
Journal of Computer Science 4 (7): 571-577, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Jie Xu, Department of Electrical and Computer Engineering, University of Western Ontario, London,
Ontario, N6A 5B9 Canada

571

An Empirical Validation of Object-Oriented Design

Metrics for Fault Prediction

1Jie Xu, 2Danny Ho and 1Luiz Fernando Capretz
1Department of Electrical and Computer Engineering,

University of Western Ontario, London, Ontario, N6A 5B9 Canada
2NFA Estimation Inc., Oshawa, Ontario, Canada

Abstract: Problem Statement: Object-oriented design has become a dominant method in software
industry and many design metrics of object-oriented programs have been proposed for quality
prediction, but there is no well-accepted statement on how significant those metrics are. In this study,
empirical analysis is carried out to validate object-oriented design metrics for defects estimation.
Approach: The Chidamber and Kemerer metrics suite is adopted to estimate the number of defects in
the programs, which are extracted from a public NASA data set. The techniques involved are statistical
analysis and neuro-fuzzy approach. Results: The results indicate that SLOC, WMC, CBO and RFC
are reliable metrics for defect estimation. Overall, SLOC imposes most significant impact on the
number of defects. Conclusions/Recommendations: The design metrics are closely related to the
number of defects in OO classes, but we can not jump to a conclusion by using one analysis technique.
We recommend using neuro-fuzzy approach together with statistical techniques to reveal the
relationship between metrics and dependent variables, and the correlations among those metrics also
have to be considered.

Key words: Software quality, design metrics, statistical analysis, neuro-fuzzy, prediction

INTRODUCTION

 Time, cost and scope are regarded as the three
pillars of software project management whereas quality
is applicable to all. It is a well-proved fact that the
earlier a defect is found and fixed, the less it costs. Thus
high quality products are plausible to be delivered.
Unfortunately, as the size and complexity of software
grows dramatically in modern industry, the quality
becomes very hard to predict or estimate.
 Researchers and engineers have been working on
this subject for more than three decades, and many
started with static design metrics in the programs.
Those metrics of complexity, such as Source Lines of
Code (SLOC)[1], Halstead’s software science[2] and
McCabe’s cyclomatic complexity[3], all impose their
influence on software quality at module level.
Nonetheless, the relationships between those metrics
and software quality are not accurately elaborated, and
hardly can satisfactory estimation results be achieved.
 After object-oriented programming dominated
software development, a vast variety of design metrics
have been tailored for estimating the quality of object-
oriented programs.

 Chidamber and Kemerer[4] introduced their OO
design and complexity metrics and demonstrated the
strong impact on software quality. The CK metrics suite
invoked great enthusiasm among researchers and
software engineers, and a great amount of empirical
studies have been conducted to evaluate those metrics.
Moreover, other variants of CK metrics were added in
order to present more accurate indications of code
quality. Although all these studies made valuable
contributions to improve OO design, their results
seemed not consistent[5-15].
 In this study, data from the industry is used to
analyze the relationships between CK metrics and
defects in the OO programs. Besides statistical analysis
methods, we utilize a neuro-fuzzy approach to validate
the relationships.

CK metrics: In CK metrics suite[4], six design and
complexity metrics are used to represent the
characteristics of the code:

• WMC (Weighted Methods per Class): The sum of

normalized complexity of every method in a given
class. Usually we just use the number of methods
in a given class

J. Computer Sci., 4 (7): 571-577, 2008

 572

Table 1: Descriptive information of metrics
Metric Minimum Maximum Median Mean
CBO 0 24 8 8.3
DIT 1 7 2 2.0
LCOM 0 100 84 68.7
NOC 0 5 0 0.2
RFC 0 222 28 34.4
WMC 0 100 12 17.4
SLOC 0 2313 108 211.2
Defects 0 101 0 4.6

• DIT (Depth of Inheritance Tree): The maximum

length from the root to a given class in the
inheritance hierarchy

• NOC (Number Of Children): The number of all
direct subclasses of a given class

• RFC (Response For a Class): The number of
methods implemented in a given class that can be
invoked by a received message

