
Journal of Computer Science 4 (9): 729-740, 2008
ISSN 1549-3636
© 2008 Science Publications

729

Extending the Concepts of Normalization from Relational Databases

 to Extensible-Markup-Language Databases Model

Hosam Farouk El-Sofany
Department of Computer Science and Engineering,

College of Engineering, Qatar University, Qatar

Abstract: In this study we have studied the problem of how to extend the concepts of Functional
Dependency (FD) and normalization in relational databases to include the eXtensible Markup
Language (XML) model. We shown that, like relational databases, XML documents may contain
redundant information and this redundancy may cause update anomalies. Furthermore, such problems
are caused by certain functional dependencies among paths in the document. Our goal is to find a way
for converting an arbitrary XML Schema to a well-designed one, that avoids these problems. We
introduced new definitions of FD and normal forms of XML Schema (X-1NF, X-2NF, X-3NF and X-
BCNF). We shown that our normal forms are necessary and sufficient to ensure all conforming XML
documents have no redundancies.

Key words: XML model, database design, functional dependencies, normal forms

INTRODUCTION

 Although many XML documents are views of
relational data, the number of applications using native
XML documents is increasing rapidly. Such
applications may use native XML storage facilities[2]
and update XML data[3]. Updates, like in relational
databases, may cause anomalies if data is redundant. In
the relational world, anomalies are avoided by
developing a well-designed database schema. XML has
its version of schema too; such as DTD and XML
Schema[1]. Our goal is to find the principles for good
XML Schema design. We believe that it is important to
do this research now, as a lot of data is being put on the
web. Once massive web databases are created, it is very
hard to change their organization; thus, there is a risk of
having large amounts of widely accessible, but at the
same time poorly organized legacy data.
 Normalization is a process which eliminates
redundancy, organizes data efficiently and improves
data consistency. Whereas normalization in the
relational world has been quite explored, it is a new
research area in native XML databases. Even though
native XML databases mainly work with document-
centric XML documents and the structure of several
XML document might differ from one to another, there
is room for redundant information. This redundancy in
data may impact on document updates, and efficiency
of queries. Figure 1 show an overview of the XML
normalization process that we propose.

Fig. 1: An overview of the XML normalization process

 This study is focus on dependency and normal
form theory. This theory concerns with the well-
designed databases and it connected with dependencies
such as keys, functional dependencies (FDs), weak
functional dependencies, multi-valued dependencies,
inclusion dependencies, and join dependencies. All
these classes of dependencies have been deeply
investigated in the context of the relational data
model[4,5]. The study now requires its generalization to
XML (trees like) model.

Motivating example: Through an example, we show
that, like relational databases, XML documents may
contain redundant information and this redundancy may
cause update anomalies.

Example 1: Consider the following XML Schema that
describes a part of a "university" database. For every
course, we store its number (cno), its title and the list of
students taking the course. For each student taking a
course, we store the student number (sno), name and
the grade in the course.

J. Computer Sci., 4 (9): 729-740, 2008

 730

<?xml version = “1.0” encoding = “IS0-8859-1”?>
<xs:schema xmlns:xs “http://www.w3.org/2001/
SMLSchema”>
<xs:element name = “courses”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name = “course” type = “course”

max0ccurs = “unbounded”/>
 </xs:sequence>
 </xs:complextType>
</xs:element>
<xs:element name = “course”>
 <xs:complextType>
 <xs:sequence>
 <xs: element name = “title” type = “xs:string”/>
 <xs:element name = “taken_by” type =
“taken_by” max0ccurs = “unbounded”/>
 </xs:sequence>
 </xs:attribute name = “cno” type = “xs:string” use

= “required”/>
 <xs:complexType>
</xs:element>
<xs:element name = “taken_by”>
 <xs:complesType>
 <xs:sequence>
 <xs:element name = “student” type = “student”

max0ccurs = “unbounded:/>
 </xs:sequence>
 </xs:complexType>
<xs:element>
<xs:element name = “student”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name = “name” type = “sx:string”/>
 <xs:element name = “grade” type = “sx:string”/>
 <xs:sequence>
 <xs:attribute name = “sno” type = “xs:string” use
= “required”/>
 </xs:complexType>
</xs:element>

</xs:schema>

 An example of an XML document (tree) that
conforms to this XML Schema is shown in Fig. 2[13].
This document satisfies the following constraint:
"any two student elements with the same sno value
must have the same name"
 This constraint (which looks very much like a FD),
causes the document to store redundant information: for
example, the name Deere for student st1 is stored twice,
as in relational databases, such redundancies can lead to
update anomalies: for example, updating the name of

st1 for only one course results in an inconsistent
document and removing the student from a course may
result in removing that student from the document
altogether.
 In order to eliminate redundant information, we use
a technique similar to the relational one and split the
information about the name and the grade. Since we
deal with just one XML document, we must do it by
creating an extra element of complex Type, called info,
for student information, as shown:

<?xml version = “1.0” encoding = “IS0-8859-1”?>
<xs:schema xmlns:xs “http://www.w3.org/2001/
SMLSchema”>
<xs:element name = “courses”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name = “course” type = “course”

max0ccurs = “unbounded”/>
 <xs:element name = “info” type = “info”

max0ccurs = “unbounded”/>
 </xs:sequence>
 </xs:complextType>
</xs:element>
<xs:element name = “course”>
 <xs:complextType>
 <xs:sequence>
 <xs: element name = “title” type = “xs:string”/>
 <xs:element name = “taken_by” type =

“taken_by” max0ccurs = “unbounded”/>
 </xs:sequence>
 </xs:attribute name = “cno” type = “xs:string” use
= “required”/>
 <xs:complexType>
</xs:element>
<xs:element name = “taken_by”>
 <xs:complesType>
 <xs:sequence>
 <xs:element name = “student” type = “student”

max0ccurs = “unbounded:/>
 </xs:sequence>
 </xs:complexType>
<xs:element>
<xs:element name = “student”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name = “name” type = “sx:string”/>
 <xs:element name = “grade” type = “sx:string”/>
 <xs:sequence>
 <xs:attribute name = “sno” type = “xs:string” use
= “required”/>
 </xs:complexType>
</xs:element>

J. Computer Sci., 4 (9): 729-740, 2008

 731

<xs:element name = “info”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name = “number” type = “xs:string”
max0ccurs = “unbounded:/>
 <xs:element name = “name” type = “xs:string”>
 </xs:sequence>
 <xs:element name = “sno” type = “xs:string” use
= “required”/>
 </xs:complexType>
</xs:element>

</xs:schema>

Fig. 2: A document containing redundant information

Fig. 3: A well-designed document

 Each info element has (as children) one name and a
sequence of number elements, with sno as an attribute.
Different students can have the same name and we
group all student numbers sno for each name under the
same info element. A restructured document that
conforms to this XML Schema is shown in Fig. 3, [13].
Note that st2 and st3 are put together because both
students have the same name.
 This example remembers us with the bad relational
design caused by nonkey FDs and how the database
designer solve this problem by modifying the schema.

