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Abstract: Associative neural memories are models of biological phenomena that allow for the storage 
of pattern associations and the retrieval of the desired output pattern upon presentation of a possibly 
noisy or incomplete version of an input pattern. In this study, we introduce fuzzy swarm particle 
optimization technique for convergence of associative neural memories based on fuzzy set theory. A 
Fuzzy Particle Swarm Optimization (FPSO) consists of clustering of swarm’s particle by applying 
fuzzy c-mean algorithm to attain the neighborhood best. We present a singular value decomposition 
method for the selection of efficient rule from a given rule base required to attain the global best. 
Finally, we illustrate the proposed method by virtue of some examples. Further, ant colony system 
ACS algorithm is used to study the Symmetric Traveling Salesman Problem TSP. The optimum 
parameters for this algorithm have to found by trial and error. The ACS parameters working in a 
designed subset of TSP instances has also been optimized by virtue of Particle Swarm Optimization 
PSO.  
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INTRODUCTION 

 
 An artificial neural network (ANN) is an analysis 
paradigm that is a simple model of the brain and the 
back-propagation algorithm is the one of the most 
popular method to train the artificial neural network. 
Recently there have been significant research efforts to 
apply evolutionary computation techniques for the 
purposes of evolving one or more aspects of artificial 
neural networks. 
 The efficient supervised training of feedforward 
neural networks (FNNs) is a subject of considerable 
ongoing research and numerous algorithms proposed to 
this end. The back propagation (BP) algorithm[1] is one 
of the most common supervised training methods. 
Although BP training has proved to be efficient in many 
applications, its convergence tends to be slow and yields 
to suboptimal solutions[2]. 
 Attempts to speed up training and reduce 
convergence to local minima have been made in the 
context of gradient descent[3,4,5]. However, these 
methods are based on variable weight, learning rate, step 
size and bias to dynamically adapt BP algorithm and use 
a constant gain for any sigmoid function during its 
training cycle. 
 Evolutionary computation methodologies have been 
applied to three main attributes of neural networks: 

network connection weights, network architecture 
(network topology, transfer function) and network 
learning algorithm. 
 Particle swarm optimization (PSO) is a population 
based stochastic optimization technique[6,7] inspired by 
social behavior of bird flocking or fish schooling. This is 
modeled by particles in multidimensional space that 
have a position and a velocity. These particles are flying 
through a hyperspace and have two essential reasoning 
capabilities: the memory of their own best position and 
knowledge of the swarm’s best, best simply meaning the 
position with the smallest objective function value. 
Members of a swarm communicate good positions to 
each other and adjust their own position and velocity 
based on good positions. There are two main ways this 
communication is done: 
 
• A global best that is known to all and immediately 

updated when a new best position is found by any 
particle in the swarm. 

• A Neighborhood best where each particle only 
immediately communicates with a subset of the 
swarm about best positions. 

 
 In this study we have designed an algorithm using 
a Particle Swarm Optimization (PSO) framework, to 
optimize the parameters of the ACS algorithm working 
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on a single Symmetric Travelling Salesman Problem 
(TSP) instance. For each instance the algorithm 
computes an optimal set of ACS parameters, their 
performance on all instances (not only their related 
instance) and the characteristics of their related instance 
for the purpose of finding correlations. 
 The first ACO algorithm, called Ant-System, was 
proposed in[8-10]. A full review of ACO algorithms and 
applications can be found in[11]. ACS is a version of the 
Ant System that modifies the updating of the 
pheromone trail[12,13]. We have chosen this ACS 
algorithm to work with because of the theoretical 
background we have found on it[11,12] and the previous 
fine-tuning research on the parameters by[14]. 
 We have chosen PSO because it has an easy 
implementation for integer and real parameters and, as 
genetic algorithms, it performs a blind search on all the 
possible sets of parameters. In our algorithm the 
domain of the PSO will be all possible sets of 
parameters for ACS. For a position of a particle we 
compute the fitness by running the ACS algorithm with 
the parameters given by the position on a TSP instance.  
 