• CBO (Coupling Between Object Classes): the
number of classes that use the member functions
and/or the instance variables of a given class

• LCOM (Lack of Cohesion on Methods): for each
instance variable calculate the percentage of
methods using it, then the average percentage for
all variables subtracted from 100%

• Intuitively, these CK metrics illustrate the
measurable characteristics of an OO program, such
as complexity, cohesion and coupling. For general
design environment, we technically should keep all
those metrics at a reasonable level

Data preparation: In this study we use a data set KC1
from the NASA IV and V Facility Metrics Data
Program data repository (http://mdp.ivv.nasa.org),
which is comprised of 43 KSLOC of C++ code for a
ground system. There are 145 classes and altogether
2107 methods.
 The defects information in the original data set is at
method level, while metrics information is at class
level. For this study, those files have to be combined to
get all class level information. We generate all class
level information and validate it with the above data
resource.
 Descriptive information about this public data set is
listed in Table 1. Since six CK metrics and Source
Lines of Code (SLOC) are examined to evaluate their
impact on the quality of the code, only related
information is included in the Table 1.
 The intention of this study is to validate and
compare the influence of those metrics on the final
quality of software, so transformation should be made
to maintain those metrics at comparable levels. In this

study, standardization of the metrics is pre-processed to
make their means zero and standard deviation one.

MATERIALS AND METHODS

Correlation analysis: First, the relationships between
each explanatory variable (metric) and the dependent
variable (the number of defects) are revealed by using
Spearman's rank correlation coefficient method.
Although correlation between two variables does not
necessarily result in causal effect, it is still an effective
method to choose candidate metrics.

Regression analysis: Linear regression is the most
popular statistical method to establish the relationship
model between the explanatory variables and the
dependent variable. Generally Ordinary Least Square
(OLS) tries to obtain the least square estimates to build
the regression model. When the intrinsic relationship is
not linear, the regression can still be used to evaluate
the influences of different predictors.
 To explore the impact of various explanatory
variables (metrics) on the dependent variable (defects),
both university and multivariate linear regression are
applied to the standardized metrics and the number of
the defects.
 In this research, the purpose of the linear regression
is not to calibrate the accuracy of the estimation model,
but to validate those object-oriented design metrics. So
we just ignore the assumptions leading to linear
regression.
 In many related researches, logistic regression was
extensively used to examine the relationships between
object-oriented design metrics and the probability of the
class containing faults, not the actual number of the
faults. This regression analysis, on the other side, also
exhibits the contribution of the metrics to the quality of
the programs.

Neuro-fuzzy approach: From this study and Zhou and
Leung’s[15], obviously neither linear regression nor
logistic regression can achieve a model to elaborate the
complexity between those metrics and the quality of
code. Because of the diversity of software engineering
practices, no simple equation can be discovered to
delicately abstract the relationship from industry data.
 Since neural networks began to regain public
interests in 1982, they have been widely implemented
in a variety of fields as engineering, business, medicine
and physics. Their performance in prediction,
classification, and real time control is highly recognized
by experts in those domains.

J. Computer Sci., 4 (7): 571-577, 2008

 573

 The main strength of neural networks is their
power to model extremely complex functions, for
example, for the cases where there are a great number
of variables and traditional regression methods are not
applicable. Moreover, neural networks can learn from
historical data and train themselves to achieve high
performance, where not much expertise is mandatory.
 Another sophisticated technique for modelling
complex systems is fuzzy logic, which is applied with
heuristic knowledge and with imprecise inputs to
realize complicated functions. Because the real world is
full of vagueness, fuzzy logic has proved to be very
successful in many fields, like dynamic control,
decision support, and other expert systems.
 Both neural network and fuzzy logic have their
advantages in modelling nonlinear functions, but their
strengths attract us from quite different aspects.
Moreover, since neural network lacks the capability of
explaining the meaning behind the application, which is
exactly the strength of fuzzy logic, it has drawn great
attention to combine the two techniques together to
form a new approach. Here comes neuro-fuzzy, which
is now an important constituent of soft computing, and
is applied to solve decision-making, modelling,
predicting, and control problems in the real world.
 In this study, we adopt ANFIS (Adaptive Neuro-
Fuzzy Inference System) to approximate the function
between design metrics and defects. ANFIS is actually
a fuzzy inference system, which is based on a neural
network structure, thus it has the learning capability
inherited from neural networks to adjust the parameters
of membership functions and rules. A typical structure
of ANFIS is shown in Fig. 1.
 ANFIS has proved to have extraordinary power for
realizing arbitrary nonlinear functions[16]. Therefore, it
is a quite suitable tool for evaluating the relationship
between design metrics and defects. ANFIS is
comprised of five layers:

