Monte Carlo methods. 
 Schulze-KremerS and TiedemannU[21] used a 
genetic algorithm to search energetically and 
structurally favorable conformations. They used a 
hybrid protein representation, three operators to 
manipulate the protein genes and a fitness function 
based on a simple force field. 
 Yadgari et al.[28] addressed the genetic algorithm 
paradigm used to perform sequence to structure 
alignments. The sequence-structure pairs in their 
research were taken from a database of structural 
alignments where the sequence of one protein was 
threaded through the structure of the other.   
 In this study, a proper representation has been 
discussed in which genetic operators can be effectively 
implemented. Their representation consists of numbers 
usually zeros and ones or integer number when there is 
a sequence deletion; an example of representation is 
11110011311 (1 means a position of sequence on 
structure, 0 means structure deletion any other number, 

like 3 in the example, means sequence deletion). The 
authors claimed that the algorithm performance is 
tested for a set of six sequence-structure pairs. The 
effects of changing operators and parameters are 
explored and analyzed. The data they have presented 
indicate that the Genetic Algorithms method is a 
feasible and efficient approach for threading. 
 The authors claimed that genetic algorithms 
threading is quite robust and is not overly dependent on 
the particular selection of parameter or operators.  
 Unger[24] addressed the problem of protein 
structure prediction and protein alignments by using 
genetic algorithms. It is widely recognized that one of 
the major obstacles in addressing this question is that 
the “standard” computational approaches are not 
powerful enough to search for the correct structure in 
the huge conformational space. Genetic algorithms, a 
cooperative computational method, have been 
successful in many difficult computational tasks. Thus 
it is not surprising that in recent years several studies 
were performed to explore the possibility of using 
genetic algorithms to address the protein structure 
prediction problem. 
 In this study, a general framework of how genetic 
algorithms can be used for protein structure prediction 
was described. Using this framework, the significant 
studies that were published in recent years are discussed 
and compared. Applications of genetic algorithms to the 
related question of protein alignments are also 
mentioned. The rational of why genetic algorithms are 
suitable for protein structure prediction is presented. 
 The author claimed that GAs are efficient general 
search algorithms and as such are appropriate for any 
optimization problem, including problems related to 
protein folding. The author suggested some 
improvements to be made to GA methods to improve 
performance. One obvious aspect is to improve the 
energy function. An interesting possibility to explore 
within the GA framework is to make a distinction 
between the fitness function and the energy function. In 
this way it might be possible to emphasize different 
aspects of the fitness function in different stages of 
folding. Another possibility is to introduce explicit 
memory into the emerging substructure, such that 
substructures that have been advantageous to the 
structures that accommodate them will get more level 
of immunity form changes. 
 M.V.Judy and K.S.Ravichandran[16] proposed a 
new intermediate selection strategy for genetic 

algorithms and implemented it for protein folding 
problem. They proposed a new intermediate selection 
step, which they called as Modified Keep-Best 

Reproduction (MKBR) to overcome the problem that 
the parents may be worse than the children as it is 
known in GA in practice. The new selection method 
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ensures that new genetic information is entered into the 
gene pool, as well as good previous genetic material is 
being preserved.They have demonstrated the superiority 
of modified keep-best reproduction on several instances 
of the proteinfolding problem, which not only finds the 
optimum solution, but also finds them faster than the 
standard generational replacement schemes. 
 
Evolutionary monte carlo: Monte Carlo methods have 
traditionally been employed to address the protein 
folding problem. Monte Carlo algorithms based on 
minimizing the energy function, through a path that 
does not necessarily follow the natural folding pathway. 
The GA approach incorporates many Monte Carlo 
concepts[24]. 
 Traditional Monte Carlo and molecular-dynamics 
simulations tend to get caught in local minima, so the 
native structure cannot be located and the 
thermodynamic quantities cannot be estimated 
accurately[14]. To resolve this problem, Liang and 
Wong[14] proposed an Evolutionary Monte Carlo 
(EMC) approach for protein folding simulations. They 
demonstrated that EMC can be applied successfully to 
simulations of protein folding on simple lattice models 
and to finding the ground state of a protein.  
 The authors claimed that in all cases, EMC is faster 
than the genetic algorithm and the conventional 
Metropolis Monte Carlo and in several cases it finds 
new lower energy states. The authors also proposed one 
method for the use of secondary structure in protein 
folding; their numerical results showed that it is 
extremely superior to other methods in finding the 
ground state of a protein. But, the authors just have 
considered only 2D HP models and they claim that the 
extension to 3D HP and real protein models is 
straightforward. 
 