MATERIALS AND METHODS

To extend the notions of FDs to the XML model, we
represent XML trees as sets of tuples[13] and find the
correspondence between documents and relations that
leads to the definition of functional dependency.
 We first describe the formal definitions of XML
Schema (XSchema) and the conforming of XML tree to
XSchema. The definition of XSchema is based on
regular tree grammar theory that introduced in[22].
Assume that we have the following disjoint sets:

• Ê: set of element names
• Â: set of attribute names
• DΤ: set of atomic data types (e.g., ID, IDREF

IDREFS, string, integer and date, …)
• Str: set of possible values of string-valued

attributes
• Vert: set of node identifiers

 All attribute names start with the symbol @. The
symbols φ and S represent element type declarations
EMPTY (null) and #PCDATA, respectively.

Definition 1 (XSchema): An XSchema is denoted by
6-tuple: X = (E, A, M, P, r, ∑), where:

• E ⊆ Ê, is a finite set of element names.
• A ⊆ Â, is a finite set of attribute names.
• M is a function from E to its element type

definitions: i.e., M(e) = α, where e ∈ E and α is a
regular expression:

 α ::= ε | t | α + α | α, α | α* | α? | α+

 where, ε denotes the empty element, t ∈ DΤ, "+"

for the union, "," for the concatenation, α* for the
Kleene closure, α? for (α + ε) and α+ for (α, α*)

• P is a function from an attribute name a to its
attribute type definition: i.e., P(a) = β, where β is a
4-tuple (t, n, d, f), where:

J. Computer Sci., 4 (9): 729-740, 2008

 732

 t ∈ DΤ
 n = Either "?" (nullable) or "¬?" (not nullable)
 d = A finite set of valid domain values of a or ε if

not known
 f = A default value of a or ε if not known
• r ⊆ E is a finite set of root elements
• ∑ is a finite set of integrity constraints for XML

model. The integrity constraints we consider are
keys (P.K, F.K,…) and dependencies (functional
and inclusion)

Definition 2 (path in XSchema): Given an XSchema
X = (E, A, M, P, r, ∑), a string p = p1 …pn, is a path in
X if, p1 = r, pi is in the alphabet of M(pi −1), for each i ∈
[2, n − 1] and pn is in the alphabet of M(pn−1) or pn = @l
for some @l ∈ P(pn−1).

• We define length(p) as n and last(p) as pn
• We let paths(X) stand for the set of all paths in X

and EPaths(X) for the set of all paths that ends with
an element type (rather than an attribute or S), that
is: EPaths(X) = { p ∈ paths(X) | last(p) ∈ E }

• An XSchema is called recursive if paths(X) is
infinite

Definition 3 (XML Tree): An XML tree T is defined
to be a tree, T = (V, lab, ele, att, root)
Where:

• V ⊆ Vert is a finite set of vertices (nodes)
• lab : V → Ê

• ele : V → Str ∪V*
• att is a partial function V × Â → Str. For each v ∈

V, the set {@l ∈Â | att(v, @l) is defined} is
required to be finite

• root ∈ V is called the root of T

 The parent-child edge relation on V, {(v1, v2) | v2
occurs in ele(v1)}, is required to form a rooted tree.
Note that, the children of an element node can be either
zero or more element nodes or one string.

Definition 4 (path in XML tree): Given an XML tree
T, a string: p1…pn with p1 ,…, pn-1∈Ê and pn∈Ê
UÂU{S} is a path in T if there are vertices v1 … vn−1∈V
s.t.:

• v1 = root, vi+1 is a child of vi (1 ≤ i ≤ n − 2),

lab(vi) = pi (1 ≤ i ≤ n − 1)

• If pn ∈ Ê, then there is a child vn of vn−1 s.t.
lab(vn) = pn. If pn = @l, with @l∈Â, then att(vn−1,
@l) is defined. If pn = S, then vn−1 has a child in Str

• We let paths(T) stand for the set of paths in T

 Now, we give a definition of a tree conforming to
the XSchema (T╞ X) and a tree compatible with X
(T X<).

Definition 5: Given an XSchema X = (E, A, M, P, r, ∑)
and an XML tree T = (V, lab, ele, att, root), we say that
T is valid w.r.t. X (or T conforms to X) written as (T╞
X) if:

• lab: V → E
• For each v ∈ V, if M(lab(v)) = S, then ele(v) = [s],

where s ∈ Str. Otherwise, ele(v) = [v1, … , vn] and
the string lab(v1) … lab(vn) must be in the regular
language defined by M(lab(v))

• att is a partial function, att: V × A → Str, s.t. for
any v ∈ V and @l ∈ A, att(v, @l) is defined iff @l
∈ P(lab(v))

• lab(root) = r
• We say that T is compatible with X (written T ⊲X)

iff paths(T) ⊆ paths(X)
• Clearly, T╞ X ∈ T ⊲X

Definition 6: Given two XML trees T1 = (V1, lab1, ele1,
att1, root1) and T2 = (V2, lab2, ele2, att2, root2), we say
that T1 is subsumed by T2, written as T1 ≤ T2 if:

• V1 ⊆ V2
• root1 = root2
• lab2|V1 = lab1
• att2|V1×Â = att1
• ∀ v ∈ V1, ele1(v) is a sub-list of a permutation of

ele2(v)