Layer 1: Every node in this layer is an adaptive node.

Parameters in this layer are called premise
parameters.

Layer 2: Every node in this layer is a fixed node
labelled ∏, whose output is the product of all
the incoming signals. Each node output
represents the firing strength of a rule.

Layer 3: Every node in this layer is a fixed node
labelled N. The ith node calculates the ratio
of the ith rule’s firing strength. Thus the
outputs of this layer are called normalized
firing strengths.

Layer 4: Every node i in this layer is an adaptive node.
Parameters in this layer are referred to as
consequent parameters.

Fig. 1: The typical structure of ANFIS

Layer 5: The single node in this layer is a fixed node

labelled ∑, which computes the overall
output as the summation of all incoming
signals.

 In this study, only 4 metrics, CBO, RFC, WMC
and SLOC, which show their tight correlation with
defects numbers, are chosen as input variables in
ANFIS. Because these four are highly correlated with
each other, we cannot simplify the rule set when we
design the structure of ANFIS. Therefore there are
altogether 81 (3 powered by 4) rules if each metric has
3 membership functions. Even though we choose
constants as the consequent parts of the fuzzy rules and
triangular membership functions for the purpose of
simplicity, totally 117 parameters need to be adjusted
during the whole training procedure. As regard to the
NASA data set, which includes only 145 data points, it
is apparently not enough to gain satisfactory training
result. For this reason, together with easy explanation,
we classify the metrics only into two levels, ‘high’ and
‘low’. Still keeping present constant and triangle
choice, we diminish the number of parameters to 40 (16
rules, 8 functions). Every rule has the form as:
 If CBO is high AND RFC is high AND WMC is
high AND SLOC is high, then the number of defects is
N1.
 We precede present experiments with Matlab,
which has built-in ANFIS function and editor that
make the implementation and customization more
convenient for us. The structure of present ANFIS is
shown in Fig. 2.
 To initialize and train the ANFIS, we divide the
data set into training data (120 data points) and
checking data (25 data points), and the data points
randomly fall into one group. We do not expect to
obtain a well-tuned ANFIS model due to the
insufficiency of data. The main purpose is to retrieve
straightforward information out of the built system.

J. Computer Sci., 4 (7): 571-577, 2008

 574

Fig. 2: The structure of ANFIS in Matlab

RESULTS

Correlation analysis: Table 2 displays the results,
which shows that CBO, RFC, WMC and SLOC have
more influence on the number of defects in the
programs (significance at 0.01 levels). Among them,
SLOC seems to be the most important indicator of
defects, which has the biggest coefficient.
 We also examine the Spearman’s rank correlation
among the seven metrics (6 CK metrics plus SLOC).
The results (Table 3) illustrate these metrics are far
from being independent, but correlated with each other,
especially there are strong correlations among CBO,
RFC, WMC and SLOC.

Regression analysis: The result of the univariate linear
regression is listed in Table 4, which shows SLOC,
WMC, CBO and RFC are more significant with respect
to other metrics for their higher coefficients and R-
square values at significant levels. The SLOC is
regarded as the most effective one, since it captures
around 45 percent of the variance.
 The result of the multivariate linear regression is
also displayed in Table 5. This time SLOC, CBO, RFC
and WMC still come out to be stronger than other
metrics, which demonstrate some unstable impact on
the dependent variable (the coefficients are 7.3408,
0.8775, 0.6662 and 0.3329 accordingly). Moreover, the
R-square value is 0.5098 for the multivariate linear
regression, which shows that nearly half of the variance
is not included in this model. Again, we will not strive
to exploit how to improve the accuracy of the model,
but the multicollinearity among the metrics and the
heteroscedasticity of the errors definitely contribute to
the deviation. The result of another linear regression
using only four metrics is listed in Table 6.