Parallel Evolutionary Methods (PEM) for protein 
fold recognition: Many researchers used parallel 
methods to solve the protein fold recognition problem 
in recent studies. While some researchers also used 
parallel methods to solve RNA sequence problem. 
There are three domains of biological sequences, 
namely DNA, RNA and protein. Some research mainly 
deals with the alignment in one domain. However, the 
method can be easily extended to deal with other 
domains. So in the following part, some parallel 
evolutionary methods for biological structure prediction 
will be discussed. 
 
Parallel genetic algorithms: 
Parallel hybrid gas: Carpio et al.[3] were the first to 
present a parallel hybrid genetic algorithm for three 
dimensional structure predictions of polypeptides. Their 

previous research based on a simple genetic algorithm 
was insufficient to produce better fit conformers, so 
they have proposed an improvement in two substantial 
aspects. The first is a parallelization of the original 
algorithm to enrich the diversity of conformers in the 
population and the second a hybridization of the simple 
GA in order to process the atoms of the side chains. 
Carpio et al.[3] claimed that a comparison of the best fit 
individual after the 500th generation obtained by the 
hybrid GA reveals more accurately the level of 
evolution of the process.  
 In 2002, Nguyen et al.[19] proposed a parallel 
hybrid genetic algorithm for solving the sum-of-pairs 
multiple protein sequence alignment problem. They 
present a new GA-based method for more efficient 
multiple protein sequence alignment. 
 It is well known that the sum-of-pairs multiple 
sequence alignment problem can be exactly solved by 
the dynamic programming algorithm. However, this 
algorithm requires a running time which grows 
exponentially in proportion to the size of the problem. 
The majority of multiple sequence alignment heuristics 
is now carried out using the progressive approach (e.g., 
CLUSTALW, MULTAL, T-COFFEE), however, its 
main disadvantage is the local minimum problem. This 
study presented a new GA-based method for more 
efficient multiple protein sequence alignment. A new 
chromosome representation and its corresponding 
genetic operators have been proposed. A multi-
population GENITOR-type GA is combined with local 
search heuristics. It was then extended to run in parallel 
on a multiprocessor system for speeding up.  
 The authors claimed that experimental results of 
benchmarks from the BAliBASE showed that the 
proposed method is superior to MSA, OMA and SAGS 
methods with regard to quality of solution and running 
time. It can be to find multiple sequence alignment as 
well as testing cost functions.  
 
Island parallel gas: Anbarasu et al.[2] presented an 
evolution-based approach for solving multiple 
molecular sequence alignment. The approach is based 
on the island Parallel Genetic Algorithm (iPGA) that 
relies on the fitness distribution over the population of 
alignments. The algorithm searches for an alignment 
among the independent isolated evolving populations 
by optimizing weighted sum of pairs-objective function 
which measures the alignment quality.  
 Some of the most widely used multiple molecular 
sequence alignment packages like ClustalW, Mutal and 
Pileup are based on dynamic programming. They have 
advantages of being fast and simple as well as 
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reasonably sensitive, but their main drawback is the 
local minimum problem. In this study, the authors 
describe an iPGA strategy that runs on a distributed 
network of workstations.  
Their parallel approach was implemented on PARAM 
10000; a parallel machine developed at the Center of 
Development of Advanced Computing, Pune and is 
shown to consistently perform better than the sequential 
genetic algorithm. The algorithm generated alignments 
that were qualitatively better than an alternative 
method, ClustalW.  
 
