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Abstract: Problem Statement: Object-oriented design has become a dominant method in software 
industry and many design metrics of object-oriented programs have been proposed for quality 
prediction, but there is no well-accepted statement on how significant those metrics are. In this study, 
empirical analysis is carried out to validate object-oriented design metrics for defects estimation. 
Approach: The Chidamber and Kemerer metrics suite is adopted to estimate the number of defects in 
the programs, which are extracted from a public NASA data set. The techniques involved are statistical 
analysis and neuro-fuzzy approach. Results: The results indicate that SLOC, WMC, CBO and RFC 
are reliable metrics for defect estimation. Overall, SLOC imposes most significant impact on the 
number of defects. Conclusions/Recommendations: The design metrics are closely related to the 
number of defects in OO classes, but we can not jump to a conclusion by using one analysis technique. 
We recommend using neuro-fuzzy approach together with statistical techniques to reveal the 
relationship between metrics and dependent variables, and the correlations among those metrics also 
have to be considered. 
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INTRODUCTION 

 
 Time, cost and scope are regarded as the three 
pillars of software project management whereas quality 
is applicable to all. It is a well-proved fact that the 
earlier a defect is found and fixed, the less it costs. Thus 
high quality products are plausible to be delivered. 
Unfortunately, as the size and complexity of software 
grows dramatically in modern industry, the quality 
becomes very hard to predict or estimate.  
 Researchers and engineers have been working on 
this subject for more than three decades, and many 
started with static design metrics in the programs. 
Those metrics of complexity, such as Source Lines of 
Code (SLOC)[1], Halstead’s software science[2] and 
McCabe’s cyclomatic complexity[3], all impose their 
influence on software quality at module level. 
Nonetheless, the relationships between those metrics 
and software quality are not accurately elaborated, and 
hardly can satisfactory estimation results be achieved. 
 After object-oriented programming dominated 
software development, a vast variety of design metrics 
have been tailored for estimating the quality of object-
oriented programs.  

 Chidamber and Kemerer[4] introduced their OO 
design and complexity metrics and demonstrated the 
strong impact on software quality. The CK metrics suite 
invoked great enthusiasm among researchers and 
software engineers, and a great amount of empirical 
studies have been conducted to evaluate those metrics. 
Moreover, other variants of CK metrics were added in 
order to present more accurate indications of code 
quality. Although all these studies made valuable 
contributions to improve OO design, their results 
seemed not consistent[5-15].  
 In this study, data from the industry is used to 
analyze the relationships between CK metrics and 
defects in the OO programs. Besides statistical analysis 
methods, we utilize a neuro-fuzzy approach to validate 
the relationships. 
 
CK metrics: In CK metrics suite[4], six design and 
complexity metrics are used to represent the 
characteristics of the code: 
 
• WMC (Weighted Methods per Class): The sum of 

normalized complexity of every method in a given 
class. Usually we just use the number of methods 
in a given class 



J. Computer Sci., 4 (7): 571-577, 2008 
 

 572 

Table 1: Descriptive information of metrics 
Metric Minimum Maximum Median Mean 
CBO 0 24 8 8.3 
DIT 1 7 2 2.0 
LCOM 0 100 84 68.7 
NOC 0 5 0 0.2 
RFC 0 222 28 34.4 
WMC 0 100 12 17.4 
SLOC 0 2313 108 211.2 
Defects 0 101 0 4.6 

 
• DIT (Depth of Inheritance Tree): The maximum 

length from the root to a given class in the 
inheritance hierarchy 

• NOC (Number Of Children): The number of all 
direct subclasses of a given class 

• RFC (Response For a Class): The number of 
methods implemented in a given class that can be 
invoked by a received message 

• CBO (Coupling Between Object Classes): the 
number of classes that use the member functions 
and/or the instance variables of a given class 

• LCOM (Lack of Cohesion on Methods): for each 
instance variable calculate the percentage of 
methods using it, then the average percentage for 
all variables subtracted from 100% 

• Intuitively, these CK metrics illustrate the 
measurable characteristics of an OO program, such 
as complexity, cohesion and coupling. For general 
design environment, we technically should keep all 
those metrics at a reasonable level 

