
Journal of Computer Science 4 (2): 139-147, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Subhash Chandra Pandey, Department of Computer Science,
 Birla Institute of Technology, Extension Centre: Naini, Allahabad, India-211010

139

Memory Convergence and Optimization with Fuzzy PSO and ACS

1Subhash Chandra Pandey and 2Dr. Puneet Misra

1Birla Institute of Technology, Extension Centre: Naini, Allahabad, 211010, India
2 Department of Computer Science, Lucknow University, Lucknow, India

Abstract: Associative neural memories are models of biological phenomena that allow for the storage
of pattern associations and the retrieval of the desired output pattern upon presentation of a possibly
noisy or incomplete version of an input pattern. In this study, we introduce fuzzy swarm particle
optimization technique for convergence of associative neural memories based on fuzzy set theory. A
Fuzzy Particle Swarm Optimization (FPSO) consists of clustering of swarm’s particle by applying
fuzzy c-mean algorithm to attain the neighborhood best. We present a singular value decomposition
method for the selection of efficient rule from a given rule base required to attain the global best.
Finally, we illustrate the proposed method by virtue of some examples. Further, ant colony system
ACS algorithm is used to study the Symmetric Traveling Salesman Problem TSP. The optimum
parameters for this algorithm have to found by trial and error. The ACS parameters working in a
designed subset of TSP instances has also been optimized by virtue of Particle Swarm Optimization
PSO.

Key words: Artificial neural network, convergence, particle swarm optimization, Fuzzy c-mean

INTRODUCTION

 An artificial neural network (ANN) is an analysis
paradigm that is a simple model of the brain and the
back-propagation algorithm is the one of the most
popular method to train the artificial neural network.
Recently there have been significant research efforts to
apply evolutionary computation techniques for the
purposes of evolving one or more aspects of artificial
neural networks.
 The efficient supervised training of feedforward
neural networks (FNNs) is a subject of considerable
ongoing research and numerous algorithms proposed to
this end. The back propagation (BP) algorithm[1] is one
of the most common supervised training methods.
Although BP training has proved to be efficient in many
applications, its convergence tends to be slow and yields
to suboptimal solutions[2].
 Attempts to speed up training and reduce
convergence to local minima have been made in the
context of gradient descent[3,4,5]. However, these
methods are based on variable weight, learning rate, step
size and bias to dynamically adapt BP algorithm and use
a constant gain for any sigmoid function during its
training cycle.
 Evolutionary computation methodologies have been
applied to three main attributes of neural networks:

network connection weights, network architecture
(network topology, transfer function) and network
learning algorithm.
 Particle swarm optimization (PSO) is a population
based stochastic optimization technique[6,7] inspired by
social behavior of bird flocking or fish schooling. This is
modeled by particles in multidimensional space that
have a position and a velocity. These particles are flying
through a hyperspace and have two essential reasoning
capabilities: the memory of their own best position and
knowledge of the swarm’s best, best simply meaning the
position with the smallest objective function value.
Members of a swarm communicate good positions to
each other and adjust their own position and velocity
based on good positions. There are two main ways this
communication is done:

• A global best that is known to all and immediately

updated when a new best position is found by any
particle in the swarm.

• A Neighborhood best where each particle only
immediately communicates with a subset of the
swarm about best positions.

 In this study we have designed an algorithm using
a Particle Swarm Optimization (PSO) framework, to
optimize the parameters of the ACS algorithm working

J. Computer Sci., 4 (2): 139-147, 2008

 140

on a single Symmetric Travelling Salesman Problem
(TSP) instance. For each instance the algorithm
computes an optimal set of ACS parameters, their
performance on all instances (not only their related
instance) and the characteristics of their related instance
for the purpose of finding correlations.
 The first ACO algorithm, called Ant-System, was
proposed in[8-10]. A full review of ACO algorithms and
applications can be found in[11]. ACS is a version of the
Ant System that modifies the updating of the
pheromone trail[12,13]. We have chosen this ACS
algorithm to work with because of the theoretical
background we have found on it[11,12] and the previous
fine-tuning research on the parameters by[14].
 We have chosen PSO because it has an easy
implementation for integer and real parameters and, as
genetic algorithms, it performs a blind search on all the
possible sets of parameters. In our algorithm the
domain of the PSO will be all possible sets of
parameters for ACS. For a position of a particle we
compute the fitness by running the ACS algorithm with
the parameters given by the position on a TSP instance.