Table 2: Correlations between metrics and defects
Metrics Coefficients p-value
CBO 0.5472 0.0000
DIT 0.0411 0.6232
LCOM -0.0178 0.8319
NOC -0.1743 0.0360
RFC 0.2475 0.0027
WMC 0.3383 0.0000
SLOC 0.5763 0.0000

Table 3: Inter-correlations among the metrics
 DIT LCOM NOC RFC WMC SLOC
CBO 0.4703* 0.0413 -0.1287 0.5416* 0.3773* 0.8184*
DIT 0.2495 -0.1123 0.7179* 0.2154 0.3853*
LCOM 0.1193 0.3827* 0.3780* 0.0097
NOC -0.0317 0.1014 -0.1363
RFC 0.6661* 0.5230*
WMC 0.4963*
“*” indicates at the 0.001 significance level

Table 4: Univariate linear regression
 CBO DIT LCOM NOC RFC WMC SLOC
Coefficient 3.9704 0.4029 1.3695 -1.1427 2.9552 5.0308 7.3106
Constant 4.6138 4.6138 4.6138 4.6138 4.6138 4.6138 4.6138
R. square 0.1337 0.0014 0.0159 0.0111 0.0741 0.2147 0.4533
P-value 0.0000 0.6577 0.1306 0.2078 0.0009 0.0000 0.0000

Table 5: Multivariate linear regression
 Constant CBO DIT LCOM NOC RFC WMC SLOC
Coefficient 4.6138 0.8775 -2.9951 -0.1842 -0.9080 0.6662 0.3329 7.3048

Table 6: Multivariate linear regression (2)
 Const. CBO RFC WMC SLOC
Coef. 4.6138 0.2125 -1.7731 1.7042 7.0207

Table 7: Multivariate logistic regression
 Const. CBO RFC WMC SLOC
Coef. 1.8045 1.3274 -0.6817 0.2111 1.8925
P 0.0000 0.0000 0.0006 0.2620 0.0023

Table 8: Fuzzy fules from trained anfis
 CBO RFC WMC SLOC Output
1 Low Low Low Low 2.320
2 Low Low Low High -4.195
3 Low Low High Low -10.270
4 Low Low High High 226.500
5 Low High Low Low -3.607
6 Low High Low High -50.070
7 Low High High Low 16.450
8 Low High High High -35.130
9 High Low Low Low -11.160
10 High Low Low High -258.300
11 High Low High Low 272.400
12 High Low High High 263.200
13 High High Low Low 45.070
14 High High Low High 810.500
15 High High High Low -754.500
16 High High High High -420.400

J. Computer Sci., 4 (7): 571-577, 2008

 575

Table 9: Aggregated outputs with different inputs

 CBO RFC WMC SLOC Output

1 0.0000 0.0000 0.0000 0.0000 2.570
2 2.4594 0.0000 0.0000 0.0000 12.100
3 0.0000 5.1825 0.0000 0.0000 4.730
4 0.0000 0.0000 4.7326 0.0000 13.700
5 0.0000 0.0000 0.0000 6.0832 25.000
6 -1.3043 0.0000 0.0000 0.0000 2.570
7 0.0000 -0.9496 0.0000 0.0000 3.810
8 0.0000 0.0000 -0.9984 0.0000 0.626
9 0.0000 0.0000 0.0000 -0.6113 0.563

 We have observed that[15] built a logistic regression
model based on the same NASA data set, and both
university and multivariate logistic regression were
applied to identify the effectiveness of the metrics.
Actually we get the similar university and multivariate
regression results as in their study, so we do not contain
those logistic regression results in the study. Instead,
only a result of regression using several metrics is
shown in Table 7.

