
Journal of Computer Science 4 (7): 525-529, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Amr Badr, Department of Computer Science, Faculty of Computers and Information, Cairo
University, Cairo, Egypt

525

Solving Protein Folding Problem using Elitism-Based Compact Genetic Algorithm

Amr Badr, Ibtehal M. Aref, Basma M. Hussien and Yosr Eman

Department of Computer Science, Faculty of Computers and Information,
Cairo University, Cairo, Egypt

Abstract: Proteins are vital components of living cells. A number of diseases such as Alzheimer's,
Cystic fibrosis and Mad Cow diseases are shown to result from misfunctioning of proteins. Problem
statement: Protein folding problem is the process of predicting the optimal 3D molecular structure of
a protein, or tertiary structure, which is an indication of its proper function. Approach: An
enhancement over persistent elitist compact genetic algorithm (pe-cGA) was made to minimize the
energy of proteins indicating how far it is from its optimal 3D structure. Energy was calculated using
the Empirical Conformational Energy Program for Peptides (ECEPP) package. Results: Experiments
were performed on the Met-enkephalin protein. The enhanced algorithm reached an energy of -7.378
in 140,000 iterations surpassing the Distributed Genetic Algorithm (DGA) which reached the same
energy in 700,000 iterations. A comparison was also made with the Breeder Genetic Algorithm (BGA)
which did not reach this energy in the first place. Conclusions/Recommendations: Results show that
the enhanced algorithm is superior to DGA and BGA and a computational alternative to costly
laboratory methods and an efficient means for solving organic docking problems.

Keywords: Estimation of distribution algorithm, elitism-based compact genetic algorithm, persistent

elitist compact genetic algorithm, non-persistent elitist compact genetic algorithm

INTRODUCTION

 Proteins are fundamental components of all living
cells. The bacteria that infect us, the plants and animals
we eat, the hemoglobin that carries oxygen to our
tissues, the insulin that signals our bodies to store
excess sugar, the antibodies that fight infection, the
actin and myosin that allow our muscles to contract,
and the collagen that makes up our tendons and
ligaments (and even much of our bones) are all
examples of proteins. To make proteins, ribosomes
string together amino acids into long, linear chains.
Like shoelaces, these chains loop about each other in a
variety of ways (i.e., they fold). But, as with a shoelace,
only one of these many ways allows the protein to
function properly. Yet lack of function is not always the
worst scenario.
 Recent discoveries have shown that some diseases
(Alzheimer’s disease, Cystic fibrosis, Mad Cow
disease, and many cancer types) are the result of
misfolded proteins. Also, protein misfolding is behind
many of the unexpected difficulties biotechnology
companies encounter when trying to produce human
proteins in bacteria.
 A misfolded protein can actually poison the cells
around it, so misfolded protein could be worse than a
normally folded one.

 The prediction of molecular structure
(polypeptide’s native conformation) of a protein given
only its amino acid sequence is not an easy task, but has
numerous potential applications[1]. This structure
prediction problem is commonly referred to as the
protein folding problem. Efforts to solve it nearly
always assume that the native conformation
corresponds to the global minimum free energy state of
the system. Given this assumption, a necessary step in
solving the problem is the development of efficient
global energy minimization techniques. This is a
difficult optimization problem because of the non-linear
and multi-modal nature of the energy function.
 The motivation of this work is to find the optimal
3D structure of protein (angles of amino acids) to be
used in the treatment by using Estimation of
Distribution Algorithm (EDA)[2].

MATERIALS AND METHODS

The algorithm:
Estimation of Distribution Algorithm (EDA): Instead
of using traditional recombination and mutation
operators, Estimation of Distribution Algorithm
(EDA)[1] generates offspring population according to
the estimated probabilistic model of parent population.

J. Computer Sci., 4 (7): 525-529, 2008

526

Also, EDAs express the interrelations explicitly through
the joint probability distribution associated with the
individuals of variables selected at each generation. The
probability distribution is calculated from a database of
selected individuals of previous generation. Then
offspring are generated from sampling this probability
distribution. Neither crossover nor mutation is applied
in EDAs. But the estimation of the joint probability
distribution associated with the database containing the
selected individuals is not an easy task. The flow chart
of EDA is shown in the Fig. 1.

Different EDA approaches:
Independent variables: The easiest way to calculate
the estimation of probability distribution is to consider

Generate initial population of size M

Select N (<= M) individuals

Calculate joint probability distribution of the
selected individuals using one of the EDA

methods

Generate offspring by sampling the probability

distribution

Replace old population by offspring according

to replacement strategy

Terminate
conditions
satisfied ?