THE PARTICLE SWARM OPTIMIZATION 
 
 PSO’s precursor was a simulator of the social 
behavior that was used to visualize the movement of a 
birds’ flock. Several version of the simulation model 
were developed, incorporating concepts such as nearest 
neighbor velocity matching and acceleration by 
distance[6,15]. Two variants of the PSO algorithm were 
developed, One with a global neighborhood and another 
with local neighborhood[16].  
 Suppose that the search space is D-dimensional and 
then the ith particle of the swarm can be represented by 
a D-dimensional vector Xi = (xi1, xi2,...,xiD). The 
velocity (position change) of this particle can be 
represented by another D-dimensional vector Vi = (vi1, 
vi2,...,viD). The best previously visited position of the ith 
particle is denoted as Pi = (pi1, pi2,...,piD). Defining g as 
the index of the best particle in the swarm (i.e., gth 
particle is the best) and let the superscript denote the 
iterative number, then the swarm is manipulated 
according to the following two equations[6]: 
 
  nn n np pC ( ) C ( )Z Z r X r X2id id id

nn 1 n n
1id id id+ − + −+ =   (1) 

  
  ZX X

n 1n 1 n
id id id+ ++ =   (2) 

 
where, d = 1,2,...D, i = 1,2,...,N and N is the size of the 
swarm, C is a positive constant called, acceleration 
constant r1, r2 are the random numbers, uniformly 

distributed in [0,1], and n = 1,2,…,determines the 
iteration numbers. 
 Equations 1 and 2 define the initial version of the 
PSO algorithm. Since there was no actual mechanism 
for controlling the velocity of a particle, it was 
necessary to impose a maximum value Vmax on it. If the 
velocity exceeded this threshold, it was set equal to 
Vmax. This parameter is proved to be crucial, because 
large values could results in the particles moving past 
good solutions, while small values could result in 
insufficient exploration of the search space. This lack of 
control mechanism for the velocity resulted in low 
efficiency for PSO. 
 Various attempts have been made to improve the 
performance of the base line PSO with varying success. 
In[16] emphasis has been given on optimizing the update 
equations for the particles. Some researcher used a 
selection mechanism in an attempt to improve the 
general quality of the particles in swarm. In[6] cluster 
analysis technique is used to modify the update 
equation, so that particles attempt to confirm to the 
centre of their clusters rather than attempting to 
conform to a global best.  
 The aforementioned problem was addressed by 
incorporating a weight parameter for the previous 
velocity of the particle. Thus in the latest version of the 
PSO, Eq. 1 and 2 are changed to the following ones[17]:  
 

 n n n n n nnX W C r X ) C r (p X )X Z 2id id id id idid
n 1 nn 1 (p1id id 1 2X � �+ + − + −� �

� �

++ =  

 
 n

XX id
n 1n 1

id idX + ++ =  

 
 In our proposed model both the approaches have 
been consider together. First, we clustered the swarm 
by applying fuzzy c-mean algorithm to attain the 
neighborhood best and then we reduce the number of 
rules required to attain the global best by virtue of 
singular value decomposition method. 
 

NEIGHBORHOOD BEST USING FCM 
 
  The Fuzzy C-Means algorithm generalizes the 
hard C-means algorithm to allow a particle of swarm to 
partially belong to a multiple clusters. Therefore, it 
produces a soft partition for a given swarm. To do this, 
the objective function J of hard c-means has been 
extended in two ways Fig 1 and 2. 
 The fuzzy membership degrees in clusters were 
incorporated into the formula and: 
 
• An additional parameter P is introduced as a 

weight exponent in the fuzzy membership. 
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Weights of Fuzzy c-means, p=3 
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Fig.1: Weight of the FCM algorithm for p = 3 
 

Weights of Fuzzy c-means, p=2
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Fig.2. Weight of the FCM algorithm for p = 2 
 
• The extended objective function, denoted J, is 
 

   ( )
k 2pJ(P, V) (X X Vc k k i

Xki 1X
�= µ −�

∈=
 

 
where, P is a fuzzy partition of the swarm X formed by 
C1, C2,...,,Ck. The parameter p is a weight that 
determines the degree to which partial members of a 
cluster effect the clustering result. 