THE PARTICLE SWARM OPTIMIZATION

 PSO’s precursor was a simulator of the social
behavior that was used to visualize the movement of a
birds’ flock. Several version of the simulation model
were developed, incorporating concepts such as nearest
neighbor velocity matching and acceleration by
distance[6,15]. Two variants of the PSO algorithm were
developed, One with a global neighborhood and another
with local neighborhood[16].
 Suppose that the search space is D-dimensional and
then the ith particle of the swarm can be represented by
a D-dimensional vector Xi = (xi1, xi2,...,xiD). The
velocity (position change) of this particle can be
represented by another D-dimensional vector Vi = (vi1,
vi2,...,viD). The best previously visited position of the ith
particle is denoted as Pi = (pi1, pi2,...,piD). Defining g as
the index of the best particle in the swarm (i.e., gth
particle is the best) and let the superscript denote the
iterative number, then the swarm is manipulated
according to the following two equations[6]:

 nn n np pC () C ()Z Z r X r X2id id id

nn 1 n n
1id id id+ − + −+ = (1)

 ZX X

n 1n 1 n
id id id+ ++ = (2)

where, d = 1,2,...D, i = 1,2,...,N and N is the size of the
swarm, C is a positive constant called, acceleration
constant r1, r2 are the random numbers, uniformly

distributed in [0,1], and n = 1,2,…,determines the
iteration numbers.
 Equations 1 and 2 define the initial version of the
PSO algorithm. Since there was no actual mechanism
for controlling the velocity of a particle, it was
necessary to impose a maximum value Vmax on it. If the
velocity exceeded this threshold, it was set equal to
Vmax. This parameter is proved to be crucial, because
large values could results in the particles moving past
good solutions, while small values could result in
insufficient exploration of the search space. This lack of
control mechanism for the velocity resulted in low
efficiency for PSO.
 Various attempts have been made to improve the
performance of the base line PSO with varying success.
In[16] emphasis has been given on optimizing the update
equations for the particles. Some researcher used a
selection mechanism in an attempt to improve the
general quality of the particles in swarm. In[6] cluster
analysis technique is used to modify the update
equation, so that particles attempt to confirm to the
centre of their clusters rather than attempting to
conform to a global best.
 The aforementioned problem was addressed by
incorporating a weight parameter for the previous
velocity of the particle. Thus in the latest version of the
PSO, Eq. 1 and 2 are changed to the following ones[17]:

 n n n n n nnX W C r X) C r (p X)X Z 2id id id id idid
n 1 nn 1 (p1id id 1 2X � �+ + − + −� �

� �

++ =

 n

XX id
n 1n 1

id idX + ++ =

 In our proposed model both the approaches have
been consider together. First, we clustered the swarm
by applying fuzzy c-mean algorithm to attain the
neighborhood best and then we reduce the number of
rules required to attain the global best by virtue of
singular value decomposition method.

NEIGHBORHOOD BEST USING FCM

 The Fuzzy C-Means algorithm generalizes the
hard C-means algorithm to allow a particle of swarm to
partially belong to a multiple clusters. Therefore, it
produces a soft partition for a given swarm. To do this,
the objective function J of hard c-means has been
extended in two ways Fig 1 and 2.
 The fuzzy membership degrees in clusters were
incorporated into the formula and:

• An additional parameter P is introduced as a

weight exponent in the fuzzy membership.

J. Computer Sci., 4 (2): 139-147, 2008

 141

Weights of Fuzzy c-means, p=3

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.5
x

f(
x)

Fig.1: Weight of the FCM algorithm for p = 3

Weights of Fuzzy c-means, p=2

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1 1.5
x

f(
x)

Fig.2. Weight of the FCM algorithm for p = 2

• The extended objective function, denoted J, is

 ()
k 2pJ(P, V) (X X Vc k k i

Xki 1X
�= µ −�

∈=

where, P is a fuzzy partition of the swarm X formed by
C1, C2,...,,Ck. The parameter p is a weight that
determines the degree to which partial members of a
cluster effect the clustering result.