Neuro-fuzzy approach: We list all the fuzzy rules
after training in Table 8. Contrary to present
expectation, the results are not entirely consistent and
we cannot elicit valuable information out of them. The
reasons behind the unsuccessful training are: 1) the data
set does not contain profound information to cover
possible distribution of the metrics and defects; 2) for
the trained membership functions, the ‘high’ and ‘low’
definitions do not agree with the standardized metrics
values. For example, the range of WMC is [-0.9984,
4.7326] and the mean value is 0, but the membership
function cannot follow it because of the unbalance of
the data.
 To reveal the output trend with the standardized
values of the explanatory variables, we choose one
input to set it to high or low end, while keeping other
inputs at mean value 0, to examine the change of the
aggregated output. The results are shown in Table 9.
Obviously, SLOC influences the output most, then
come WMC and CBO, but RFC seems to impose some
impact on the output from the negative direction, which
does not totally comply with the statistical analysis, and
we will discuss about it later.
 We also perform ANFIS with each explanatory
variable separately to see whether it is able to achieve
good prediction independently. To set up ANFIS
structure, we employ k-means clustering to categorize
each variable. The results, especially the root mean
squares, show that SLOC is more effective than the
others, because its result of the root mean square is
around 5 while the others are above 10.

DISCUSSION

Related works: Most related published study focused
on validating the effectiveness of object-oriented design
metrics for predicting fault-prone classes, instead of the
numbers of defects/faults in the lasses. Nevertheless,
we can consider them for comparison; especially those
investigating the same CK metrics.
 Basili et al.[5] collected data on eight medium-sized
systems that were designed to meet the same
requirement specification and implemented with C++.
The metrics under investigation were the CK metrics
suite and logistic regression was utilized to perform the
data analysis. They claimed that most CK metrics
(except LCOM) were effective predictors for class
fault-proneness, and among them, DIT and RFC were
believed to have more influence on the dependent
variable. They also concluded that there was hardly any
correlation among the metrics.
 Tang et al.[7] conducted their study on data from an
industrial system, which was comprised of more than
200 C++ subsystems under Windows NT. Some
metrics other than CK metrics were added to the
metrics group under investigation, and logistic
regression was carried out to evaluate those metrics.
The results illustrated that WMC and DIT were
significant indicators for finding fault-prone classes, but
still, CK metrics seemed not sufficient.
 Emam et al.[9] also chose logistic regression to
analyze data from a telecommunication system, which
consisted of 174 C++ classes. They found WMC, RFC
and CBO were closely associated with fault-proneness;
on the other hand, when size controlling was imposed
on the analysis, the significance of the metrics no
longer existed. They urged other researchers to re-
examine their study with size controlling.
 Yu et al.[11] completed another validation study of
CK metrics with data from the client side application of
a large network service management system, which
contained 123 Java classes and approximate 34,000
lines of code. The dependent variable once again was
the fault-proneness of the classes, and linear regression
and discriminant analysis were their analysis
methodology. They came to the conclusion that most
CK metrics (except DIT) were sound predictor for the
fault-prone classes.
 Subramanyan et al.[12] accomplished their study
based on the data collected from a large B2C e-
commerce system, which was developed in C++ and
Java to work on AIX and Windows NT. They only
examined metric data of WMC, CBO and DIT from
405 C++ classes and 301 Java classes and used linear
regression with Box-Cox transformation to determine
the relationships between metrics and defects.