Theorem: A constrained fuzzy partition (C1, C2,...,,Ck) 
can be a local minimum of the objective function J only 
if the following conditions are satisfied: 
 

   ( )
1 / p 1k 22

ci i j
j 1

(X ) 1 X V / X V
−

=
µ = − −�   (3) 

 
  ( ) ( )p p

i ci ci
x X x X

V (x) x / (x)
∈ ∈

= µ × µ� �   (4) 

 
 Based on this theorem, FCM updates the 
prototypes and the membership function iteratively 
using 3 and 4, until a convergence criterion is reached. 
 The algorithm of FCM can be described as: 
 
  FCM (X, c, m, ε) 
 
X: An unlabeled swarm size 
C: The number of clusters to form 
p: The parameter in objective function 
ε: A threshold for the convergence criteria. 
 
Initial prototype V = {v1, v2,...,vc } 
 
Repeat 
Vprevious ← V Compute membership function using 4 
 Update the prototype, vi in using 3 Until 

c previousV Vi ii 1
− ≤ ε�

=
  

 
GLOBAL BEST USING SVD 

 
 In our proposed model, after clustering the particles 
of swarm, orthogonal transformation method is used for 
selecting important fuzzy rules from a given rule base[18-

21]. Unlike conventional methods where multiple 
iterations are usually required to find optimal number of 
fuzzy rules, orthogonal transformation methods are a 
non iterative procedure. Therefore, orthogonal 
transformation methods are computationally less 
expensive compared to the conventional methods 
especially when the numbers of particles in the swarm 
are too large. In this section we introduce how to use 
singular value decomposition (SVD) to select the most 
important fuzzy rules from a given rule base and 
construct compact fuzzy models with better 
generalization ability. 
 Singular value decomposition takes a rectangular n-
by-p matrix A, in which the n rows represents the genes 
and the columns represents the experimental 
condition[22]. The SVD theorem states: 
 
   T

n p n n n p p pA U S V× × × ×=  
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Where T
n nU U I ×=   

 
  T

p pV V I ×=  (i.e. U and V are orthogonal) 

 
 S = diag (σ1, σ2, σ3,..,σm)∈Rn×p (m = min{n,p}) is a 
diagonal matrix with σ1≥σ2≥σ3≥….≥σm≥0. The columns 
of U are the left singular vectors has singular values and 
is diagonal (mode amplitudes), and VT has rows that are 
the right singular vectors (expression level vectors).  
 In the basic principle of using SVD for fuzzy rule 
selection, we can use fuzzy model with constant 
consequent constituents as an example. This type of 
fuzzy model, which is usually referred to as the zero 
order TSK model, has the following form[23]. 
 
Ri: If x1 is Ai1 and x2 is Ai2 and ………andxm is Aim 
Then y is Ci, i = 1,2,…..,M. 
 
Where, Ci is the constant constituents. The total output 
of the model is computed by. 
  

   
M M

i i i
i 1 i 1

Y w c / w
− −

=� �  

where, wi is the matching degree. 
 The SVD starts with an oversized rule base and 
then remove redundant or less important fuzzy rules 
through a one pass operation. Finally the efficient rule 
obtained is obeyed by all the swarm’s cluster to 
approach the global best. Now we will illustrate the 
method by taking a example.  
 Suppose we are given a swarm of size six particles, 
each of which has two features F1 and F2.We list the 
particle in given Table 1. Assuming that we want to use 
FCM to partition the swarm in two clusters[23], suppose 
we set the parameter p in FCM at 2 and the initial 
prototypes to v1 = (5,5) v2 = ( 10,10 ).  
 The initial membership functions of the two clusters 
are calculated using 3: 
 
  �ci (x) =1 / �2

j=1(|| x1-vi || / || x1 - vj ||)2 

  || x1-v1 ||2 = 32 +72 = 9 + 49 = 58 
  || x1-v2 ||2 = 82 + 22 = 64 + 4 = 68 
  �c1 (x1) = 1/ [(58/58) + (58/68)] 
 
Table 1: A swarm to be partitioned 
 F1 F2 
X1 2 12 
X2 4 9 
X3 7 13 
X4 11 5 
X5 12 7 
X6 14 4 

 

Similarly, we obtain the following: 
  