Theorem: A constrained fuzzy partition (C1, C2,...,,Ck)
can be a local minimum of the objective function J only
if the following conditions are satisfied:

 ()
1 / p 1k 22

ci i j
j 1

(X) 1 X V / X V
−

=
µ = − −� (3)

 () ()p p

i ci ci
x X x X

V (x) x / (x)
∈ ∈

= µ × µ� � (4)

 Based on this theorem, FCM updates the
prototypes and the membership function iteratively
using 3 and 4, until a convergence criterion is reached.
 The algorithm of FCM can be described as:

 FCM (X, c, m, ε)

X: An unlabeled swarm size
C: The number of clusters to form
p: The parameter in objective function
ε: A threshold for the convergence criteria.

Initial prototype V = {v1, v2,...,vc }

Repeat
Vprevious ← V Compute membership function using 4
 Update the prototype, vi in using 3 Until

c previousV Vi ii 1
− ≤ ε�

=

GLOBAL BEST USING SVD

 In our proposed model, after clustering the particles
of swarm, orthogonal transformation method is used for
selecting important fuzzy rules from a given rule base[18-

21]. Unlike conventional methods where multiple
iterations are usually required to find optimal number of
fuzzy rules, orthogonal transformation methods are a
non iterative procedure. Therefore, orthogonal
transformation methods are computationally less
expensive compared to the conventional methods
especially when the numbers of particles in the swarm
are too large. In this section we introduce how to use
singular value decomposition (SVD) to select the most
important fuzzy rules from a given rule base and
construct compact fuzzy models with better
generalization ability.
 Singular value decomposition takes a rectangular n-
by-p matrix A, in which the n rows represents the genes
and the columns represents the experimental
condition[22]. The SVD theorem states:

 T

n p n n n p p pA U S V× × × ×=

J. Computer Sci., 4 (2): 139-147, 2008

 142

Where T
n nU U I ×=

 T

p pV V I ×= (i.e. U and V are orthogonal)

 S = diag (σ1, σ2, σ3,..,σm)∈Rn×p (m = min{n,p}) is a
diagonal matrix with σ1≥σ2≥σ3≥….≥σm≥0. The columns
of U are the left singular vectors has singular values and
is diagonal (mode amplitudes), and VT has rows that are
the right singular vectors (expression level vectors).
 In the basic principle of using SVD for fuzzy rule
selection, we can use fuzzy model with constant
consequent constituents as an example. This type of
fuzzy model, which is usually referred to as the zero
order TSK model, has the following form[23].

Ri: If x1 is Ai1 and x2 is Ai2 and ………andxm is Aim
Then y is Ci, i = 1,2,…..,M.

Where, Ci is the constant constituents. The total output
of the model is computed by.

M M

i i i
i 1 i 1

Y w c / w
− −

=� �

where, wi is the matching degree.
 The SVD starts with an oversized rule base and
then remove redundant or less important fuzzy rules
through a one pass operation. Finally the efficient rule
obtained is obeyed by all the swarm’s cluster to
approach the global best. Now we will illustrate the
method by taking a example.
 Suppose we are given a swarm of size six particles,
each of which has two features F1 and F2.We list the
particle in given Table 1. Assuming that we want to use
FCM to partition the swarm in two clusters[23], suppose
we set the parameter p in FCM at 2 and the initial
prototypes to v1 = (5,5) v2 = (10,10).
 The initial membership functions of the two clusters
are calculated using 3:

 �ci (x) =1 / �2

j=1(|| x1-vi || / || x1 - vj ||)2

 || x1-v1 ||2 = 32 +72 = 9 + 49 = 58
 || x1-v2 ||2 = 82 + 22 = 64 + 4 = 68
 �c1 (x1) = 1/ [(58/58) + (58/68)]

Table 1: A swarm to be partitioned
 F1 F2
X1 2 12
X2 4 9
X3 7 13
X4 11 5
X5 12 7
X6 14 4