Definition 7: Given two XML trees T1 and T2, we say
that T1 is equivalent to T2 written T1 ≡ T2, iff T1 ≤ T2
and T2 ≤ T1 (i.e., T1 ≡ T2 iff T1 and T2 are equal as
unordered trees):

• We define [T] to be the ≡-equivalence class of T
• We write: [T]╞ X if Ti╞ X for some Ti ∈ [T]
• It is easy to see that for any T1 ≡ T2, paths(T1) =

paths(T2), hence
• T1 ⊲ X iff T2 ⊲ X
• We shall also write T1 < T2 when T1 ≤ T2 and T2 ≰

T1

J. Computer Sci., 4 (9): 729-740, 2008

 733

 In the following definition, we extend the notion of
tuple for relational databases to the XML model. In a
relational database, a tuple is a function that assigns to
each attribute a value from the corresponding domain.
In our setting, a tree tuple t in a XML Schema X is a
function that assigns to each path in X a value in

Vert∪Str∪{φ} in such a way that t represents a finite
tree with paths from X containing at most one
occurrence of each path. We show that an XML tree
can be represented as a set of tree tuples.

Definition 8 (tree tuples): Given XML Schema X =
(E, A, M, P, r, ∑), a tree tuple t ∈ X is a function, t:
paths(X) → VertUStrU{φ} such that:

• For p ∈ EPaths(X), t(p) ∈ Vert∪{φ} and t(r) ≠ φ

• For p ∈ paths(X) − EPaths(X), t(p) ∈ Str ∪ {φ}
• If t(p1) = t(p2) and t(p1) ∈ Vert, then p1 = p2
• If t(p1) = φ and p1 is a prefix of p2, then t(p2) = φ
• {p ∈ paths(X) | t(p) ≠ φ} is finite

 T(X) is defined to be the set of all tree tuples in X.
For a tree tuple t and a path p, we write t.p for t(p).

Example 2: Suppose that X is the XML Schema shown
in example 1. Then a tree tuple in X assigns values to
each path in paths(X) such as:

t(courses) = v0
t(courses.course) = v1
t(courses.course.@cno) = csc200
t(courses.course.title) = v2
t(courses.course.title.S) = Automata Theory
t(courses.course.taken_by) = v3
t(courses.course.taken_by.student) = v4
t(courses.course.taken_by.student.@sno) = st1
t(courses.course.taken_by.student.name) = v5
t(courses.course.taken_by.student.name.S) = Deere
t(courses.course.taken_by.student.grade) = v6
t(courses.course.taken_by.student.grade.S) = A+

Definition 9 (treeX): Given XML Schema X = (E, A,
M, P, r, ∑) and a tree tuple t ∈ T(X), treeX(t) is defined
to be an XML tree (V, lab, ele, att, root), where:
• root = t.r
• V = {v ∈ Vert | ∃ p ∈ paths(X) such that v = t.p}
• If v = t.p and v ∈ V, then lab(v) = last(p)
• If v = t.p and v ∈ V, then ele(v) is defined to be the

list containing

• {t.p' | t.p' ≠ φ and p' = p.τ, τ ∈E, or p' = p.S,
ordered lexicographically

• If v = t.p, @l ∈ A and t.p.@l ≠ φ , then att(v, @l)
= t.p.@l

Example 3: Let X be the XML Schema from example
1 and t the tree tuple from Example 2. Then, t gives rise
to the following XML tree:

V2

V1

V0

V3

V4

V5 V6

Automata theory

A+

st1

Deere

Csc200

Proposition 1: If t ∈ T (X), then treeX(t) ⊲X.

 We would like to describe XML trees in terms of
the tuples they contain. For this, we need to select
tuples containing the maximal amount of information.
This is done via the usual notion of ordering on tuples
(relations).

• If we have two tree tuples t1, t2, we write t1 ⊆ t2 if

whenever t1.p is defined, then t2.p is also defined
and t1.p ≠ φ ∈ t1.p = t2.p

• As usual, t1 ⊂ t2 means t1 ⊆ t2 and t1 ≠ t2
• Given two sets of tree tuples, Y and Z, we write: Y

⊆ b Z, if: ∀ t1 ∈ Y ⇒ t2 ∈ Z s.t. t1 ⊆ t2

Definition 10 (tuplesX): Given XML Schema X and an
XML tree T such that T ⊲X, tuplesX(T) is defined to be
the set of maximal tree tuples t (with respect to ⊆), s.t.
treeX(t) is subsumed by T, that is:
max⊆{ t ∈T (X) | treeX(t) ≤ T }
Note that:

• T1 ≡ T2 implies tuplesX(T1) = tuplesX(T2)

J. Computer Sci., 4 (9): 729-740, 2008

 734

• Hence, tuplesX applies to equivalence classes:
tuplesX([T]) = tuplesX(T)

• The following proposition lists some simple
properties of tuplesX(·)

Proposition 2: If T ⊲X, then tuplesX(T) is a finite
subset of T(X). Furthermore, tuplesX(·) is monotone: T1
≤ T2 implies tuplesX(T1) ⊆b tuplesX(T2).

Proof: We prove only monotonicity. Suppose that T1 ≤
T2 and t1 ∈ tuplesX(T1). We have to prove that ∃ t2 ∈
tuplesX(T2) such that t1 ⊆ t2. If t1 ∈ tuplesX(T2), this is
obvious, so assume that t1 ∉ tuplesX(T2). Given that t1
∈ tuplesX(T1), treeX(t1) ≤ T1 and therefore, treeX(t1) ≤
T2. Hence, by definition of tuplesX(·), there exists t2∈
tuplesX(T2) such that t1 ⊂ t2, since t1∉ tuplesX(T2).

Example 4: In example 1, we saw the XML Schema X
and a tree T conforming to X. In example 2, we saw
one tree tuple t for that tree, with identifiers assigned to
some of the element nodes of T. If we assign identifiers
to the rest of the nodes, we can compute the set
tuplesX(T):

{(v0, v1, csc200, v2, Automata Theory, v3, v4, st1, v5,
Deere, v6, A+)
(v0, v1, csc200, v2, Automata Theory, v3, v7, st2, v8,
Smith, v9, B-)
(v0, v10, mat100, v11, Calculus I, v12, v13, st1, v14, Deere,
v15, A)
(v0, v10, mat100, v11, Calculus I, v12, v16, st3, v17, Smith,
v18, B+)}

 Finally, we define the trees represented by a set of
tuples Y as the minimal, with respect to ≤, trees
containing all tuples in Y.