  �c2 (x1) = 1/[(68/58)+(68/68)] = 0.4603  
  �c1 (x2) = 1/[(17/17)+(17/37)] = 0.6852  
  �c2 (x2) = 1/[(37/17)+(37/37)] = 0.3148 
  �c1 (x3) = 1/[(68/68)+(68/18)] = 0.2093 
  �c2 (x3) = 1/[(18/68)+((18/18)] = 0.7907 
  �c1 (x4) = 1/[(36/36)+(36/26)] = 0.4194  
  �c2 (x4) = 1/[(26/36)+(26/26)] = 0.5806 
  �c1 (x5) = 1/[(53/53)+(53/13)] = 0.197 
  �c2 (x5) = 1/[(13/53)+(13/13)] = 0.803 
  �c1 (x6) = 1/[(82/82)+(82/52)] = 0.3881 
  �c2 (x6) = 1/[(52/82(+(52/52)] = 0.6119 
 
 Therefore, using three prototypes of the two 
clusters, the membership function indicates that x1 and 
x2 are more in the first cluster, while the remaining 
particles in the swarm are more in the second cluster.  
 The FCM algorithm then updates the prototypes 
according to 4. 
 
  V1 = �6

k=1 ( �ci(xk))
2×xk / �

6
k=1 ( �ci(xk))

2 
 
= [0.53972×(2.12)+0.68522×(4.9)+0.20932×(7.13)+ 

0.41942×(11.5)+0.1972×(12.7)+0.38812×(14.4)]/[0.5
3972+0.68522+0.20932+0.41942+0.1972+0.38812] 

 
=  [(7.2761/1.0979), (10.044/1.0979)] 
=  (6.6273, 9.1484) 
 
  V2 = �6

k=1(�c2(xk))
2×xk/�

6
k=1(�c2(xk)0

2 
 
 [0.46032×(2.12)+0.31482×(4.9)+0.79092×(7.13)+0.5

8062×(11.5)+0.8032×(12.7)+0.61192×(14.4)]/[0.460
32+0.31482+0.79092+0.58062+0.8032+0.61192] 

=  [(22.326/2.2928), (19.4629/2.2928)] 
= (9.7374, 8.4887)  
 
 The update prototype V1, as shown in Fig. 3, is  
 

 

 
 
Fig.3 An example of Fuzzy c-mean Algorithm 
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moved closer to the center of the cluster formed by X1, 
X2 and X3, while the updated prototype V2 is moved 
closer to the cluster formed by X4, X5 and X6. 
 Now we illustrate how to solve for SVD to obtain 
efficient rule for approaching the global best, let’s take 
the example of the matrix. 
 

    

2 4
1 3A
0 0
0 0

� 	

 �

 �

 �

 �

 �� 

=  

 
 For a n×n matrix W, the nonzero vector X is the 
eigenvector of W if: WX = λX, λ is the eigenvalue of A 
and X is the eigenvector of A corresponding to λ. So to 
find the eigenvalues of the entity we compute matrices 
AAT and ATA. The eigenvectors of AAT make up the 
columns of U so we can do the following analysis to 
find U. 
  

  
20 14 0 0

2 4 0 0 14 10 0 0T
1 3 0 0  0  0 0 0

0  0 0 0

2 4
1 3AA
0 0
0 0

� 	

 �

� 	 
 �=
 � 
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�  
 �


 �� 

� 	

 �
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 �

 �� 

=  

 
Since WX = λX, then (W-λΙ)X = 0. Hence 
 

    ( )

20 14 0 0
14 10 0 0

X W I X 0
0    0 0
0    0 0

� 	−λ

 �

−λ
 � = −λ =
 �−λ

 �

−λ
 �� 

 

 
 Thus, from the solution of characteristic equation, 
we obtain λ = 0, λ = 0, λ = 15+14.81, λ = 15-14.81. 
This value can be used to determine the eigenvector that 
can be placed in the columns of U. Thus, we obtain the 
following equations. 
 