Similarly, we obtain the following:

 �c2 (x1) = 1/[(68/58)+(68/68)] = 0.4603
 �c1 (x2) = 1/[(17/17)+(17/37)] = 0.6852
 �c2 (x2) = 1/[(37/17)+(37/37)] = 0.3148
 �c1 (x3) = 1/[(68/68)+(68/18)] = 0.2093
 �c2 (x3) = 1/[(18/68)+((18/18)] = 0.7907
 �c1 (x4) = 1/[(36/36)+(36/26)] = 0.4194
 �c2 (x4) = 1/[(26/36)+(26/26)] = 0.5806
 �c1 (x5) = 1/[(53/53)+(53/13)] = 0.197
 �c2 (x5) = 1/[(13/53)+(13/13)] = 0.803
 �c1 (x6) = 1/[(82/82)+(82/52)] = 0.3881
 �c2 (x6) = 1/[(52/82(+(52/52)] = 0.6119

 Therefore, using three prototypes of the two
clusters, the membership function indicates that x1 and
x2 are more in the first cluster, while the remaining
particles in the swarm are more in the second cluster.
 The FCM algorithm then updates the prototypes
according to 4.

 V1 = �6

k=1 (�ci(xk))
2×xk / �

6
k=1 (�ci(xk))

2

= [0.53972×(2.12)+0.68522×(4.9)+0.20932×(7.13)+

0.41942×(11.5)+0.1972×(12.7)+0.38812×(14.4)]/[0.5
3972+0.68522+0.20932+0.41942+0.1972+0.38812]

= [(7.2761/1.0979), (10.044/1.0979)]
= (6.6273, 9.1484)

 V2 = �6

k=1(�c2(xk))
2×xk/�

6
k=1(�c2(xk)0

2

 [0.46032×(2.12)+0.31482×(4.9)+0.79092×(7.13)+0.5

8062×(11.5)+0.8032×(12.7)+0.61192×(14.4)]/[0.460
32+0.31482+0.79092+0.58062+0.8032+0.61192]

= [(22.326/2.2928), (19.4629/2.2928)]
= (9.7374, 8.4887)

 The update prototype V1, as shown in Fig. 3, is

Fig.3 An example of Fuzzy c-mean Algorithm

J. Computer Sci., 4 (2): 139-147, 2008

 143

moved closer to the center of the cluster formed by X1,
X2 and X3, while the updated prototype V2 is moved
closer to the cluster formed by X4, X5 and X6.
 Now we illustrate how to solve for SVD to obtain
efficient rule for approaching the global best, let’s take
the example of the matrix.

2 4
1 3A
0 0
0 0

� 	

 �

 �

 �

 �

 ��

=

 For a n×n matrix W, the nonzero vector X is the
eigenvector of W if: WX = λX, λ is the eigenvalue of A
and X is the eigenvector of A corresponding to λ. So to
find the eigenvalues of the entity we compute matrices
AAT and ATA. The eigenvectors of AAT make up the
columns of U so we can do the following analysis to
find U.

20 14 0 0

2 4 0 0 14 10 0 0T
1 3 0 0 0 0 0 0

0 0 0 0

2 4
1 3AA
0 0
0 0

� 	

 �

� 	
 �=
 �
 �
�
 �

 ��

� 	

 �

 �

 �

 �

 ��

=

Since WX = λX, then (W-λΙ)X = 0. Hence

 ()

20 14 0 0
14 10 0 0

X W I X 0
0 0 0
0 0 0

� 	−λ

 �

−λ
 � = −λ =
 �−λ

 �

−λ
 ��

 Thus, from the solution of characteristic equation,
we obtain λ = 0, λ = 0, λ = 15+14.81, λ = 15-14.81.
This value can be used to determine the eigenvector that
can be placed in the columns of U. Thus, we obtain the
following equations.