Definition 11 (treesX): Given XML Schema X and a
set of tree tuples Y ⊆T (X), treesX(Y) is defined to be:

min≤{T | T ⊲X and ∀ t ∈ Y, treeX(t) ≤ T}.

 Notice that, if T ∈ treesX(Y) and T ' ≡ T, then T ' is
in treesX(Y). The following shows that every XML
document can be represented as a set of tree tuples, if
we consider it as an unordered tree. That is, a tree T can
be reconstructed from tuplesX(T), up to equivalence ≡.

Theorem 1: Given XML Schema X and an XML tree
T, if T ⊲X, then trees(tuplesX([T])) = [T].

Proof: Every XML tree is finite and, therefore,
tuplesX([T]) = {t1, …, tn}, for some n. Suppose that T ∉
treesX({t1, . . . , tn}). Given that treeX(ti) ≤ T, for each i
∈ [1, n], there is an XML tree T ' s.t. T ' ≤ T and
treeX(ti) ≤ T ', for each i ∈ [1, n]. If T ' < T, then there is
at least one node, string or attribute value contained in
T which is not contained in T '. This value must be
contained in some tree tuple tj (j ∈ [1, n]), which
contradicts treeX(tj) ≤ T'. Therefore, T ∈
treesX(tuplesX([T])).
 Let T' ∈ treesX(tuplesX([T])). For each i ∈ [1, n],
treeX(ti) ≤ T '. Thus, given that, tuplesX(T) = {t1, …, tn},
we conclude that T ≤ T ' and, therefore, by definition of
treesX, T ' ≡ T.

Example 5: It could be the case that for some set of
tree tuples Y there is no an XML tree T such that for
every t ∈ Y , tree(t) ≤ T. For example, let X be XML
Schema, X = (E, A, M, P, r, ∑), where E = {r, a, b}, A
= φ, M(r) = (a|b), M(a) = ε and M(b) = ε. Let t1, t2 ∈ T
(X) be defined as:

t1.r = v0 t2.r = v2
t1.r.a = v1 t2.r.a = φ
t1.r.b = φ t2.r.b = v3

 Since t1.r ≠ t2.r, there is no an XML tree T such
that, treeX(t1) ≤ T and treeX(t2) ≤ T:

• We say that Y ⊆ T (X) is X-compatible if there is

an XML tree T: T ⊲X and Y ⊆ tuplesX(T)
• For X-compatible set of tree tuples Y, there is

always an XML tree T: for every t ∈Y, treeX(t) ≤ T

Proposition 3: If Y ⊆ T (X) is X-compatible, then:

• There is an XML tree T such that T ⊲X and

treesX(Y) = [T]
• Y ⊆b tuplesX(treesX(Y))

Proof:

• Suppose that X = (E, A, M, P, r, ∑). Since Y is X-

compatible, ∃ an XML tree T' = (V', lab', ele', att',
root') s.t. T ' ⊲X and Y ⊆ tuplesX(T '). We use T' to
define an XML tree T = (V, lab, ele, att, root) s.t.
treesX(Y) = [T].

 For each v ∈ V', if there is t ∈ Y and p ∈ paths(X)
s.t. t.p = v, then v is included in V. Furthermore,
for each v ∈ V, lab(v) is defined as lab'(v), ele(v) =

J. Computer Sci., 4 (9): 729-740, 2008

 735

[s1, . . . , sn], where each si = t'.p.S or si = t'.p.τ for
some t' ∈ Y and τ ∈ E s.t., t'.p = v. For each @l∈A
s.t., t'.p.@l ≠ φ and t'.p = v for some t' ∈ Y, att(v,
@l) is defined as t'.p.@l. Finally, root is defined as
root'. It is easy to see that treesX(Y) = [T]

• Let t ∈ Y and T be an XML tree s.t. treesX(Y) =
[T]. If t ∈ tuplesX([T]), then the property holds
trivially. Suppose that t∉tuplesX([T]). Then, given
that treeX(t) ≤ T, there is t' ∈ tuplesX([T]) s.t. t ⊂ t'.
In either case, we conclude that there is t'∈
tuplesX(treesX(Y)) s.t. t ⊆ t'.

 The example below shows that it could be the case
that tuplesX(treesX(Y)) properly dominates Y, that is, Y
⊆b tuplesX(treesX(Y)) and tuplesX(treesX(Y)) ⊈b Y. In
particular, this example shows that the inverse of
Theorem 1 does not hold, that is, tuplesX(treesX(Y)) is
not necessarily equal to Y for every set of tree tuples Y
, even if this set is X-compatible. Let X be as in
example 5 and t1, t2 ∈ T (X) be defined as:

t1.r = v0 t2.r = v0
t1.r.a = v1 t2.r.a = φ
t1.r.b = φ t2.r.b = v2

Let t3 be a tree tuple defined as:

t3.r = v0, t3.r.a = v1 and t3.r.b = v2

 Then, tuplesX(treesX({t1, t2})) = {t3} since t1 ⊂ t3
and t2 ⊂ t3 and, therefore, {t1, t2} ⊆b tuplesX(treesX({t1,
t2})) and tuplesX(treesX({t1, t2})) ⊈b {t1, t2}.
 From Theorem 1 and Proposition 3, it is
straightforward to prove the following Corollary.

Corollary: For a X-compatible set of tree tuples Y:
treesX(tuplesX(treesX(Y))) = treesX(Y).

Functional dependencies of XML schema: We define
the functional dependencies for XML Schema by using
the tree tuples representation that discussed previously.

Definition 12 (functional dependencies): Given an
XML Schema X, a functional dependency (FD) over X
is an expression of the form: S1 → S2 where S1, S2 ⊆
paths(X), S1, S2 ≠ φ. The set of all FDs over X is
denoted by FD(X).