  19.883 X1 +14X2 = 0, 14X1+9.883 
  X2 = 0, X3 = 0, X4 = 0 
 
 Upon simplifying the first two equations we obtain 
a ratio which relates the value of X1 and X2. The values 
of X1 and X2 are chosen such that the elements of S are 
the square roots of the eigenvalues. Thus a solution that 
satisfies the above equation X1 = -0.58 and X2 = 0.82 
and X3 = X4 = 0 (this is the second column of the U 
matrix). Substituting the other eigenvalues we obtain: 
 
-9.883X1+14X2 = 0, 14X1-19.883X2 = 0, X3 = 0, X4 = 
0. Thus a solution that satisfies this set of equations is 

X1 = 0.82 and X2 = -0.58 and X3 = X4 = 0 (this is the 
first column of the U matrix). Combining these we 
obtain: 
 

    

0.82 0.58 0 0
0.58 0.82 0 0

U
0 0 1 0
0 0 0 1

� 	

 �

 �

 �

 �

 �� 

−

=  

 
 Similarly, we can find the value of V 
 

    T

2 4
2 4 0 0 1 3

A A
1 3 0 0 0 0

0 0

� 	

 �

� 	
 �
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� 
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 �� 

=  

 
 Similarly, we obtain the expression 
 

    
0.40 0.91

V
0.91  0.40
� 	

 �
� 

−
=  

 
 Finally, the S is square root of the eigenvalues from 
AAT or ATA and can be obtained directly giving us: 
 

    

5.47 0
0 0.37

S
0 0
0 0

� 	

 �

 �

 �

 �

 �� 

=  

 
 It is obvious that σ1>σ2>σ3…. This is what the 
study was indicating. 
 

ANT COLONY SYSTEM 
 
 The ACS works as follow, it has a population of n 
ants. Let denote for each arc e = (i, j) in the TSP-
instance graph an initial heuristic value ηe and an initial 
pheromone value τe is originally set to the inverse of the 
cost of traversing the edge e. τe is initially set to τ0

 = 
1\Lnn for all edge e, where Lnn is equal to the inverse of 
the tour length computed by the nearest-neighbor-
heuristic algorithm. 
Let q0, α, ρ∈[0,1], be real values and ϕ,β integer values 
between 0 and 8. For each vertex s∈V a neighbor set is 
defined among the nearest vertices, N(s). For a given 
ant r, let NV(r) be the set of non-visited vertices. We 
denote jr (s) = N (s)∩NV (r) the set of non-visited 
vertices among the neighbour set for a given vertex s 
and a given ant r. 
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  In every iteration, each ant constructs a tour 
solution for the TSP-instance. The constructions phase 
works as follows: 
 Each ant is initially set in a randomly vertex, then 
at each step the entire ants make a movement to a non-
visited vertex. Given an ant r with an actual position 
(vertex)s, pkrs is computed as a reference value for 
visiting or not vertex k, where: 
 

 
( ) ( )

( ) ( )
( )

( )
[ ] [ ]s,k s,k

    if k j s
[ ] [ ]p s,u s,ukrs u j s

0                                           otherwise

� �
� �
� �
� �� �
� �
� �
� �
� �
� �� �

ϕ βτ η
∈ϕ βτ η�=

∈
 (5) 

 
 This formula includes a small modification respect 
to the original ACS algorithm including ϕ as exponent 
of the pheromone level, this will allow us a deeper 
research on the effects of the possible combinations of, 
ϕ, β parameters. 
 A sample random value q is computed. If q≤q0 we 
visit the city k∈V with maximum pkrs (exploitation of 
the knowledge) otherwise ACS follows a random -
proportional rule on pkrs for all k∈V (biased 
exploration). If there are no non-visited vertex on the 
neighbor of vertex s, we extend 5 to all vertices in NV 
(r)/N (s) (those not visited by ant r and not included in 
the neighbor of s) and visits the vertex with maximum 
pkrs.  
 After an arc is inserted into a route (a new vertex is 
visited), its pheromone trail is updated. This phase is 
called Local update and for an inserted e∈E: 
 
   ( )1e e 0−α + αττ = τ  (6)  

 
 This reduces the pheromone level in the visited 
arcs and the exploration in the set of possible tours is 
increased. When all the tours have been computed a 
global update phase is done. For each edge e pertaining 
to the global-best-tour found: 
 
   ( )1e e e−α + α∆ττ = τ   (7) 
 
   1/ Le gb∆τ =   (8) 

  
where, Lgb is the length of the global-best-tour found. 
 In the original ant algorithm and in most of the 
later versions, pheromone global update is performed in 
all the edges; ACS only updates pheromone level in the 
set of edges pertaining to the best tour. 
 We consider a trial as a performance of 1000 
iterations. The lowest length tour found after all 

iterations are finished, is the best solution found by the 
trial. A feasible set of parameters for running ACS is a 
combination of feasible q0, ϕ, β, α, ρ number of ants 
(na) and a concrete neighbor definition. 
 