J. Computer Sci., 4 (7): 571-577, 2008

 576

Table 10: Summary of related works
Study Method Lang. Dependent Variable CBO DIT LCOM NOC RFC WMC SLOC
Basili et al.[5] LR C++ Fault-proneness + ++ −− ++ +
Tang et al.[7] LR C++ Fault-proneness 0 0 0 + +
Emam et al.[9] LR C++ Fault-proneness + 0 0 + +
Yu et al.[11] OLS+LDA Java Faults + 0 + + + ++
Subramanyan et al.[12] OLS C++ Faults + − + +
 Java − − 0 ++
Succi et al.[13] PRM, NBRM + ZINBRM C++ Faults ++ ++
Gyimóthy et al.[14] LR+ML C++ Fault-proneness ++ 0 ++ ++ ++ ++
Zhou et al.[15] LR+ML C++ Fault-proneness ++ 0 + −− ++ ++ ++
Our study OLS+ANF IS C++ Faults ++ − ++ +++
LR: Logistic Regression; OLS: Ordinary Least Square; LDA: Linear Discriminant Analysis; PRM: Poisson Regression Model; NBRM: Negative
Binominal Regression Model; ZINBRM: Zeros-Inflated Negative Binominal Regression Model; ML: Machine Learning; ANFIS: Adaptive
Neuro-Fuzzy Inference System

Interestingly, the results of the impact of the metrics
were not consistent between two programming
languages, although size was always an effective
indicator.
 Succi et al.[13] assessed data from two commercial
applications implemented using C++. One had 150
classes and 23 KSLOC (thousands of SLOC), while the
other 144 classes and 25 KSLOC. The six CK metrics
were under assessment to evaluate their influence on
the number of defects. With Poisson, NB and zero-
inflated regression analysis, they found out that RFC
and DIT were the most valuable explanatory variables.
 Gyimóthy et al.[14] found open source software was
a great source for their validation of object-oriented
metrics. Their samples were from Mozilla, and 3,192
C++ classes were inspected. Analysis methodology
including logistic regression, linear regression and
machine learning proceeded to validate SLOC and CK
metrics on class fault-proneness. The results showed all
CK metrics excluding NOC and SLOC were powerful
explanatory variable. Zhou et al.[15] also explored
NASA KC1 data set as in this study, and took severity
levels of defects into account when researching the
relationships between CK metrics and fault-prone
classes. Their analysis methods were logistic regression
and machine learning. They maintained that CBO,
WMC, RFC and LCOM were significant while DIT
was not significant regardless of severity levels.
Moreover, they held that severity levels could greatly
influence the predicting power of CK metrics upon
class fault-proneness.
 A summary of related research was listed in
Table 10, and we can easily find: 1) the fault-proneness
was the most employed dependent variable in those
studies, since 5 out of 8 used it. 2) CBO, WMC and
RFC were widely accepted as useful indictors for faults
or fault-prone classes (5 out of 8 drew similar
conclusions).

CONCLUSION

 In this study, we analyzed KC1 data set from the
public NASA repository to validate and clarify the
significance of CK metrics as indictors for
faults/defects in the programs. Although most previous
studies tried to reveal their effects on the fault-
proneness of the classes, we believe metrics and models
that can predict the number of faults/defects in a class
should be more valuable.
 We utilized statistical methods and neuro-fuzzy
approach to evaluate the relationships between CK
metrics (together with SLOC) and faults/defects in the
classes. The results could be summarized as:

• CK metrics do not demonstrate as powerful impact

as SLOC. SLOC should continue to be a useful
metric for object-oriented programs

• Among CK metrics, WMC, CBO and RFC are
qualified indicators for predicting faults in classes
and other metrics are trivial, while RFC
demonstrates more complicated effect on the
number of defects in classes. We should not
determine the influence of one single factor
separately, instead, we need to put related factors
into one model

• Up to date, no superior model or algorithm can do
accurate prediction across projects in software
quality assurance

• Since the data we analyzed in this study is from
one single project and it is not sufficient to build an
accurate model for defects estimation, our next step
will be collecting data from industrial projects. By
using customized neuro-fuzzy approach, we will
not only validate design metrics like CK metrics
suite, but also investigate other process and
personnel metrics

J. Computer Sci., 4 (7): 571-577, 2008

 577

REFERENCES

1. Basili, V.R. and B.T. Perricone, 1984. Software

errors and complexity: An empirical investigation.
Commun. ACM, 27: 42-52.
http://portal.acm.org/citation.cfm?id=2085.