 
Data preparation: In this study we use a data set KC1 
from the NASA IV and V Facility Metrics Data 
Program data repository (http://mdp.ivv.nasa.org), 
which is comprised of 43 KSLOC of C++ code for a 
ground system. There are 145 classes and altogether 
2107 methods. 
 The defects information in the original data set is at 
method level, while metrics information is at class 
level. For this study, those files have to be combined to 
get all class level information. We generate all class 
level information and validate it with the above data 
resource. 
 Descriptive information about this public data set is 
listed in Table 1. Since six CK metrics and Source 
Lines of Code (SLOC) are examined to evaluate their 
impact on the quality of the code, only related 
information is included in the Table 1. 
 The intention of this study is to validate and 
compare the influence of those metrics on the final 
quality of software, so transformation should be made 
to maintain those metrics at comparable levels. In this 

study, standardization of the metrics is pre-processed to 
make their means zero and standard deviation one.  
 

MATERIALS AND METHODS 
 

Correlation analysis: First, the relationships between 
each explanatory variable (metric) and the dependent 
variable (the number of defects) are revealed by using 
Spearman's rank correlation coefficient method. 
Although correlation between two variables does not 
necessarily result in causal effect, it is still an effective 
method to choose candidate metrics. 
 
Regression analysis: Linear regression is the most 
popular statistical method to establish the relationship 
model between the explanatory variables and the 
dependent variable. Generally Ordinary Least Square 
(OLS) tries to obtain the least square estimates to build 
the regression model. When the intrinsic relationship is 
not linear, the regression can still be used to evaluate 
the influences of different predictors. 
 To explore the impact of various explanatory 
variables (metrics) on the dependent variable (defects), 
both university and multivariate linear regression are 
applied to the standardized metrics and the number of 
the defects.  
 In this research, the purpose of the linear regression 
is not to calibrate the accuracy of the estimation model, 
but to validate those object-oriented design metrics. So 
we just ignore the assumptions leading to linear 
regression. 
 In many related researches, logistic regression was 
extensively used to examine the relationships between 
object-oriented design metrics and the probability of the 
class containing faults, not the actual number of the 
faults. This regression analysis, on the other side, also 
exhibits the contribution of the metrics to the quality of 
the programs. 
 
Neuro-fuzzy approach: From this study and Zhou and 
Leung’s[15], obviously neither linear regression nor 
logistic regression can achieve a model to elaborate the 
complexity between those metrics and the quality of 
code. Because of the diversity of software engineering 
practices, no simple equation can be discovered to 
delicately abstract the relationship from industry data. 
 Since neural networks began to regain public 
interests in 1982, they have been widely implemented 
in a variety of fields as engineering, business, medicine 
and physics. Their performance in prediction, 
classification, and real time control is highly recognized 
by experts in those domains.  
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 The main strength of neural networks is their 
power to model extremely complex functions, for 
example, for the cases where there are a great number 
of variables and traditional regression methods are not 
applicable. Moreover, neural networks can learn from 
historical data and train themselves to achieve high 
performance, where not much expertise is mandatory.  
 Another sophisticated technique for modelling 
complex systems is fuzzy logic, which is applied with 
heuristic knowledge and with imprecise inputs to 
realize complicated functions. Because the real world is 
full of vagueness, fuzzy logic has proved to be very 
successful in many fields, like dynamic control, 
decision support, and other expert systems. 
 Both neural network and fuzzy logic have their 
advantages in modelling nonlinear functions, but their 
strengths attract us from quite different aspects. 
Moreover, since neural network lacks the capability of 
explaining the meaning behind the application, which is 
exactly the strength of fuzzy logic, it has drawn great 
attention to combine the two techniques together to 
form a new approach. Here comes neuro-fuzzy, which 
is now an important constituent of soft computing, and 
is applied to solve decision-making, modelling, 
predicting, and control problems in the real world. 
 In this study, we adopt ANFIS (Adaptive Neuro-
Fuzzy Inference System) to approximate the function 
between design metrics and defects. ANFIS is actually 
a fuzzy inference system, which is based on a neural 
network structure, thus it has the learning capability 
inherited from neural networks to adjust the parameters 
of membership functions and rules. A typical structure 
of ANFIS is shown in Fig. 1. 
 ANFIS has proved to have extraordinary power for 
realizing arbitrary nonlinear functions[16]. Therefore, it 
is a quite suitable tool for evaluating the relationship 
between design metrics and defects. ANFIS is 
comprised of five layers: 
 
Layer 1: Every node in this layer is an adaptive node. 