PSO-ACO ALGORITHM AND 
IMPLEMENTATION 

 
 The algorithm is run each time on a single TSP-
instances. The set of parameters of ACS that define a 
point in the PSO domain are q0, ϕ, β, φ, α, ρ and the 
number of ants (na). Most of them have already been 
explained. Let φ denotes the percentage of vertices that 
will be included in to N (v) for any vertex v∈V, so for a 
given v∈V and φ = 0.5 |N (v)| = [φ*|V|]. The ranges of 
each parameter are shown in Table 2, where each 
parameter pertains to its related] minimum, maximum]. 
DPSO  =    ]0,1]x]-1,8]x]-1,8]x]0,1]x]0,1]x]0,1]x]0,40] 
⊂ ℜ7. is the domain of the PSO. We define the fitness 
value of a given position (point) as the length of the 
best tour computed by an ACS using the related 
parameters in the given instance. If comparing two 
different positions they have the same length value then 
computing time is considered. We consider better of 
those parameters that minimize the length of the tour 
and secondly the time of computing. For computing the 
fitness of a given position, first integer parameters (na, 
ϕ and β) are rounded up as shown in Fig. 4, secondly 
the algorithm runs five trails of the ACS algorithm 
using the rounded parameters in the TSP-instance and 
returns the best value obtained from the trails.  
 For each particle of the population its initial 
velocity is set randomly. For half of the population the 
initial position is set using predefined parameters 
assuring   that   for   every   parameter   there  will  be  a 
 
Table 2: Range of acs parameters q0, ϕ, β, ρ, α, φ, na are the 

parameters used in ACS 
 q0 ϕ β ρ α φ na 
Minimum 0 -1 -1 0 0 0 0 
Maximum 1 8 8 1 1 1 40 

 
 Point in the PSO domain (reflects a set of parameters) 

 
(0.1 2.3  8  0.5  0.88  0.34  32.4) 

                                                     
 Modified values to run on ACS: 
 

(0.1  3  8  0.5  0.88  0.34  33) 
 
  

 
Fig. 4: Modification of PSO points. In bold are the 

modified values. 
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particle containing a value covering the full range. The 
positions of the other half of the initial population is set 
randomly. 
 Parameters for the PSO have been set following[6,8] C1 
= C2 = 2, χ = 0.729, the inertia weight is set initially to 
1 and gradually decreasing from 1-0.1 (at each PSO 
iteration w = 0.99w). Maximum number of iterations is 
set to 500 due to computing time constraints (for 1000 
PSO-iterations more than 1 day of computing time was 
necessary). 
The algorithm PSO-ACS pseudo-code is as follows: 
 
Select TSP-Instance. 
Initialize particles. 
Do  500 
 For all the set of particles 
  Position_Fitness PF = INFINITE 
Do  5 
 Perform a trial ACS with particle parameters. 
 If New Value < PF 
   PF = New value 
  End if 
 End Do 
End for 
Compute w = 0.99w 
Update Best Parameters Found by each Particle 
Update Best Parameters Found by the Population 
Compute Velocity 
Movement of Particles 
 End Do 
Return the set of parameters related to the best tour 
length found and the tour length. 
 
 The algorithm is based in a PSO framework, where 
particles are initialized and iteratively are moving 
though the domain of the set of parameters. The goal of 
the algorithm is, for a given instance to compute the 
tour with lowest length and to compute the set of ACS 
parameters, among those in DPSO, which gets the best 
ACS performance. Those final parameters are related 
with the TSP-instance selected. 
 