• For S ⊆ paths(X) and t, t' ∈ T (X), t.S = t'.S means

t.p = t'.p ∀ p ∈ S. Furthermore, t.S ≠ φ means t.p ≠
φ ∀ p ∈ S

Definition 13: If S1 → S2 ∈ FD(X) and T is an XML

tree s.t. T ⊲X and S1 ∪ S2 ⊆ paths(T), we say that T
satisfies S1 → S2 (written T╞ S1 → S2), if ∀ t1, t2 ∈
tuplesX(T), t1.S1 = t2.S1 and t1.S1 ≠ φ ∈ t1.S2 = t2.S2.

• Note that: if tree tuples t1, t2 satisfy an FD S1 → S2,

then for every path p ∈ S2, t1.p and t2.p are either
both null or both not null

Definition 14: If for every pair of tree tuples t1, t2 in an
XML tree T, t1.S1 = t2.S1 implies they have a null value
on some p ∈ S1, then the FD is trivially satisfied by T.

• The previous definitions extends to the equivalence

classes, since, for any FD f and T ≡ T', T╞ f iff T'╞
f

• We write T╞ F, for F ⊆ FD(X), if T╞ f for each f
∈F and we write T╞ (X, F), if T╞ X and T╞ F

Example 6: Consider the XML Schema in example 1,
we have the following FDs. Note that, cno is a key of
course:

• courses.course.@cno → courses.course (FD1)

Another FD says that two distinct student
subelements of the same course cannot have the
same sno:

• {courses.course,courses.course.taken_by.student.@
sno} → courses.course.taken_by.student (FD2)

 Finally, to say that two student elements with the
same sno value must have the same name, we use:

• courses.course.taken_by.student.@sno →
• courses.course.taken_by.student.name.S (FD3)

Definition 15: Given XML Schema X, a set F ⊆ FD(X)
and f ∈ FD(X), we say that (X, F) implies f, written (X,
F) ⊦ f , if for any tree T with T╞ X and T╞ F, it is the
case that T╞ f. The set of all FDs implied by (X, F) will
be denoted by (X, F)+.

Definition 16: an FD f is trivial if (X, φ) ⊦ f.

Primary and Foreign Keys of XML Schema: We
present the definitions of the primary and foreign keys
of the XML Schema. We'll use these definitions to
introduce the normal forms of XML Schema. Also, we
observe that while there are important differences
between the XML and relational models, much of the

J. Computer Sci., 4 (9): 729-740, 2008

 736

thinking that commonly goes into relational database
design can be applied to XML Schema design as well.

Definition 17 (key, foreign key and superkey): Let X
= (E, A, M, P, r, ∑) be XML Schema, a constraint ∑
over X has one of the following forms:

• key: e(l) → e, where e∈E and l is a set of attributes

in P(e). It indicates that the set l of attributes is a
key of e elements

• foreign key: e1(l1) ⊆ e2(l2) and e2(l2) → e2 where e1,
e2 ∈ E and l1, l2 are non-empty sequences of
attributes in P(e1), P(e2), respectively and moreover
l1 and l2 have the same length. This constraint
indicates that l1 is a foreign key of e1 elements
referencing key l2 of e2 elements

• A constraint of the form e1(l1) ⊆ e2(l2) is called an
inclusion constraint

• Observe that a foreign key is actually a pair of
constraint, namely an inclusion constraint e1(l1) ⊆
e2(l2) and a key e2(l2) → e2

• superkey: suppose that, e ⊆ E and for any two
distinct paths p1 and p2 in the XML Schema X, we
have the constraint that: p1(e) ≠ p2(e). The subset e
is called a superkey of X

• Every XML Schema has at least one default
superkey - the set of all its elements

Normal forms of XML Schema: We will introduce
the normal forms of XML documents. Our goal is to
see what relational concepts we can usefully apply to
XML. Can the normal forms that guide database design
be applied meaningfully to XML document design?

First normal form for XML schema (X-1NF): First
normal form (1NF) is now considered to be a part of the
formal definition of a relation in the basic relational
database model. Historically, it was defined as: "The
domain of an attribute in a tuple must be a single value
from the domain of that attribute"[20].
Of course, XML is hierarchical by nature. An XML
"tuple" can vary from first normal form in several ways,
all of them are valid by means of data modeling:

• It can have varying numbers of fields and
default values for attributes

• It can have multiple values for a field, through
the maxOccurs attribute for particles

• It can have choices of field types instead of a
straight sequence or conjunction

• Fields can be of complex type

• The last feature is the most apparent when looking
at an XML document. An XML tuple is a tree, not
a table

• The second feature affects the relational database
normal forms. It may at first seem as a good way to
model multiple children (of simple or complex
type) directly under a parent, without having to
resort to multiple tables and foreign keys just to
express a simple one-to-many relationship

Second normal form of XML schema (X-2NF): X-
2NF is based on the concept of full functional
dependency.

Definition 18: A FD S1 → S2, where S1, S2 ⊆ paths(X)
is called full FD, if removal of any element's path p
from S1, means that the dependency does not hold any
more, (i.e., for any p ∈ S1, (S1-{p}) does not functional
determine S2).

Definition 19: A FD S1 → S2 is called partial
dependency if, for some p ∈ S1, (S1-{p}) → S2 is hold.

Example 7: Consider the following part of XML
Schema called "Emp_Proj"

<xs:complexType name “Emp_Proj”>
 <xs:sequence>
 <xs: element name = “Sss” type = “string”/>
 <xs: element name = “Pnumber” type =

“string”/>
 <xs: element name = “Hours” type = “string”/>
 <xs: element name = “Ename” type = “string”/>
 <xs: element name = “Pname” type = “string”/>
 <xs: element name = “Plocation” type =

“string”/>
 <xs:sequence>
<xs: complexType>
<xs: key name = “emSssKey”>
 <xs: selector xpath = “Emp_Proj”/>
 <xs: field xpath = “Sss”/>
<xs: key>
<xs: key name = “ProfectNoKey”>
 <xs: selector cpath = “Emp_Proj”/>
 <xs: field xpath = “Pnumber”/>
</xs:key>

With the following FDs:

FD1: {Emp_Proj.Sss, Emp_Proj.Pnumber} →

Emp_Proj.Hours
FD2: Emp_Proj.Sss → Emp_Proj.Ename

J. Computer Sci., 4 (9): 729-740, 2008

 737

FD3: Emp_Proj.Pnumber → {Emp_Proj.Pname,
Emp_Proj.Plocation}

Note that:

• FD1 is a full FD (neither Emp_Proj.Sss →

Emp_Proj.Hours nor Emp_Proj.Pnumber →
Emp_Proj.Hours holds).