Multi-objective fmGA: Previous research using the 
Simple Genetic Algorithm (GA), messy GA (mGA), 
fast messy GA (fmGA) and Linkage Learning GA 
(LLGA) has made progress on this problem. However, 
past research used off-the-shelf software such as 
GENOCOP, GENESIS and mGA[5]. Day et al.[5] 
presented a modified fmGA as multi-objective 
implementation of the fmGA (MOfmGA) and a 
farming model for the parallel fmGA for protein 
structure prediction. The authors focused on tuning 
fmGA in an attempt to improve the effectiveness and 
efficiency of the algorithm in solving a protein structure 
and in finding better ways to identify secondary 
structures.  
 Problem definition, protein model representation, 
mapping to algorithm domain, tool selection 
modifications and conducted experiments were 
discussed in this study.  
 They claimed that their progress of using 
MOfmGA have been modified to scale its efficiency to 
4.7 times a serial run time and computational results 
support their hypothesis that the MO version provides 
more acceptable results. 
 
Parallel evolution strategy: Islam and Ngom[8] 
proposed an evolution strategy for protein threading 
and also developed two parallel approaches for fast 
threading based on an evolution strategy for protein 
threading. The parallelization is based on master-slave 
architecture. Their novel approach, for protein 
threading, is based on evolution strategy. The Single 
Query Single Template Parallel ES Threading (SQST-
PEST) method threads one query against one template; 
The Single Query Multiple Templates Parallel ES 
Threading (SQMT-PEST) method threads one query 
against a set of templates. The parallelization is based 
on master-slave architecture. 
 They used High Performance Computing 
environment, SHARCNET (Shared Hierarchical 
Academic Research Computing Network) as computing 
platform for experiment. 

 The authors claimed that the two parallel 
approaches have obtained at least better results than 
current comparable approaches, as well as significant 
reduction in execution time, but they did not explain 
what they mean by “at least better”.  
 Alioune Ngom[18] proposed a novel evolution 
strategy for the solution of the protein threading 
problem using evaluation strategy called EST. The 
author showed that with recombination, his EST 
algorithm gave much better results, both in energy and 
threading time, than an existing GA-based method. 
Without recombination, EST is comparable to the GA-
based approach but much faster. He also proposed a 
parallel method for fast threading, his parallel EST was 
implemented on Grid-enabled platforms for High-
Performance Computing. 
 The author was only interested in determining the 
best alignment between a query and a template given an 
energy function so he was planing to use a better energy 
function than the one discussed in the study. Also, a 
threading score between a query and a template may 
not provide enough information about whether the 
template is the “correct” fold. That is, from the 
threading scores between a query and a pool of 
templates, we generally cannot tell if the query’s 
correct fold template is in the pool, nor can we always 
tell which is the correct fold even if it is there. 
 
RnaPredict approach: Wiese and Hendriks[26] 
presented a parallel evolutionary algorithm called P-
RnaPredict for RNA secondary structure prediction. P-
RnaPredict is a fully parallel implementation of a 
coarse-grained distributed EA for RNA secondary 
structure prediction and is based on RnaPredict, a serial 
EA for the same purpose which encodes RNA 
secondary structures in permutations and includes two 
stacking-energy based thermodynamic models. Two 
sets of experiments were performed on five known 
structures from 3 RNA classes. The first determines the 
actual speedup and the second evaluates the 
performance of P-RnaPredict through comparison to 
mfold. The authors stated the results that P-RnaPredict 
was shown to possess good prediction accuracy, 
especially on shorter sequences and P-RnaPredict 
succeeds in predicting structures with higher true 
positive base pair counts and lower false positives than 
mfold on specific sequences. 
 
Probabilistic roadmap methods: Thomas and 
Amato[23] introduced a new computational technique for 
studying protein folding that was based on probabilistic 
roadmap methods for motion planning. They claimed 
that their technique yielded an approximate map of a 
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protein’s potential energy landscape that contains 
thousands of feasible folding pathways and they had 
validated their method against known experimental 
results. Other simulation techniques, such as molecular 
dynamics or Monte Carlo methods, required many 
orders of magnitude more time to produce a single, 
partial, trajectory. They reported their experiments 
parallelizing their method using STAPL, that is being 
developed in the Parasol Lab at Texas A&M. With 

STAPL, they were able to easily parallelize their 
sequential code to obtain scalable speedups.  

RESULTS AND DISCUSSION 
 
 Many researchers used evolutionary methods to 
solve protein fold recognition problem and their results 
were promising as shown in Table 1, for the time 
problem many researchers tried to parallelize the 
problem and also got promising results as shown in 
Table 2. 