 19.883 X1 +14X2 = 0, 14X1+9.883
 X2 = 0, X3 = 0, X4 = 0

 Upon simplifying the first two equations we obtain
a ratio which relates the value of X1 and X2. The values
of X1 and X2 are chosen such that the elements of S are
the square roots of the eigenvalues. Thus a solution that
satisfies the above equation X1 = -0.58 and X2 = 0.82
and X3 = X4 = 0 (this is the second column of the U
matrix). Substituting the other eigenvalues we obtain:

-9.883X1+14X2 = 0, 14X1-19.883X2 = 0, X3 = 0, X4 =
0. Thus a solution that satisfies this set of equations is

X1 = 0.82 and X2 = -0.58 and X3 = X4 = 0 (this is the
first column of the U matrix). Combining these we
obtain:

0.82 0.58 0 0
0.58 0.82 0 0

U
0 0 1 0
0 0 0 1

� 	

 �

 �

 �

 �

 ��

−

=

 Similarly, we can find the value of V

 T

2 4
2 4 0 0 1 3

A A
1 3 0 0 0 0

0 0

� 	

 �

� 	
 �

 �
 �
�
 �

 ��

=

 Similarly, we obtain the expression

0.40 0.91

V
0.91 0.40
� 	

 �
�

−
=

 Finally, the S is square root of the eigenvalues from
AAT or ATA and can be obtained directly giving us:

5.47 0
0 0.37

S
0 0
0 0

� 	

 �

 �

 �

 �

 ��

=

 It is obvious that σ1>σ2>σ3…. This is what the
study was indicating.

ANT COLONY SYSTEM

 The ACS works as follow, it has a population of n
ants. Let denote for each arc e = (i, j) in the TSP-
instance graph an initial heuristic value ηe and an initial
pheromone value τe is originally set to the inverse of the
cost of traversing the edge e. τe is initially set to τ0

 =
1\Lnn for all edge e, where Lnn is equal to the inverse of
the tour length computed by the nearest-neighbor-
heuristic algorithm.
Let q0, α, ρ∈[0,1], be real values and ϕ,β integer values
between 0 and 8. For each vertex s∈V a neighbor set is
defined among the nearest vertices, N(s). For a given
ant r, let NV(r) be the set of non-visited vertices. We
denote jr (s) = N (s)∩NV (r) the set of non-visited
vertices among the neighbour set for a given vertex s
and a given ant r.

J. Computer Sci., 4 (2): 139-147, 2008

 144

 In every iteration, each ant constructs a tour
solution for the TSP-instance. The constructions phase
works as follows:
 Each ant is initially set in a randomly vertex, then
at each step the entire ants make a movement to a non-
visited vertex. Given an ant r with an actual position
(vertex)s, pkrs is computed as a reference value for
visiting or not vertex k, where:

() ()

() ()
()

()
[] []s,k s,k

 if k j s
[] []p s,u s,ukrs u j s

0 otherwise

� �
� �
� �
� �� �
� �
� �
� �
� �
� �� �

ϕ βτ η
∈ϕ βτ η�=

∈
 (5)

 This formula includes a small modification respect
to the original ACS algorithm including ϕ as exponent
of the pheromone level, this will allow us a deeper
research on the effects of the possible combinations of,
ϕ, β parameters.
 A sample random value q is computed. If q≤q0 we
visit the city k∈V with maximum pkrs (exploitation of
the knowledge) otherwise ACS follows a random -
proportional rule on pkrs for all k∈V (biased
exploration). If there are no non-visited vertex on the
neighbor of vertex s, we extend 5 to all vertices in NV
(r)/N (s) (those not visited by ant r and not included in
the neighbor of s) and visits the vertex with maximum
pkrs.
 After an arc is inserted into a route (a new vertex is
visited), its pheromone trail is updated. This phase is
called Local update and for an inserted e∈E:

 ()1e e 0−α + αττ = τ (6)

 This reduces the pheromone level in the visited
arcs and the exploration in the set of possible tours is
increased. When all the tours have been computed a
global update phase is done. For each edge e pertaining
to the global-best-tour found:

 ()1e e e−α + α∆ττ = τ (7)

 1/ Le gb∆τ = (8)

where, Lgb is the length of the global-best-tour found.
 In the original ant algorithm and in most of the
later versions, pheromone global update is performed in
all the edges; ACS only updates pheromone level in the
set of edges pertaining to the best tour.
 We consider a trial as a performance of 1000
iterations. The lowest length tour found after all

iterations are finished, is the best solution found by the
trial. A feasible set of parameters for running ACS is a
combination of feasible q0, ϕ, β, α, ρ number of ants
(na) and a concrete neighbor definition.