Parameters in this layer are called premise 
parameters. 

Layer 2: Every node in this layer is a fixed node 
labelled ∏, whose output is the product of all 
the incoming signals. Each node output 
represents the firing strength of a rule. 

Layer 3: Every node in this layer is a fixed node 
labelled N. The ith node calculates the ratio 
of the ith rule’s firing strength. Thus the 
outputs of this layer are called normalized 
firing strengths. 

Layer 4: Every node i in this layer is an adaptive node. 
Parameters in this layer are referred to as 
consequent parameters. 

 
 
Fig. 1: The typical structure of ANFIS 
 
Layer 5: The single node in this layer is a fixed node 

labelled ∑, which computes the overall 
output as the summation of all incoming 
signals. 

 
 In this study, only 4 metrics, CBO, RFC, WMC 
and SLOC, which show their tight correlation with 
defects numbers, are chosen as input variables in 
ANFIS. Because these four are highly correlated with 
each other, we cannot simplify the rule set when we 
design the structure of ANFIS. Therefore there are 
altogether 81 (3 powered by 4) rules if each metric has 
3 membership functions. Even though we choose 
constants as the consequent parts of the fuzzy rules and 
triangular membership functions for the purpose of 
simplicity, totally 117 parameters need to be adjusted 
during the whole training procedure. As regard to the 
NASA data set, which includes only 145 data points, it 
is apparently not enough to gain satisfactory training 
result. For this reason, together with easy explanation, 
we classify the metrics only into two levels, ‘high’ and 
‘low’. Still keeping present constant and triangle 
choice, we diminish the number of parameters to 40 (16 
rules, 8 functions). Every rule has the form as: 
 If CBO is high AND RFC is high AND WMC is 
high AND SLOC is high, then the number of defects is 
N1. 
 We precede present experiments with Matlab, 
which has built-in ANFIS  function and editor that 
make the implementation and customization more 
convenient for us. The structure of present ANFIS is 
shown in Fig. 2.  
 To initialize and train the ANFIS, we divide the 
data set into training data (120 data points) and 
checking data (25 data points), and the data points 
randomly fall into one group. We do not expect to 
obtain a well-tuned ANFIS model due to the 
insufficiency of data. The main purpose is to retrieve 
straightforward information out of the built system. 
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Fig. 2: The structure of ANFIS in Matlab 
 

RESULTS 
 
Correlation analysis: Table 2 displays the results, 
which shows that CBO, RFC, WMC and SLOC have 
more influence on the number of defects in the 
programs (significance at 0.01 levels). Among them, 
SLOC seems to be the most important indicator of 
defects, which has the biggest coefficient.  
 We also examine the Spearman’s rank correlation 
among the seven metrics (6 CK metrics plus SLOC). 
The results (Table 3) illustrate these metrics are far 
from being independent, but correlated with each other, 
especially there are strong correlations among CBO, 
RFC, WMC and SLOC. 
 
Regression analysis: The result of the univariate linear 
regression is listed in Table 4, which shows SLOC, 
WMC, CBO and RFC are more significant with respect 
to other metrics for their higher coefficients and R-
square values at significant levels. The SLOC is 
regarded as the most effective one, since it captures 
around 45 percent of the variance. 
 The result of the multivariate linear regression is 
also displayed in Table 5. This time SLOC, CBO, RFC 
and WMC still come out to be stronger than other 
metrics, which demonstrate some unstable impact on 
the dependent variable (the coefficients are 7.3408, 
0.8775, 0.6662 and 0.3329 accordingly). Moreover, the 
R-square value is 0.5098 for the multivariate linear 
regression, which shows that nearly half of the variance 
is not included in this model. Again, we will not strive 
to exploit how to improve the accuracy of the model, 
but the multicollinearity among the metrics and the 
heteroscedasticity of the errors definitely contribute to 
the deviation. The result of another linear regression 
using only four metrics is listed in Table 6. 