• The FD: {Emp_Proj.Sss, Emp_Proj.Pnumber} →
Emp_Proj.Ename is partial because Emp_Proj.Sss
→ Emp_Proj.Ename holds.

Definition 20 (X-2NF): An XML Schema X = (E, A,
M, P, r, ∑) is in second normal form (X-2NF) if every
elements e∈E and attributes l ⊆ P(e) are fully
functionally dependent on the key elements of X.

• The test for X-2NF involves testing for FDs whose

left-hand side are part of the primary key. If the
primary key contain a single element's path, the
test need not be applied at all

Example 8: The XML Schema Emp_Proj in the above
example is in X-1NF but is not in X-2NF. Because the
FDs FD2 and FD3 make Emp_Proj.Ename,
Emp_Proj.Pname and Emp_Proj.Plocation partially
dependent on the primary key {Emp_Proj.Sss,
Emp_Proj.Pnumber} of Emp_Proj, thus violating the
X-2NF test.

• Hence, the FDs FD1, FD2 and FD3 lead to the

decomposition of XML Schema Emp_Proj to the
following XML Schemas EP1, EP2 and EP3:

<xs: complexType name “EP1”>
 <xs:sequence>
 <xs: element name = “Sss” type = “string”/>
 <xs: element name = “Pnumber” type =

“string”/>
 <xs: element name = “Hours” type = “string”/>
 </xs element>
 </xs:sequence>
<xs:cmplexType>
<xs:cmplexType name “EP2”>
 </xs:sequence>
 <xs: element name = “Sss” type = “string”/>
 <xs: element name = “Pname” type = “string”/>
 </xs:sequence>
<xs:cmplexType>
<xs:cmplexType name “EP3”>
 </xs:sequence>
 <xs: element name = “Pnumber” type =

“string”/>

 <xs: element name = “Pname” type = “string”/>
 <xs: element name = “Plocation” type =
“string”/>
 </xs element>
 </xs:sequence>
<xs:cmplexType>
<xs: key name = “empSssKey”>
 <xs: selector xpath = “EP1”/>
 <xs: field xpath = “Sss”/>
</xs:key>
<xs: key name = “ProjectNoKey”>
 <xs: selector xpath = “EP1”/>
 <xs: field xpath = “Pnumber”/>
</xs:key>
<xs: key name = “emp2SssKey”>
 <xs: selector xpath = “EP2”/>
 <xs: field xpath = “Sss”/>
</xs:key>
<xs: key name = “Project3NoKey”>
 <xs: selector xpath = “EP3”/>
 <xs: field xpath = “Pnumber”/>
<xs:key>

Third Normal Form of XML Schema (X-3NF): X-
3NF is based on the concept of transitive dependency.

Definition 21: A FD S1 → S2, where S1, S2 ⊆ paths(X)
is transitive dependency if there is a set of paths Z (that
is neither a key nor a subset of any key of X) and both
S1 → Z and Z → S2 hold.

Example 9: Consider the following XML Schema
called "Emp_Dept":

Emp_Dept(Ssn, Ename, Bdate, Address, Dnumber,
Dname, DmgrSsn)

<xs: complexType name “Emp_Dept”>
 <xs:sequence>
 <xs: element name = “Sss” type = “string”/>
 <xs: element name = “Ename” type = “string”/>
 <xs: element name = “Bdate” type = “string”/>
 <xs: element name = “Address” type = “string”/>
 <xs: element name = “Dnumber” type =

“string”/>
 <xs: element name = “Dname” type = “string”/>
 <xs: element name = “DmgrSsn” type =

“string”/>
 <xs:sequence>
<xs:complexType>
<xs: key name = “empSssKey”>
 <xs: selector xpath = “Emp_Dept”/>
 <xs: field xpath = “Sss”/>

J. Computer Sci., 4 (9): 729-740, 2008

 738

</xs:key>

With the following FDs:

FD1: Emp_Dept.Ssn → {Emp_Dept.Ename,

Emp_Dept.Bdate, Emp_Dept.Address,
Emp_Dept.Dnumber }

FD2: Emp_Dept.Dnumber → {Emp_Dept.Dname,
Emp_Dept.DmgrSsn}

Note that:
The dependency:
 Emp_Dept.Ssn→ Emp_Dept.DmgrSsn is transitive

through Emp_Dept.Dnumber in Emp_Dept,
because both the FDs:

 Emp_Dept.Ssn → Emp_Dept.Dnumber and
 Emp_Dept.Dnumber → Emp_Dept.DmgrSsn
hold and Emp_Dept.Dnumber is neither a key itself nor
a subset of the key of Emp_Dept.

Definition 22 (X-3NF): An XML Schema X = (E, A,
M, P, r, ∑) is in third normal form (X-3NF) if it
satisfies X-2NF and no (elements e ∈ E or l ⊆ P(e)) is
transitively dependent on the key elements of X.

Example 10: The XML Schema Emp_Dept in the
above example is in X-2NF (since no partial
dependencies on a key element exist), but Emp_Dept is
not in X-3NF. Because of the transitive dependency of
Emp_Dept.DmgrSsn (and also Emp_Dept.Dname) on
Emp_Dept.Ssn via Emp_Dept.Dnumber.