PSO-ACO ALGORITHM AND
IMPLEMENTATION

 The algorithm is run each time on a single TSP-
instances. The set of parameters of ACS that define a
point in the PSO domain are q0, ϕ, β, φ, α, ρ and the
number of ants (na). Most of them have already been
explained. Let φ denotes the percentage of vertices that
will be included in to N (v) for any vertex v∈V, so for a
given v∈V and φ = 0.5 |N (v)| = [φ*|V|]. The ranges of
each parameter are shown in Table 2, where each
parameter pertains to its related] minimum, maximum].
DPSO =]0,1]x]-1,8]x]-1,8]x]0,1]x]0,1]x]0,1]x]0,40]
⊂ ℜ7. is the domain of the PSO. We define the fitness
value of a given position (point) as the length of the
best tour computed by an ACS using the related
parameters in the given instance. If comparing two
different positions they have the same length value then
computing time is considered. We consider better of
those parameters that minimize the length of the tour
and secondly the time of computing. For computing the
fitness of a given position, first integer parameters (na,
ϕ and β) are rounded up as shown in Fig. 4, secondly
the algorithm runs five trails of the ACS algorithm
using the rounded parameters in the TSP-instance and
returns the best value obtained from the trails.
 For each particle of the population its initial
velocity is set randomly. For half of the population the
initial position is set using predefined parameters
assuring that for every parameter there will be a

Table 2: Range of acs parameters q0, ϕ, β, ρ, α, φ, na are the

parameters used in ACS
 q0 ϕ β ρ α φ na
Minimum 0 -1 -1 0 0 0 0
Maximum 1 8 8 1 1 1 40

 Point in the PSO domain (reflects a set of parameters)

(0.1 2.3 8 0.5 0.88 0.34 32.4)

 Modified values to run on ACS:

(0.1 3 8 0.5 0.88 0.34 33)

Fig. 4: Modification of PSO points. In bold are the

modified values.

J. Computer Sci., 4 (2): 139-147, 2008

 145

particle containing a value covering the full range. The
positions of the other half of the initial population is set
randomly.
 Parameters for the PSO have been set following[6,8] C1
= C2 = 2, χ = 0.729, the inertia weight is set initially to
1 and gradually decreasing from 1-0.1 (at each PSO
iteration w = 0.99w). Maximum number of iterations is
set to 500 due to computing time constraints (for 1000
PSO-iterations more than 1 day of computing time was
necessary).
The algorithm PSO-ACS pseudo-code is as follows:

Select TSP-Instance.
Initialize particles.
Do 500
 For all the set of particles
 Position_Fitness PF = INFINITE
Do 5
 Perform a trial ACS with particle parameters.
 If New Value < PF
 PF = New value
 End if
 End Do
End for
Compute w = 0.99w
Update Best Parameters Found by each Particle
Update Best Parameters Found by the Population
Compute Velocity
Movement of Particles
 End Do
Return the set of parameters related to the best tour
length found and the tour length.

 The algorithm is based in a PSO framework, where
particles are initialized and iteratively are moving
though the domain of the set of parameters. The goal of
the algorithm is, for a given instance to compute the
tour with lowest length and to compute the set of ACS
parameters, among those in DPSO, which gets the best
ACS performance. Those final parameters are related
with the TSP-instance selected.