Get solution

NO YES

Fig. 1: EDA flowchart

all the variables in a problem as uni-variate
(independent). In Uni-variate Marginal Distribution
Algorithm (UMDA)[3], the joint probability distribution
is factorized as a product of independent uni-variate
marginal distribution.

Bi- variate dependencies: To solve the problem of pair
wise interaction among variables, population based
Mutual Information Maximization for Input Clustering
(MIMIC) [4] Algorithm, Combining Optimizers with
Mutual Information Trees (COMIT)[5], Bi- variant
Marginal Distribution Algorithm (BMDA)[6] were
introduced. Where there is at most two-order
dependency among variables.

Multiple dependencies: The factorization of the joint
probability is calculated as a product of marginal
distribution of variable size. These marginal
distributions of variable size are related to the variables
that are contained in the same group and to the
probability distribution associated with them (variables
are strongly related).
 In this study, the multiple dependencies are used
because all the variables (protein angles) are strongly
related.
 The MVDA has several types like Factorized
Distribution Algorithm (FDA)[7], Extended Compact
Genetic Algorithm, Bayesian Optimization Algorithm
(BOA)[8], Estimation of Bayesian Networks Algorithm
(EBNA)[9] and Elitism-based Compact Genetic
Algorithm (ECGA)[10].

Elitism-based Compact Genetic Algorithm (ECGA):
There is two elitism-based compact Genetic Algorithms
(cGAs)-persistent elitist compact genetic algorithm (pe-
cGA), and non-persistent elitist compact Genetic
Algorithm (ne-cGA)[11]. The aim is to design efficient
compact-type GAs by treating them as Estimation of
Distribution Algorithms (EDAs) for solving difficult
optimization problems without compromising on
memory and computation costs. The idea is to deal with
issues connected with lack of memory-inherent
disadvantage of cGAs-by allowing a selection pressure
that is high enough to offset the disruptive effect of
uniform crossover. The point is to properly reconcile
the cGA with elitism. The pe-cGA finds a near optimal
solution (i.e., a winner) that is maintained as long as
other solutions (i.e., competitors) generated from
probability vectors are no better. It attempts to
adaptively alter the selection pressure according to the
degree of problem difficulty by employing only the
pair-wise tournament selection strategy.

J. Computer Sci., 4 (7): 525-529, 2008

527

 Parameters.
 n: population size, l: chromosome length,
 Echrom: elite chromosome, Nchrom: new
chromosome.

Step 1.
 Initialize probability vector
 for i:=1 to l do p[i] := 0.5;

Step 2.
 Generate one chromosome from the probability vector
if the first generation then

 Echrom := generate (p);
/*initialize the elite chromosome*/

 Nchrom := generate (p);
/*generate a new chromosome*/

Step 3.
 Let them compete and let the winner inherit
persistently
Winner, loser := compete (Echrom, Nchrom);
 Echrom := winner;
 /*update the elite chromosome*/

Step 4.
Update the probability vector
 for i:= 1 to l do
 if winner[i] ? loser[i] then
 if winner[i] == 1 then p[i] := p[i] + 1/n;
 else p[i] := p[i] – 1/n;

Step 5.
Check if the probability vector has converged.
Go to Step 2, if it is not satisfied.

Step 6.
The probability vector represents the final solution.

Fig. 2: the pe-cGA pseudo code

 The ne-cGA further improves the performance of
the pe-cGA by avoiding strong elitism that may lead to
premature convergence. It may seem that the ne-cGA
gives better results, and this is true for some problems.
But in this work, we found out (from experimental
results) that the pe-cGA is better and more suitable for
the protein folding problem.
 The pseudo code of the pe-cGA is as in Fig. 2.
 But from experimental results the pe-cGA alone
did not give good results, so we needed to make
enhancement over it to get better results.

Enhancement over pe-cGA: In this study, pe-cGA is
proposed in solving protein folding problem with the
addition of two modifications: mutation, and keeping
the best solution so far.

Fig. 3: Mutation

 The first modification is the addition of mutation.
Mutation will be performed by adding a secondary
tournament to each cycle that compares the
performance of the current champion string with a
mutated version of itself. If the mutated version wins, it
replaces the old champion as the elite string for the next
tournament. Note that our implementation of mutation
presumes elitism. This allows periodic sampling of
individuals around the champion independent of the
current state of the genome probability vector. We can
more formally describe this operation by modifying the
standard cGA to contain elitism and by adding a new
step as described in the pseudo code of Fig. 3.
 We also found that considering the probability
vector as the final solution is not the optimal solution,
so the second and final modification is to consider the
final solution as the best individual (in our case, the one
with minimum energy) in all generations.
 The complete algorithm became as in Fig. 4.

 The algorithm was implemented in C/C++ using
Microsoft Visual Studio. Empirical Conformational
Energy Program for Peptides (ECEPP) package was
used to evaluate energy of proteins.