Table 2: Correlations between metrics and defects 
Metrics Coefficients p-value 
CBO 0.5472 0.0000 
DIT 0.0411 0.6232 
LCOM -0.0178 0.8319 
NOC -0.1743 0.0360 
RFC 0.2475 0.0027 
WMC 0.3383 0.0000 
SLOC 0.5763 0.0000 

 
Table 3: Inter-correlations among the metrics 
 DIT LCOM NOC RFC WMC SLOC 
CBO 0.4703* 0.0413 -0.1287 0.5416* 0.3773* 0.8184* 
DIT  0.2495 -0.1123 0.7179* 0.2154 0.3853* 
LCOM   0.1193 0.3827* 0.3780* 0.0097 
NOC    -0.0317 0.1014 -0.1363 
RFC     0.6661* 0.5230* 
WMC      0.4963* 
“*” indicates at the 0.001 significance level 
 
Table 4: Univariate linear regression 
 CBO DIT LCOM NOC RFC WMC SLOC 
Coefficient 3.9704 0.4029 1.3695 -1.1427 2.9552 5.0308 7.3106 
Constant 4.6138 4.6138 4.6138 4.6138 4.6138 4.6138 4.6138 
R. square 0.1337 0.0014 0.0159 0.0111 0.0741 0.2147 0.4533 
P-value 0.0000 0.6577 0.1306 0.2078 0.0009 0.0000 0.0000 

 
 
Table 5:  Multivariate linear regression 
 Constant CBO DIT LCOM NOC RFC WMC SLOC 
Coefficient 4.6138 0.8775 -2.9951 -0.1842 -0.9080 0.6662 0.3329 7.3048 

 
 
Table 6: Multivariate linear regression (2) 
 Const. CBO RFC WMC SLOC 
Coef. 4.6138 0.2125 -1.7731 1.7042 7.0207 
 
 
Table 7: Multivariate logistic regression 
 Const. CBO RFC WMC SLOC 
Coef. 1.8045 1.3274 -0.6817 0.2111 1.8925 
P 0.0000 0.0000 0.0006 0.2620 0.0023 

 
  
Table 8: Fuzzy fules from trained anfis 
 CBO RFC WMC SLOC Output 
1 Low Low Low Low 2.320 
2 Low Low Low High -4.195 
3 Low Low High Low -10.270 
4 Low Low High High 226.500 
5 Low High Low Low -3.607 
6 Low High Low High -50.070 
7 Low High High Low 16.450 
8 Low High High High -35.130 
9 High Low Low Low -11.160 
10 High Low Low High -258.300 
11 High Low High Low 272.400 
12 High Low High High 263.200 
13 High High Low Low 45.070 
14 High High Low High 810.500 
15 High High High Low -754.500 
16 High High High High -420.400 
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Table 9: Aggregated outputs with different inputs 

 CBO RFC WMC SLOC Output 

1 0.0000 0.0000 0.0000 0.0000 2.570 
2 2.4594 0.0000 0.0000 0.0000 12.100 
3 0.0000 5.1825 0.0000 0.0000 4.730 
4 0.0000 0.0000 4.7326 0.0000 13.700 
5 0.0000 0.0000 0.0000 6.0832 25.000 
6 -1.3043 0.0000 0.0000 0.0000 2.570 
7 0.0000 -0.9496 0.0000 0.0000 3.810 
8 0.0000 0.0000 -0.9984 0.0000 0.626 
9 0.0000 0.0000 0.0000 -0.6113 0.563 

 
 We have observed that[15] built a logistic regression 
model based on the same NASA data set, and both 
university and multivariate logistic regression were 
applied to identify the effectiveness of the metrics. 
Actually we get the similar university and multivariate 
regression results as in their study, so we do not contain 
those logistic regression results in the study. Instead, 
only a result of regression using several metrics is 
shown in Table 7. 
 