RESULTS AND ANALYSIS

 Algorithm was coded in C++. Algorithm has been
run on six of the most widely used TSP-instances.
Computational results are given in four parts: PSO-
ACS behavior, PSO-ACS optimum values obtained,
best set of parameters and comparison among sets of
parameters performance.
 Computationally, each PSO - ACS iteration shows
a clear convergence: when the optimum (defined by the
algorithm) number of ants and φ are nearly fixed, the

Fig. 5: Average time of the swarm at first 100 iterations

for instances eil101 a and rat 99 b. AVG_TIME
is average time of the iteration given a fixed
number of particles and ITERATION_PSO is
the number of the iteration in the PSO-ACS
algorithm

Table 3: Sets of parameters
 α β ρ ϕ na q0 φ Fitness
P_eil51 0.36 7 0.40 1 1 0.54 0.18 426
P_eil76 0.21 5 0.40 1 5 0.58 0.20 538
P_eil101 0.71 7 0.23 2 7 0.78 0.12 629
P_kroA100 0.64 4 0.24 1 4 0.64 0.12 21282
P_kroB100 0.71 1 0.08 1 3 9 0.86 0.12 22141
P_rat99 0.15 3 0.28 1 9 0.95 0.00 1211
ACS 0.10 2 0.10 1 1 0 0.9 a b
ACS_GA 0.20 6 0.20 1 1 0 0.7 a b
a have been tested for φ=0.1 0.2…..0.91 “b” there is no fitness value
related. Values in bold mean optimum.

Computational time is also fixed (Fig. 5). In less than
100 iterations algorithm computes an optimum for
integer parameters and in 200 iterations there are small
differences among the optimum found and the particle’s
position for real parameters. In Fig. 6 we can see the
evolution of the algorithm in the first 100 iterations. For
the average of the fitness of the swarm(in a given
iteration),there is a decreasing global tendency and after
iteration 75 we can see the average of the fitness is kept
on a fixed range, the size of this range is variable as
shown in (c) and (d). For the minimum value obtained
by the swarm in a given iteration, computational results
show that at the beginning there are increasing and
decreasing phases, when the particles are exploring
their local optimums and moving also to the global one,
but near iteration 100 the minimum is maintained as in
(a) or frequently visited as in (b). This fast convergence
can be an advantage as well as a drawback because it
can lead to a fast non-desirable convergence.
 We set the reasons of this fast convergence in the
PSO framework used and mainly in the method for
evaluating a set of parameters: in a stochastic algorithm
there is the probability that a bad set of parameters
could perform well, if all the particles move into this

J. Computer Sci., 4 (2): 139-147, 2008

 146

 (a) (b)

 (c) (d)

Fig. 6: First 100 iterations of the PSO-ACS algorithm. A and b are related to the minimum tour obtained at each

iteration, c and d are related to the average of the particles fitness values. A and d are related to the instance
kroA 100. b is related to kroB 100, and c to eil51. Those are the examples of typical behaviors in the 100
first iterations of the algorithm

area and the number of iterations in this area increases
leading to probably good solutions that will cause the
algorithm to remain in this non-optimal area.
 Table 3 shows the optimum set of parameters
found running PSO-ACS on each one of the instances
selected.

CONCLUSION

 In this research, a new approach is proposed for the
convergence of associative neural memories by using
the Fuzzy Particle Swarm Optimization technique
(FPSO). The approach focuses on the neighborhood
best and global best to increase the speed of
convergence. In addition, this proposed model
overcomes the local minima problem which is major
drawback with the PSO technique.
 The example illustrated suggests that our new
approach can be used successfully as real time memory
convergence technique for the artificial neural network.

 Computational results seem to show that there is no
uniquely optimal set of ACS parameters yielding best
quality solutions in all the TSP instances. Nevertheless
the PSO-ACS has been able to find a set of ACS
parameters that work optimally for a majority of
instances unlike others known so far.
 PSO-ACS algorithm works well across different
instances because it adapts itself to the instance
characteristics. But it has a high computational
overhead. A future work will try to modify the
algorithm framework to reduce this cost.
 PSO-ACS also has a fast convergence that can lead
to a bad set of parameters. This may be due to two
reasons: first is the specific PSO framework used and in
modifying it we expect to obtain better results.
Secondly the way the sets of parameters are evaluated
may have to be reviewed as a bad set of parameters
could lead to a non-desired convergence.

J. Computer Sci., 4 (2): 139-147, 2008

 147

REFERENCES

1. Armij, L., 1996. Minimization of functions having

Lischitz continuous first partial derivatives. Pacific
J. Math., 16: 1-3.