RESULTS

 The target protein in this study is Met-
enkephalin[12]. Met-enkephalin is the protein that
consists of five amino acids.
 As we search for the structure that give minimum
energy, the fitness of individuals is calculated in terms
of energy. In our case the best individual is the
individual with the minimum energy. We used an
energy evaluator called Empirical Conformational
Energy Program for Peptides (ECEPP)[13] to evaluate
the individual energy.

J. Computer Sci., 4 (7): 525-529, 2008

528

 Parameters.
 n: population size, l: chromosome length,
 Echrom: elite chromosome, Nchrom: new chromosome.

S tep 1.
 Initialize probability vector
 for i:=1 to l do p[i] := 0.5;

Step 2.
 Generate one chromosome from the probability vector if the
first generation then

 Echrom := generate (p);
/*initialize the elite chromosome*/

 Nchrom := generate (p);
/*generate a new chromosome*/

Step 3.
 Let them compete and let the winner inherit persistently
Winner, loser := compete (Echrom, Nchrom);
 Echrom := winner;
 /*update the elite chromosome*/

Step 4.
Update the probability vector
 for i:= 1 to l do
 if winner[i] ? loser[i] then
 if winner[i] == 1 then p[i] := p[i] + 1/n;
 else p[i] := p[i] – 1/n;

Fig. 4: The pe-cGA with enhancement

 A comparative study is made with two other
algorithms (described below) that solve the same
problem on Met-enkephalin protein using “ECEPP. The
comparison is based on the best fitness (minimum
protein energy) that each algorithm has reached with
respect to the overhead (number of energy evaluations)
needed to reach this result.
 In Distributed Genetic Algorithm(DGA)[14], the
total population is divided into sub populations. Each
sub population is often called ”island”. In each sub
population, normal genetic operations are performed for
several generations. After a certain number of
generations, some of the individuals are chosen and are
moved to the other island. This operation is called
“migration”. Because the population size in each island
is small, the early convergence may happen in each
island. However, the migration operation prevents the
early convergence and
maintains the diversity of the solutions during the
search. Breeder Genetic Algorithm (BGA)[15], at each
generation, the T % best individuals within the current
population of N elements are selected. T % is called
truncation rate and its typical values are within the
range 10 to 50%. The selected individuals are
randomly recombined and their offspring are mutated,
so as to generate a new population of N-1 elements.

Fig. 5: Comparing results

Table 1: Comparing results
Energy/Algorithm (0) (-3) (-7.378)
DGA 280,000 430,000 700,000
Breeder 10,150 28,320 -
ECGA 3300 3800 140,000

The best individual of the old population is then added
to the new population, and the cycle of life continues.
By doing so, the best individuals are treated as super-
individuals and mated together, hoping that this can
lead to a fitter population.
 Table 1 shows the performance of DGA and BGA
against our enhanced ECGA. The number of
evaluations needed is recorded for each algorithm at
minimum energy. Figure 5, emphases the difference in
performance between the two algorithms and our
proposed one. Our proposed algorithm reaches requires
little overhead than other two algorithms.
 Also we can observe that the breeder algorithm did
not reach -7.378 fitness. The DGA reached this fitness
but we do not know exactly with how many
evaluations, but we can note that our algorithm has
reached this fitness with less than half the number of
evaluations that the DGA needed to reach fitness 0.
 From these results, it is shown that Elitism-based
Compact Genetic Algorithm is very effective in solving
protein folding problem.

DISCUSSION

 From the formulation of the protein folding
problem, the angles that describe the protein structure
in 3D are strongly inter-related and dependent. This is
strongly tackled in Estimation of Distribution
Algorithms (EDAs) and consequently the enhanced
algorithm that model the interactions between
chromosomes in terms of a probability distribution

J. Computer Sci., 4 (7): 525-529, 2008

529

vector. Thus, the enhanced algorithm moves
progressively towards the optimal interacting angles 3D
structure, by generating individuals conforming with
higher fitness probability distribution individuals.
 Moreover, it appears that the enhanced algorithm
correctly balances exploration and exploitation needed
for this problem. Distributed genetic algorithms (DGA)
relies more on exploration rather than exploitation.
Breeder genetic algorithm (BGA) did not reach the
energy reached by enhanced algorithm in the first place.
However, the overhead incurred in DGA and BGA is
more than that for the enhanced algorithm.

CONCLUSION

 In this study, the molecular structure of Met-
enkephalin protein is predicted. The structure is always
assumed to be the global minimum free energy state of
the system. For this optimization problem, an
enhancement of Elitism-based Compact Genetic
Algorithm (ECGA) is made to minimize the protein
energy. Results show that the enhanced ECGA have
little overhead in terms of number of evaluations
needed.