RESULTS AND ANALYSIS 
 
 Algorithm was coded in C++. Algorithm has been 
run on six of the most widely used TSP-instances. 
Computational results are given in four parts: PSO-
ACS behavior, PSO-ACS optimum values obtained, 
best set of parameters and comparison among sets of 
parameters performance. 
 Computationally, each PSO - ACS iteration shows 
a clear convergence: when the optimum (defined by the 
algorithm)  number  of  ants  and  φ are nearly fixed, the  

 
 
Fig. 5: Average time of the swarm at first 100 iterations 

for instances eil101 a and rat 99  b. AVG_TIME 
is average time of the iteration given a fixed 
number of particles and ITERATION_PSO is 
the number of the iteration in the PSO-ACS 
algorithm 

 
Table 3: Sets of parameters 
 α β ρ ϕ na q0 φ Fitness 
P_eil51 0.36 7 0.40 1 1 0.54 0.18 426 
P_eil76 0.21 5 0.40 1 5 0.58 0.20 538 
P_eil101 0.71 7 0.23 2 7 0.78 0.12 629 
P_kroA100 0.64 4 0.24 1 4 0.64 0.12 21282 
P_kroB100 0.71 1 0.08 1 3 9 0.86 0.12 22141 
P_rat99 0.15 3 0.28 1 9 0.95 0.00 1211 
ACS 0.10 2 0.10 1 1 0 0.9 a b 
ACS_GA 0.20 6 0.20 1 1 0 0.7 a b 
a have been tested for φ=0.1 0.2…..0.91 “b” there is no fitness value 
related.  Values in bold mean optimum. 
 
Computational time is also fixed (Fig. 5). In less than 
100 iterations algorithm computes an optimum for 
integer parameters and in 200 iterations there are small 
differences among the optimum found and the particle’s 
position for real parameters. In Fig. 6 we can see the 
evolution of the algorithm in the first 100 iterations. For 
the average of the fitness of the swarm(in a given 
iteration),there is a decreasing global tendency and after 
iteration 75 we can see the average of the fitness is kept 
on a fixed range, the size of this range is variable as 
shown in ( c) and (d). For the minimum value obtained 
by the swarm in a given iteration, computational results 
show that at the beginning there are increasing and 
decreasing phases, when the particles are exploring 
their local optimums and moving also to the global one, 
but near iteration 100 the minimum is maintained as in 
(a) or frequently visited as in (b). This fast convergence 
can be an advantage as well as a drawback because it 
can lead to a fast non-desirable convergence.  
 We set the reasons of this fast convergence in the 
PSO framework used and mainly in the method for 
evaluating a set of parameters: in a stochastic algorithm 
there is the probability that a bad set of parameters 
could  perform  well,  if  all  the particles move into this  
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     (a)  (b) 
 

  
 (c) (d) 
 
Fig. 6: First 100 iterations of the PSO-ACS algorithm. A and b are related to the minimum tour obtained at each 

iteration, c and d are related to the average of the particles fitness values. A and d are related to the instance 
kroA 100. b is related to kroB 100, and c to eil51. Those are the examples of typical behaviors in the 100 
first iterations of the algorithm 

 
area and the number of iterations in this area increases 
leading to probably good solutions that will cause the 
algorithm to remain in this non-optimal area. 
 Table 3 shows the optimum set of parameters 
found running PSO-ACS on each one of the instances 
selected. 
 

CONCLUSION 
 
 In this research, a new approach is proposed for the 
convergence of associative neural memories by using 
the Fuzzy Particle Swarm Optimization technique 
(FPSO). The approach focuses on the neighborhood 
best and global best to increase the speed of 
convergence. In addition, this proposed model 
overcomes the local minima problem which is major 
drawback with the PSO technique. 
 The example illustrated suggests that our new 
approach can be used successfully as real time memory 
convergence technique for the artificial neural network. 

 Computational results seem to show that there is no 
uniquely optimal set of ACS parameters yielding best 
quality solutions in all the TSP instances. Nevertheless 
the PSO-ACS has been able to find a set of ACS 
parameters that work optimally for a majority of 
instances unlike others known so far. 
 PSO-ACS algorithm works well across different 
instances because it adapts itself to the instance 
characteristics. But it has a high computational 
overhead. A future work will try to modify the 
algorithm framework to reduce this cost. 
 PSO-ACS also has a fast convergence that can lead 
to a bad set of parameters. This may be due to two 
reasons: first is the specific PSO framework used and in 
modifying it we expect to obtain better results. 
Secondly the way the sets of parameters are evaluated 
may have to be reviewed as a bad set of parameters 
could lead to a non-desired convergence. 
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