2. Baladi and K. Hornik, 1989. Neural networks and
principal component analysis: Learning from
examples and local minima. Neural Networks,
2: 53-58.

3. Bello., M.G., 1992. Enhanced training algorithms
and intigrated training/architecture selection for
multi layer perceptron networks. IEEE Trans.
Neural Networks, 3: 864-874.

4. Antsaklis, P.J and J.O. Moody, 1996. The
dependence identification neural network
construction algorithm. IEEE Trans. Neural
Networks, 1: 3-15.

5. Baron Robert, H. and P. Coughlin James, 1994.
Neural Computation in Hopfield Networks and
Boltzmann Machines. Newyark: University of
Delaware Press.

6. Kennedy, J. and R. C.Eberhart, 1995. Particle
swarm optimization. Proceeding IEEE
International Conference on Neural Networks.
4: 1942-1948.

7. Eberhart, R.C. and Y. Shi, 2001. Particle swarm
optimization: Development, applications and
resources. Proceeding Congress on Evolutionary
Computation, IEEE Service Centre, Korea.

8. Dorigo, M., 1992. Optimization, Learning and
Natural Algorithms. Ph.D Thesis. Dip Elettronica.
Politecnico di Milano.

9. Dorigo, M., V. Maniezzo and A. Colorni, 1991.
Positive Feedback as a Search Strategy. Technical
Report. Dip Elettronica. Politecnico di Milano.
pp: 91-116.

10. Dorigo, M., V. Maniezzo and A. Colorni, 1996.
The Ant System: Optimization by a Colony of
Cooperating Agents. IEEE Transaction on
Systems, Man and Cybernetics. pp: 29-42.

11. Dorigo, M. and T. Stutzle, 2004. Ant Colony
Optimization. MIT Press.

12. Dorigo, M. and L.M. Gambardella, 1997. Ant
Colony System: A Cooperative Learning Approach
to the Travelling Salesman Problem. IEEE
Transaction on Evolutionary Computtin. pp: 53-66.

13. Gambardella, L.M and M. Dorigo, 1995. Ant-Q: A
reinforcement Learning Approach to the
Symmetric and Asymmetric Travelling Salesman
Problems. Proceeding of the IEEE International
Conference on Evolutionary Computation.
pp: 252-260.

14. Pilat, E.C. and T. White, 2002. Using genetic
algorithms to optimize ACS-TSP. Proceedings of
the Third International Workshop on Ant
Algorithms. pp: 282-287.

15. Kennedy, J. and R. Eberhart, 2001. Swarm
Intelligence. Morgan Kaufmann Publishers.

16. Shi, Y. and R. Eberhart, 1998. Parameter selection
in particle swarm optimization. IEEE International
Conference on Evolutionary Computations.
Lecture notes in Computer Science. Springer.
pp:.591-600.

17. Shi, Y. and R. Eberhart, 1998. A modified particle
swarm optimizer. IEEE International Conference
on Evolutionary Computation. Anchorage, Alaska.

18. Mouzouris, G.C. and J.M. Mendel, 1996.
Designing fuzzy logic systems for uncertain
environments using a singular-value- QR
decomposition method. Proceedings of the 5th
IEEE International Conference on Fuzzy Systems,
New Orleans. pp: 295-301.

19. Yen, J. and L. Wang, 1996. An SVD based fuzzy
model reduction strategy. Proceeding of the 5th
IEEE International Conference on Fuzzy System,
New Orleans. pp: 835-841.

20. Yen, J and L. Wang, 1998. Granule-based Models.
Handbook of fuzzy computation. IOP Publishing.

21. Yen, J. and L. Wang, 1999. Simplifying fuzzy rule-
based models using orthogonal transformation
methods. IEEE Transaction on Systems, man and
Cybernatics. 29: 395-401.

22. Alter, O.O. Brown and D. Botstein, 2000. Singular
value decompositin for genome-wide expression
data processing and modeling. Proc. Natl Acad Sci
USA.

23. Yen, J. and R. Langari, 2004. Fuzzy logic:
Intelligence, control and information. Pearson
Edition.