• We can normalize Emp_Dept by decomposing it

into the following two XML Schemas ED1 and
ED2:

 ED1(Ssn, Ename, Bdate, Address, Dnumber)
 ED2(Dnumber, Dname, DmgrSsn)

<xs:complexType name “ED1”>
 <xs:sequence>
 <xs: element name = “Sss” type = “string”/>
 <xs: element name = “Ename” type = “string”/>
 <xs: element name = “Bdate” type = “string”/>
 <xs: element name = “Address” type = “string”/>
 <xs: element name = “Dnumber” type =
“string”/>
 <xs:sequence>
<xs:complexType>
<xs:complexType name “ED2”>
 <xs: element name = “Dnumber” type =

“string”/>
 <xs: element name = “Dname” type = “string”/>

 <xs: element name = “DmgrSsn” type =
“string”/>

 <xs:sequence>
<xs:complexType>

<xs: key name = “empSssKey”>
 <xs: selector xpath = “ED1”/>
 <xs: field xpath = “Sss”/>
</xs:key>

<xs: key name = “deptNoKey”>
 <xs: selector xpath = “ED2”/>
 <xs: field xpath = “Dnumber”/>
</xs:key>

Boyce-codd normal form of XML schema (X-
BCNF): Boyce-Codd Normal form of XML Schema
(X-BCNF), proposed as a similar form as X-3NF, but it
was found to stricter than X-3NF, because every XML
Schema in X-BCNF is also in X-3NF, however, an
XML Schema in X-3NF is not necessarily in X-BCNF.
The formal definitions of BCNF differs slightly from
the definition of X-3NF

Definition 23 (X-BCNF): An XML Schema X = (E, A,
M, P, r, ∑) is in Boyce-Codd Normal Form (X-BCNF)
if whenever a nontrivial FD S1 → S2 holds in X, where
S1, S2 ⊆ paths(X), then S1 is a superkey of X.
 Also, we can consider the following definition of
X-BCNF:

Definition 24: Given XML Schema X and F ⊆ FD(X),
(X, F) is in X-BCNF iff for every nontrivial FD f ∈ (X,
F)+ of the form S → p.@l or S → p.S, it is the case that,
S → p ∈ (X, F)+.

• The intuition is as follows: Suppose that S → p.@l

∈ (X, F)+. If T is an XML tree conforming to X
and satisfying F, then in T for every set of values
of the elements in S, we can find only one value of
p.@l. Thus, for every set of values of S, we need to
store the value of p.@l only once, in other words, S
→ p must be implied by (X, F)

• In definition 24, we suppose that, f is a nontrivial
FD. Indeed, the trivial FD p.@l → p.@l is always
in (X, F)+, but often p.@l → p ∉ (X, F)+, which
does not necessarily represent a bad design

 To show how X-BCNF distinguishes good XML
design from bad design, we consider example 1 again,
when only functional dependencies are provided.

J. Computer Sci., 4 (9): 729-740, 2008

 739

Example 11: Consider the XML Schema from
example 1 whose FDs are FD1, FD2 and FD3, shown in
example 6. FD3 associates a unique name with each
student number, which is therefore redundant. The
design is not in X-BCNF, since it contains FD3 but
does not imply the functional dependency:

courses.course.taken_by.student.@sno →
 courses.course.taken_by.student.name

 To solve this problem, we gave a revised XML
Schema in example 1. The idea was to create a new
element info for storing information about students.
That design satisfies FDs, FD1, FD2, as well as

 courses.info.number.@sno → courses.info

and can be easily verified to be in X-BCNF.

RESULTS AND DISCUSSION

 It was introduced in[6] an XML normal form called
XNF, that defined in terms of functional dependencies,
multi-valued dependencies and inclusion constraints.
The normal form of [6] was defined in terms of two
conditions: XML specifications must not contain
redundant information with respect to a set of
constraints and the number of schema trees must be
minimal. Further, Embley, D. and Mok, W.Y. [6]
presented a conceptual-model-based methodology that
automatically generates XNF satisfied the DTDs and
proved that the algorithms, which are part of the
methodology, produce DTDs to ensure that the XML
documents satisfy the properties of XNF.
 It was proved in[7] that an XML specification given
by a DTD, D and a set ∑ of XML functional
dependencies is in XNF if and only if no XML tree
conforming to D and satisfying ∑ contains redundant
information. Thus, for the class of FDs defined in this
article, the XML normal form introduced in[6] is more
restrictive than our XML normal forms. The FD
language used in[6] is based on a language for nested
relations and it does not consider relative constraints.
 In[8], a language for expressing FDs for XML was
introduced. In that language, a FD is defined as an
expression of the form:

(p, [q1, . . . , qn → qm])

 where, p is a fully qualified path expression (i.e., a
path starting from the XML document root), every qi (i
∈ [1, n]) is a LHS (Left-Hand-Side) entity type, a LHS
entity type consists of an element name in the XML
document and the optional key attribute(s); and qm is a
RHS (Right-Hand-Side) entity type, a LHS entity type

consists of an element name in the XML document and
an optional attribute name. An XML tree T satisfies this
constraint if for any two subtrees T1, T2 of T whose
roots are nodes reachable from the root of T by
following path p, if T1 and T2 agree on the value of qi ,
for every i ∈ [1, n], then they agree on the value of qm.
This language does not consider relative constraints and
its semantics only works properly if some syntactic
restrictions are imposed on the FDs. Note that, the
normalization problem is not considered in[8].
 In[14] the author presented a formal model for
relational trees focusing on constructors for lists and
disjoint unions. These leads to new definition and
derivation rules for FDs.
 The recent article[13] took a first step towards the
design and normalization theory for XML documents.
The authors introduced the concept of a FD for XML,
over a DTD, defined an XML normal form called XNF
and then show that XNF is a generalized form of
BCNF. Other proposals for XML constraints (mostly
keys) have been studied in[9,11] these constraints do not
use DTDs. XML constraints that takes DTDs into
account are studied in[12].
 The main contributions in this study were, the new
definitions of FDs and normal forms of XML Schema.
We have extended the definitions introduced by
Marcelo Arenas and Leonid Libkin[13], that is based on
XML DTD, to include the XML Schema instead. We
shown how to use FDs to detect data redundancy in
XML document and then proposed normal forms of
XML Schema with respect to the FD constraints.

CONCLUSION

 We have studied the problem of schema design and
normalization in XML databases model. We introduced
new definitions of FD and normal forms of XML
Schema (X-1NF, X-2NF, X-3NF and X-BCNF) with
respect to the FD constraints. We have illustrated that
our normal forms are necessary and sufficient to ensure
all conforming XML documents have no redundancies.
In the future work, we plan to introduce the
decomposition algorithm for converting any XML
Schema into normalized one, that satisfies X-BCNF.
Also we intent to work on extending XML Schema
normal forms to more powerful normal forms, in
particular by taking into account multi-valued
dependencies, so we can express the other normal
forms of XML Schema such as X-4NF and X-5NF.