 
 
Table 1: protein fold recognition approaches based on technique used 
Method Paper Major contribution 
Neural network GenTHREADER: An efficient and reliable protein fold  A neural network method for fold recognition   
 recognition method for genomic sequences[19] 

 Improvement of the GenTHREADER method for genomic  Impovement of the GenTHREADER   
 fold recognition[15,19] 

 Protein fold recognition using neural networks and A new fold recognition model with Mixed Environment 
 support vector machines[17] Specific Substitution Mapping (MESSM) 
Bayesian networks A Bayesian network model for protein fold and remote  A Bayesian network approach for protein fold and 
 recognition[20]   superfamily recognition  
Structural pattern- A structural pattern-based method for protein fold A method (SPREK) was developed for the evaluation of 
based method recognition[22] protein models based on residue packing interactions 
Support Vector Fold recognition by predicted alignment accuracy[27]   A SVM regression approach for protein fold recognition 
Machine (SVM) Fold recognition by combining profile- profile An alternative method for estimating the 
 alignment and support vector machine[6]   significance of the alignments evaluated by SVM 
 Protein Fold Recognition Using Networks and SVMs[17] A new fold recognition model with mixed environment 
  specific substitution mapping (MESSM) 
Genetic algorithms Potential of genetic algorithms in protein folding and Genetic algorithms for protein folding and protein 
 protein engineering simulations[4] engineering simulations 
 Genetic algorithms for protein folding simulations[25] Genetic algorithms to fold proteins on a two- dimensional 
  square lattice in the HP model 
 Genetic threading[28] A genetic algorithm paradigm for protein threading 
 The genetic algorithm approach to protein structure A framework of genetic algorithms for protein structure 
 prediction[24] prediction. 
 A Solution to Protein Folding Problem Using a Genetic A new intermediate selection strategy for genetic 
 Algorithm with Modified Keep Best Reproduction [16] algorithms and implemented it for protein folding problem. 
Monte Carlo Evolutionary Monte Carlo for protein folding simulations[14] Evolutionary Monte Carlo approach for protein folding 
  simulations 

 
Table 2: Parallel evolutionary methods for protein fold recognition 
Method  Paper  Major contribution 
Parallel genetic A parallel hybrid GA for peptide 3-D structure prediction[3] A parallel hybrid GA for peptide 3-D structure prediction 
algorithms Multiple molecular sequence alignment by island parallel Island parallel genetic algorithm for multiple molecular 
 genetic algorithm[2] sequence alignment 
 Aligning multiple protein sequences by parallel hybrid A parallel hybrid genetic algorithm for solving the sum- 
 genetic algorithm[19] of-pairs multiple protein sequence alignment 
Multi-objective Protein structure prediction by applying an evolutionary Multiobjective implementation of the fmGA (MOfmGA) 
Evolutionary algorithm and a farming model for the parallel fmGA 
Approach Multi-class protein fold recognition using multi-objective A Multi-Objective Feature Analysis and Selection 
 evolutionary algorithms[5] Algorithm (MOFASA) for protein fold recognition 
Parallel Parallel evolution strategy for protein threading[8] A novel approach based on evolution strategy for protein 
  threading 

strategy Parallel evolution strategy on grids for the protein threading A novel evolution strategy for the protein threading 
evolution problem[18] problem using evaluation strategy EST. 
P-Rna predict A detailed analysis of parallel speedup in P-RnaPredict-an A parallel evolutionary algorithm for RNA secondary 
  structure prediction 
Approach evolutionary algorithm for RNA secondary structure prediction[26] A new computational technique for studying protein 
Probabilistic Parallel protein folding with STAPL[23] folding that is based on probabilistic roadmap methods 
roadmap methods  for motion planning 
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CONCLUSION 
 
 This survey has shown that evolutionary methods 
can be used to resolve the protein fold recognition 
problem. We can see that there are two aspects of 
protein fold recognition problem: first is the 
computational difficulty and second is that current 
energy functions are still not accurate enough to 
calculate the free energy of a given conformation  
 However, the computational difficulty can be 
solved by parallelization of one of the evolutionary 
methods so it can give a high performance. An efficient 
parallel evolutionary method with an accurate energy 
function will be a good idea for my future research.  
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