2. Halstead, M.H., 1977. Elements of Software
Science. 1st Edn., Elsevier North Holland, New
York, ISBN: 10: 0444002057 pp: 127.

3. McCabe, T.J., 1976. A complexity measure. IEEE
Trans. Software Eng., 2: 308-320. DOI:
10.1109/TSE.1976.233837.

4. Chidamber, S.R. and C.F. Kemerer, 1994. A
metrics suite for object-oriented design. IEEE
Trans. Software Eng., 20: 476-493. DOI:
10.1109/32.295895.

5. Basili, V.R., L.C. Briand and W.L. Melo, 1996. A
validation of object-oriented design metrics as
quality indicators. IEEE Trans. Software Eng.,
22: 751-761. DOI: 10.1109/32.544352.

6. Briand, L.C., J. Wust, S.V. Ikonomovski and
H. Lounis, 1999. Investigating quality factors in
object-oriented designs: An industrial case study.
Proceedings of the 21st International Conference
on Software Engineering, May 16-22, ACM Los
Angeles, California, United States, New York,
USA., pp: 345-354. http://portal.acm.org/
citation.cfm?id=302405.302654&type=series.

7. Tang, M.H., M.H. Kao and M.H. Chen, 1999. An
empirical study on object-oriented metrics.
Proceedings of the 6th International Symposium on
Software Metrics, Oct. 04-06, IEEE Computer
Society, Boca Raton, FL., USA., pp: 242-249.
DOI: 10.1109/METRIC.1999.809745.

8. Briand, L.C., J. Wust, J.W. Daly and D.V. Porter,
2000. Exploring the relationships between design
measures and software quality in object-oriented
systems. J. Syst. Software, 51: 245-273.
http://resolver.scholarsportal7.info/resolve/016412
12/v51i0003/245_etrbdmasqios&form=pdf&file=fi
le.pdf.

9. El Emam, K., S. Benlarbi, N. Goel and S.N. Rai,
2001. The confounding effect of class size on the
validity of object-oriented metrics. IEEE Trans.
Software Eng., 27: 630-650. DOI:
10.1109/32.935855.

10. Briand, L.C., J. Wust and H. Lounis, 2001.
Replicated case studies for investigating quality
factors in object-oriented designs. Empirical
Software Eng., 6: 11-58. http://resolver.
scholarsportal.info/resolve/13823256/v06i0001/11
_rcsfiqfiod&form=pdf&file=file.pdf.

11. Yu, P., T. Systa and H. Muller, 2002. Predicting
fault-proneness using oo metrics: An industrial
case study. Proceedings of the 6th European
Conference on Software Maintenance and
Reengineering, Mar. 11-13, Budapest, Hungary,
pp: 99-107. DOI: 10.1109/CSMR.2002.995794.

12. Subramanyan, R. and M.S. Krisnan, 2003.
Empirical analysis of CK metrics for object-
oriented design complexity. Implications for
software defects. IEEE Trans. Software Eng.,
27: 297-310. http://www2.computer.org/
portal/web/csdl/doi/10.1109/TSE.2003.1191795.

13. Succi, G., W. Pedrycz, M. Stefanovic and J. Miller,
2003. Practical assessment of the models for
identification of defect-prone classes in object-
oriented commercial systems using design metrics.
J. Syst. Software, 65: 1-12. DOI: 10.1016/S0164-
1212(02)00024-9.

14. Gyimóthy, T., R. Ferenc and I. Siket, 2005.
Empirical validation of object-oriented metrics on
open source software for fault prediction. IEEE
Trans. Software Eng., 31: 897-910. DOI:
10.1109/TSE.2005.112.

15. Zhou, Y. and H. Leung, 2006. Empirical analysis
of object-oriented design metrics for predicting
high and low severity faults. IEEE Trans. Software
Eng., 32: 771-789. DOI: 10.1109/TSE.2006.102.

16. Jang, J.S.R. C.T. Sun and E. Mizutani, 1997.
Neuro-Fuzzy and Soft Computing. 1st Edn.,
Prentice Hall, New Jersey, ISBN: 10: 0132610663,
pp: 335-345.