ACKNOWLEDGMENT

 The author acknowledge the financial support
(Qatar National Research Fund- UREP 4-2-3) received
from Qatar Foundation, via Qatar University, Qatar.

J. Computer Sci., 4 (9): 729-740, 2008

 740

REFERENCES

1. W3C, 2001. XML Schema.

http://www.w3.org/XML/Schema.
2. Kanne, C.C. and G. Moerkotte, 2000. Efficient

storage of XML data. Proceedings of the 16th
International Conference on Data Engineering,
Feb. 28-Mar. 03, IEEE Computer Society,
Washington, DC., USA., pp: 198-198.
http://portal.acm.org/citation.cfm?id=847347.

3. Tatarinov, I., Z. Ives, A. Halevy and D. Weld,
2001. Updating XML. Proceedings of the ACM
SIGMOD International Conference on
Management of Data, May 21-24, ACM Press,
New York, USA., pp: 413-424. http://
portal.acm.org/citation.cfm?id=375663.375720.

4. Paredaens, J., P. DE Bra, M. Gyssens and D. Van
Gucht, 1989. The Structure of the Relational
Database Model. 1st Edn., Springer-Verlag, USA.,
ISBN: 10: 0387137149, pp: 231.

5. Thalheim, B., 1991. Dependencies in Relational
Databases. Teubner-Verlag, ISBN: 3-8154-2020-2.

6. Embley, D. and W.Y. Mok, 2001. Developing
XML documents with guaranteed “good”
properties. Proceedings of the 20th International
Conference on Conceptual Modeling, Nov. 27-30,
Springer-Verlag, London, UK., pp: 426-441.
http://portal.acm.org/citation.cfm?id=725895.

7. Arenas, M. and L. Libkin, 2003. An information-
theoretic approach to normal forms for relational.
Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART symposium on Principles of
database systems, June 09-11, ACM Press, New
York, USA., pp: 15-26. http://portal.acm.org/
citation.cfm?id=645340.650226.

8. Lee, L., T.W. Ling and W.L. Low, 2002.
Designing functional dependencies for XML.
Proceedings of the 8th International Conference on
Extending Database Technology, Mar. 25-27,
Springer-Verlag London, UK., pp: 124-141. http://
portal.acm.org/citation.cfm?id=645340.650226.

9. Buneman, P., S. Davidson, W. Fan, C. Hara and
W.C. Tan, 2001. Keys for XML. Proceedings of
the 10th International World Wide Web
Conference, pp: 201-210.
http://serv1.ist.psu.edu:8080/showciting;jsessionid
=D7A85AB8266D292E9CDD29EC6F46CC66?cid
=4543043.

10. Buneman, P., S. Davidson, W. Fan, C. Hara and
W.C. Tan, 2003. Reasoning about keys for XML.
Inform. Syst., 28: 1037-1063. DOI:
10.1016/S0306-4379(03)00028-0.

11. Fan, W. and J. Sim´eon, 2000. Integrity constraints
for XML. Proceedings of the 19th ACM
Symposium on Principles of Database Systems,
May 15-18, ACM Press, New York, USA., pp: 23-
34. http://portal.acm.org/citation.cfm?id=335172.

12. Fan, W. and L. Libkin, 2001. On XML integrity
constraints in the presence of DTDs. Proceedings
of the 20th ACM Symposium on Principles of
Database Systems, 2001, ACM Press, New York,
USA., pp: 114-125. http://portal.acm.org/
citation.cfm?id=375568.

13. Marcelo Arenas and Leonid Libkin, 2004. A
normal form for XML documents. ACM Trans.
Database Syst., 29: 195-232. http://portal.acm.org/
citation.cfm?doid=974750.974757.

14. Klaus-Dieter Schewe, 2005. Redundancy,
dependencies and normal forms for XML
databases. Proceeding of the 6th Conference on
Australasian Database, 2005, Australian Computer
Society, Inc., Darlinghurst, Australia, pp: 7-16.
http://portal.acm.org/citation.cfm?id=1082224.

15. Florescu, D. and D. Kossman, 1999. Storing and
querying XML data using an RDBMS. IEEE Data
Eng. Bull., 22: 27-34. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.21.3245.

16. Buneman, P., A. Jung and A. Ohori, 1991. Using
power domains to generalize relational databases.
Theoret. Comput. Sci., 91: 23-55.
http://portal.acm.org/citation.cfm?id=123758.

17. Grahne, G., 1991. The Problem of Incomplete
Information in Relational Databases. 1st Edn.,
Springer-Verlag, New York, USA., ISBN:
3540549196, pp: 156.

18. Gunter, C., 1992. Semantics of Programming
Languages: Structures and Techniques. 1st Edn.,
MIT Press, Cambridge, Mass, ISBN: 10:
0262071436, pp: 441.

19. Levene, M. and G. Loizou, 1998. Axiomatisation
of functional dependencies in incomplete relations.
Theoret. Comput. Sci., 206: 283-300.
http://portal.acm.org/citation.cfm?id=297270.2972
91.

20. Ramez Elmasri and Shamkant B. Navathe, 2007.
Fundamentals of Database System. 5th Edn.,
Addison-Wesley, ISBN: 0-321-41506-X, pp: 337-
360.

21. Tufte, J.S.K., G. He, C. Zhang, D. DeWitt and
J. Naughton, 1999. Relational databases for
querying XML documents: Limitations and
opportunities. Proceedings of the 25th International
Conference on Very Large Data Bases, Sep. 07-10,
Morgan Kaufmann Publishers Inc., San Francisco,
CA., USA., pp: 302-314. http://portal.acm.org/
citation.cfm?id=671499

22. Murali, M. and L. Dongwon, 2002. XML to
relational conversion using theory of regular tree
grammers. Proceeding of the 28th VLDB
Conference, Aug. 20-23, Hong Kong, China, pp: 1-
12. http://www.cobase.cs.ucla.edu/tech-
docs/dongwon/eextt02.pdf.