REFERENCES

1. Hue, S.C. and K.A. Dill, 1993. The protein folding

problem. Phys. Today, 46: 24-32. DOI:
10.1063/1.881371.

2. Larrañaga, P. and J.A. Lozano, 2001. Estimation of
Distribution Algorithms: A New Tool for
Evolutionary Computation. 2nd Edn., Springer
Verlag, London, UK., ISBN: 978-0-7923-7466-4,
pp: 416.

3. Heinz, M. and T. Mahnig, 2001. Evolutionary
Algorithms: From Recombination to Search
Distributions. In: Theoretical Aspects of
Evolutionary Computation, Kallel, L., B. Naudts
and A. Rogers (Eds.). Springer Verlag, London,
UK., ISBN: 3-540-67396-2, pp: 135-173.

4. De Bonet, J.S., C.L. Isbell and P. Viola, 1997.
MIMIC: Finding Optima by Estimating Probability
Densities. In: Advances in Neural Information
Processing Systems, Jordan, M., M. Mozer and
M. Perrone (Eds.). MIT Press, Cambridge, MA.,
pp: 424-430.

5. Larrañaga, P., R. Etxeberria, J. Lozano and J. Pena,
2000. Combinatorial optimization by learning and
simulation of Bayesian networks. Proceedings of
the 16th Conference on Uncertainty in Artificial
Intelligence, June 30-July 3, Morgan Kaufmann,
pp: 343-352. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.30.8671.

6. Pelikan, M. And H. MÄuhlenbein, 1999. The
Bivariate Marginal Distribution Algorithm. In:
Advances in Soft Computing, Engineering Design
and Manufacturing, Roy, R., T. Furuhashi and
P. Chawdhry (Eds.). Springer-Verlag, pp: 521-535.

7. MÄuhlenbein, H. And T. Mahnig, 1999. The
factorized distribution algorithm for additively
decomposed functions. Proceedings of the 1999
Congress on Evolutionary Computation, July 6-9,
Washington, DC., USA., pp: 752-759. DOI:
10.1109/CEC.1999.782008

8. Pelikan, M., D.E. Goldberg and Cantu-Paz, 2000.
Linkage problem, distribution estimation and
bayesian networks. Evolut. Comput., 8: 311-340.
DOI: 10.1162/106365600750078808.

9. Etxeberria, R. and P. Larrañaga, 1999. Global
optimization using bayesian networks. Proceedings
of the 2nd Symposium on Artificial Intelligence,
March 22-26, Havana, Cuba, pp: 332- 339.
http://citeseerx.ist.psu.edu/showciting;jsessionid=3
50B89EF45EA562E596A0BFC2AE1F45D?cid=1
091024.

10. Chang, W.A., K.P. Kim and R.S. Ramakrishna,
2003. A memory-efficient elitist genetic algorithm.
Proceedings of the 5th International Conference on
Parallel Processing and Applied Mathematics,
September 7-10, Springer Verlag, pp: 552-559.
http://books.google.com/books?id=VA-YU9xcDf4
C&printsec=frontcover&dq=Parallel+Processing+a
nd+Applied+Mathematics#PPA552,M1

11. Chang, W.A. and R.S. Ramakrishna, 2003. Elitism-
based compact genetic algorithms. IEEE Trans.
Evolut. Comput., 7: 367-385. DOI:
10.1109/TEVC.2003.814633.

12. Yuko, O., T. Kikuchi and H. Kawai, 1992.
Prediction of low-energy structures of met-
enkephalin by monte carlo simulated annealing.
Chem. Lett., 21: 1275-1278. http://www.jstage.
jst.go.jp/login?mid=cl&sourceurl=/article/cl/21/7/1
275/_pdf&lang=en

13. Momany, F.A., R.F. McGuire, A.W. Burgess and
H.A. Scheraga, 1975. Energy parameters in
polypeptides. VII. geometric parameters, partial
atomic charges, nonbonded interactions, hydrogen
bond interactions and intrinsic torsional potentials
for the naturally occurring amino acids. J. Phys.
Chem., 79: 2361-2381. DOI:
10.1021/j100589a006.

14. Tanese, R., 1989. Distributed genetic algorithms.
In Proceeding of the 3rd International Conference
on Genetic Algorithms, June 1-6, Morgan
Kaufman Publishers, San Francisco, CA., USA.,
pp: 434-439. http://portal.acm.org/citation.cfm?
id=657245&dl=ACM&coll=GUIDE#.

15. MÄuhlenbein, H. and D. Schlierkamp-Voosen,
1993. The science of breeding and its application to
the Breeder Genetic Algorithm (BGA). Evolut.
Comput., 1: 335-360. DOI:
10.1162/evco.1993.1.4.335.