Neuro-fuzzy approach: We list all the fuzzy rules 
after training in Table 8. Contrary to present 
expectation, the results are not entirely consistent and 
we cannot elicit valuable information out of them. The 
reasons behind the unsuccessful training are: 1) the data 
set does not contain profound information to cover 
possible distribution of the metrics and defects; 2) for 
the trained membership functions, the ‘high’ and ‘low’ 
definitions do not agree with the standardized metrics 
values. For example, the range of WMC is [-0.9984, 
4.7326] and the mean value is 0, but the membership 
function cannot follow it because of the unbalance of 
the data. 
 To reveal the output trend with the standardized 
values of the explanatory variables, we choose one 
input to set it to high or low end, while keeping other 
inputs at mean value 0, to examine the change of the 
aggregated output. The results are shown in Table 9. 
Obviously, SLOC influences the output most, then 
come WMC and CBO, but RFC seems to impose some 
impact on the output from the negative direction, which 
does not totally comply with the statistical analysis, and 
we will discuss about it later. 
 We also perform ANFIS with each explanatory 
variable separately to see whether it is able to achieve 
good prediction independently. To set up ANFIS 
structure, we employ k-means clustering to categorize 
each variable. The results, especially the root mean 
squares, show that SLOC is more effective than the 
others, because its result of the root mean square is 
around 5 while the others are above 10. 
 

DISCUSSION 
 
Related works: Most related published study focused 
on validating the effectiveness of object-oriented design 
metrics for predicting fault-prone classes, instead of the 
numbers of defects/faults in the lasses. Nevertheless, 
we can consider them for comparison; especially those 
investigating the same CK metrics. 
 Basili et al.[5] collected data on eight medium-sized 
systems that were designed to meet the same 
requirement specification and implemented with C++. 
The metrics under investigation were the CK metrics 
suite and logistic regression was utilized to perform the 
data analysis. They claimed that most CK metrics 
(except LCOM) were effective predictors for class 
fault-proneness, and among them, DIT and RFC were 
believed to have more influence on the dependent 
variable. They also concluded that there was hardly any 
correlation among the metrics. 
 Tang et al.[7] conducted their study on data from an 
industrial system, which was comprised of more than 
200 C++ subsystems under Windows NT. Some 
metrics other than CK metrics were added to the 
metrics group under investigation, and logistic 
regression was carried out to evaluate those metrics. 
The results illustrated that WMC and DIT were 
significant indicators for finding fault-prone classes, but 
still, CK metrics seemed not sufficient. 
 Emam et al.[9] also chose logistic regression to 
analyze data from a telecommunication system, which 
consisted of 174 C++ classes. They found WMC, RFC 
and CBO were closely associated with fault-proneness; 
on the other hand, when size controlling was imposed 
on the analysis, the significance of the metrics no 
longer existed. They urged other researchers to re-
examine their study with size controlling. 
 Yu et al.[11] completed another validation study of 
CK metrics with data from the client side application of 
a large network service management system, which 
contained 123 Java classes and approximate 34,000 
lines of code. The dependent variable once again was 
the fault-proneness of the classes, and linear regression 
and discriminant analysis were their analysis 
methodology. They came to the conclusion that most 
CK metrics (except DIT) were sound predictor for the 
fault-prone classes. 
 Subramanyan et al.[12] accomplished their study 
based on the data collected from a large B2C e-
commerce system, which was developed in C++ and 
Java to work on AIX and Windows NT. They only 
examined metric data of WMC, CBO and DIT from 
405 C++ classes and 301 Java classes and used linear 
regression with Box-Cox transformation to determine 
the relationships between metrics and defects. 
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Table 10: Summary of related works 
Study Method Lang. Dependent Variable CBO DIT LCOM NOC RFC WMC SLOC 
Basili et al.[5] LR C++ Fault-proneness + ++  −− ++ + 
Tang et al.[7] LR C++ Fault-proneness 0 0  0 + + 
Emam et al.[9] LR C++ Fault-proneness + 0 0  + + 
Yu et al.[11] OLS+LDA Java Faults + 0 + + + ++ 
Subramanyan et al.[12] OLS C++ Faults + −    + + 
  Java  − −    0 ++ 
Succi et al.[13] PRM, NBRM + ZINBRM C++ Faults  ++   ++ 
Gyimóthy et al.[14] LR+ML C++ Fault-proneness ++ 0 ++  ++ ++ ++ 
Zhou et al.[15] LR+ML C++ Fault-proneness ++ 0 + −− ++ ++ ++ 
Our study OLS+ANF IS C++ Faults ++    − ++ +++ 
LR: Logistic Regression; OLS: Ordinary Least Square; LDA: Linear Discriminant Analysis; PRM: Poisson Regression Model; NBRM: Negative 
Binominal Regression Model; ZINBRM: Zeros-Inflated Negative Binominal Regression Model; ML: Machine Learning; ANFIS: Adaptive 
Neuro-Fuzzy Inference System 
 
Interestingly, the results of the impact of the metrics 
were not consistent between two programming 
languages, although size was always an effective 
indicator. 
 Succi et al.[13] assessed data from two commercial 
applications implemented using C++. One had 150 
classes and 23 KSLOC (thousands of SLOC), while the 
other 144 classes and 25 KSLOC. The six CK metrics 
were under assessment to evaluate their influence on 
the number of defects. With Poisson, NB and zero-
inflated regression analysis, they found out that RFC 
and DIT were the most valuable explanatory variables. 
 Gyimóthy et al.[14] found open source software was 
a great source for their validation of object-oriented 
metrics. Their samples were from Mozilla, and 3,192 
C++ classes were inspected. Analysis methodology 
including logistic regression, linear regression and 
machine learning proceeded to validate SLOC and CK 
metrics on class fault-proneness. The results showed all 
CK metrics excluding NOC and SLOC were powerful 
explanatory variable. Zhou et al.[15] also explored 
NASA KC1 data set as in this study, and took severity 
levels of defects into account when researching the 
relationships between CK metrics and fault-prone 
classes. Their analysis methods were logistic regression 
and machine learning. They maintained that CBO, 
WMC, RFC and LCOM were significant while DIT 
was not significant regardless of severity levels. 
Moreover, they held that severity levels could greatly 
influence the predicting power of CK metrics upon 
class fault-proneness. 
 A  summary  of  related research was listed in 
Table 10, and we can easily find: 1) the fault-proneness 
was the most employed dependent variable in those 
studies, since 5 out of 8 used it. 2) CBO, WMC and 
RFC were widely accepted as useful indictors for faults 
or fault-prone classes (5 out of 8 drew similar 
conclusions).  

CONCLUSION 
 
 In this study, we analyzed KC1 data set from the 
public NASA repository to validate and clarify the 
significance of CK metrics as indictors for 
faults/defects in the programs. Although most previous 
studies tried to reveal their effects on the fault-
proneness of the classes, we believe metrics and models 
that can predict the number of faults/defects in a class 
should be more valuable. 
 We utilized statistical methods and neuro-fuzzy 
approach to evaluate the relationships between CK 
metrics (together with SLOC) and faults/defects in the 
classes. The results could be summarized as: 
 
• CK metrics do not demonstrate as powerful impact 

as SLOC. SLOC should continue to be a useful 
metric for object-oriented programs 

• Among CK metrics, WMC, CBO and RFC are 
qualified indicators for predicting faults in classes 
and other metrics are trivial, while RFC 
demonstrates more complicated effect on the 
number of defects in classes. We should not 
determine the influence of one single factor 
separately, instead, we need to put related factors 
into one model 

• Up to date, no superior model or algorithm can do 
accurate prediction across projects in software 
quality assurance 

• Since the data we analyzed in this study is from 
one single project and it is not sufficient to build an 
accurate model for defects estimation, our next step 
will be collecting data from industrial projects. By 
using customized neuro-fuzzy approach, we will 
not only validate design metrics like CK metrics 
suite, but also investigate other process and 
personnel metrics 
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